Complex hyperbolic orbifolds and hybrid lattices

A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata Jg. 217; H. 2; S. 28
Hauptverfasser: Falbel, Elisha, Pasquinelli, Irene
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0046-5755, 1572-9168
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.
AbstractList A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [ 18 ] and [ 19 ], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [ 25 ] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.
A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [1, 10] and [24]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in $$\mathbb {P}^2$$ P 2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [18] and [19], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [25] shows that two of the Deligne-Mostow lattices in PU (2, 1) can be seen as hybrids of lattices in PU (1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.
A class of complex hyperbolic lattices in PU(2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [1, 10] and [24]) in terms of line arrangements. They use branched covers over a suitable blow up of the complete quadrilateral arrangement of lines in P2 to construct the complex hyperbolic surfaces over the orbifolds associated to the lattices. In [18] and [19], fundamental domains for these lattices have been built by Pasquinelli. Here we show how the fundamental domains can be interpreted in terms of line arrangements as above. This parallel is then applied in the following context. Wells in [25] shows that two of the Deligne-Mostow lattices in PU(2, 1) can be seen as hybrids of lattices in PU(1, 1). Here we show that he implicitly uses the line arrangement and we complete his analysis to all possible pairs of lines. In this way, we show that three more Deligne-Mostow lattices can be given as hybrids.
ArticleNumber 28
Author Falbel, Elisha
Pasquinelli, Irene
Author_xml – sequence: 1
  givenname: Elisha
  surname: Falbel
  fullname: Falbel, Elisha
  organization: Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS UMR 7586 and INRIA EPI-OURAGAN Sorbonne Université, Faculté des Sciences
– sequence: 2
  givenname: Irene
  orcidid: 0000-0002-4845-4795
  surname: Pasquinelli
  fullname: Pasquinelli, Irene
  email: irene.pasquinelli@bristol.ac.uk
  organization: University of Bristol, School of Mathematics
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8BydJE2THGXxCxa86DmkaaJZuk1NumD_vdUKgoc9DcO8z8zwrNCii51D6JLANQEQN5mAIAQDpXhqK4rHE7QkXFCsSCUXaAlQVpgLzs_QKucdACgh6BLBJu771n0W72PvUh3bYIuY6uBj2-TCdM00qFNoitYMQ7Aun6NTb9rsLn7rGr3e371sHvH2-eFpc7vFlio2YCaMssxaLp1xDQXrKqpq5mkjBDfGOyeZV9xzaQVvlJestoSXjSTO8VoBW6OreW-f4sfB5UHv4iF100nNKC-55ADVlJJzyqaYc3Je2zCYIcRuSCa0moD-9qNnP3ryo3_86HFC6T-0T2Fv0ngcYjOUp3D35tLfV0eoL4maevE
CitedBy_id crossref_primary_10_1016_j_jmaa_2024_129127
Cites_doi 10.1007/s10711-011-9609-9
10.2140/pjm.2019.302.201
10.1090/conm/501/09838
10.2140/gtm.1998.1.511
10.1007/978-1-4757-9286-7_7
10.2140/pjm.1980.86.171
10.1007/BF02698928
10.1007/BF01458537
10.1007/BF02831623
10.1007/s00222-015-0600-1
10.1016/B978-0-12-001011-0.50014-2
10.1090/S0273-0979-1987-15510-8
10.1090/ecgd/299
10.1007/s10240-005-0032-3
10.1093/oso/9780198537939.001.0001
10.2140/agt.2020.20.925
10.1307/mmj/1592532044
10.1016/j.topol.2019.106918
10.1007/BF02831622
10.23943/princeton/9780691144771.001.0001
10.1007/s10711-019-00506-5
10.2969/jmsj/02910091
10.1007/s11511-006-0001-9
10.1007/978-1-4757-6720-9
10.1007/978-3-322-92886-3
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10711-022-00762-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9168
ExternalDocumentID 10_1007_s10711_022_00762_y
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7U
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c293t-37a9c3cc58eaed20ce629b3f2d775aafee83f95f58c75d9f83bc154d81ee5b903
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922037800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0046-5755
IngestDate Sat Sep 27 04:31:09 EDT 2025
Sat Nov 29 05:48:46 EST 2025
Tue Nov 18 20:15:38 EST 2025
Fri Feb 21 02:44:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-37a9c3cc58eaed20ce629b3f2d775aafee83f95f58c75d9f83bc154d81ee5b903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4845-4795
OpenAccessLink https://link.springer.com/10.1007/s10711-022-00762-y
PQID 3254585006
PQPubID 2043606
ParticipantIDs proquest_journals_3254585006
crossref_citationtrail_10_1007_s10711_022_00762_y
crossref_primary_10_1007_s10711_022_00762_y
springer_journals_10_1007_s10711_022_00762_y
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Geometriae dedicata
PublicationTitleAbbrev Geom Dedicata
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References DerauxMParkerJRPaupertJNew nonarithmetic complex hyperbolic lattices IIMichigan Math. J.2021701135205425509110.1307/mmj/159253204407390741
PasquinelliIFundamental domains and presentations for the Deligne-Mostow lattices with 2-fold symmetryPacific J. Math.20193021201247402877210.2140/pjm.2019.302.2011436.22007
PasquinelliIDeligne-Mostow lattices with three fold symmetry and cone metrics on the sphereConform. Geom. Dyn.201620235281352298310.1090/ecgd/2991354.32014
Parker, John R.: Complex hyperbolic lattices. In Discrete groups and geometric structures, volume 501 of Contemp. Math., pages 1–42. Amer. Math. Soc., Providence, RI, (2009)
ParkerJRCone metrics on the sphere and Livné’s latticesActa Math.20061961164223720510.1007/s11511-006-0001-91100.57017
Dashyan, R.: A construction of representations of 3-manifold groups into PU(2,1) through Lefschetz fibrations. arXiv:1909.10229 (2019)
DerauxMA new nonarithmetic lattice in PU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm PU}(3,1)$$\end{document}Algebr. Geom. Topol.2020202925963409231510.2140/agt.2020.20.9251457.22003
MostowGDBraids, hypergeometric functions, and latticesBull. Am. Math. Soc. (N.S.)198716222524687695910.1090/S0273-0979-1987-15510-80639.22005
Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und Algebraische Flächen. In: Aspects of Mathematics, D4. Friedr. Vieweg & Sohn, Braunschweig (1987)
Paupert, Julien, Wells, Joseph: Hybrid lattices and thin subgroups of picard modular groups. arXiv preprint arXiv:1806.01438, (2019)
TakeuchiKArithmetic triangle groupsJ. Math. Soc. Japan19772919110642974410.2969/jmsj/029100910344.20035
Thurston, William P.: Shapes of polyhedra and triangulations of the sphere. In The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511–549. Geom. Topol. Publ., Coventry, (1998)
YamazakiTYoshidaMOn Hirzebruch’s examples of surfaces with c12=3c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^{2}_{1}=3c_{2}$$\end{document}Math. Ann.1984266442143173552510.1007/BF014585370513.14008
Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pp. 113–140. Birkhäuser, Boston (1983)
Goldman, W. M.: Complex hyperbolic geometry. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1999). Oxford Science Publications
MostowGDGeneralized Picard lattices arising from half-integral conditionsInst. Hautes Études Sci. Publ. Math.1986639110684965210.1007/BF028316230615.22009
CouwenbergWHeckmanGLooijengaEGeometric structures on the complement of a projective arrangementPubl. Math. Inst. Hautes Études Sci.200510169161221704710.1007/s10240-005-0032-31083.14039
MostowGDOn a remarkable class of polyhedra in complex hyperbolic spacePac. J. Math.198086117127658687610.2140/pjm.1980.86.1710456.22012
WellsJNon-arithmetic hybrid lattices in PU(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm PU(2,1)$$\end{document}Geom. Dedicata.2020208111414291310.1007/s10711-019-00506-51441.22023
Kobayashi, R.: Uniformization of complex surfaces. In: Kähler metric and moduli spaces, volume 18 of Adv. Stud. Pure Math., pp. 313–394. Academic Press, Boston, MA (1990)
GromovMPiatetski-ShapiroINonarithmetic groups in Lobachevsky spacesInst. Hautes Études Sci. Publ. Math.1988669310393213510.1007/BF026989280649.22007
DelignePMostowGDMonodromy of hypergeometric functions and nonlattice integral monodromyInst. Hautes Études Sci. Publ. Math.19866358984965110.1007/BF028316220615.22008
Tretkoff, Paula: Complex ball quotients and line arrangements in the projective plane, volume 51 of Mathematical Notes. Princeton University Press, Princeton, NJ, 2016. With an appendix by Hans-Christoph Im Hof
DerauxMParkerJRPaupertJNew non-arithmetic complex hyperbolic latticesInvent. Math.20162033681771346136510.1007/s00222-015-0600-11337.22007
Maclachlan, Colin, Reid, Alan W.: The arithmetic of hyperbolic 3-manifolds. Graduate Texts in Mathematics, vol. 219. Springer-Verlag, New York (2003)
PaupertJNon-discrete hybrids in SU(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm SU}(2,1)$$\end{document}Geom. Dedicata.2012157259268289348810.1007/s10711-011-9609-91271.22008
762_CR15
762_CR11
762_CR10
T Yamazaki (762_CR26) 1984; 266
762_CR3
M Deraux (762_CR7) 2021; 70
762_CR8
I Pasquinelli (762_CR19) 2019; 302
GD Mostow (762_CR14) 1987; 16
I Pasquinelli (762_CR18) 2016; 20
P Deligne (762_CR5) 1986; 63
762_CR1
JR Parker (762_CR16) 2006; 196
762_CR24
762_CR23
M Deraux (762_CR6) 2016; 203
762_CR21
GD Mostow (762_CR13) 1986; 63
K Takeuchi (762_CR22) 1977; 29
J Wells (762_CR25) 2020; 208
J Paupert (762_CR20) 2012; 157
GD Mostow (762_CR12) 1980; 86
M Deraux (762_CR4) 2020; 20
M Gromov (762_CR9) 1988; 66
762_CR17
W Couwenberg (762_CR2) 2005; 101
References_xml – reference: PasquinelliIFundamental domains and presentations for the Deligne-Mostow lattices with 2-fold symmetryPacific J. Math.20193021201247402877210.2140/pjm.2019.302.2011436.22007
– reference: CouwenbergWHeckmanGLooijengaEGeometric structures on the complement of a projective arrangementPubl. Math. Inst. Hautes Études Sci.200510169161221704710.1007/s10240-005-0032-31083.14039
– reference: DelignePMostowGDMonodromy of hypergeometric functions and nonlattice integral monodromyInst. Hautes Études Sci. Publ. Math.19866358984965110.1007/BF028316220615.22008
– reference: GromovMPiatetski-ShapiroINonarithmetic groups in Lobachevsky spacesInst. Hautes Études Sci. Publ. Math.1988669310393213510.1007/BF026989280649.22007
– reference: Parker, John R.: Complex hyperbolic lattices. In Discrete groups and geometric structures, volume 501 of Contemp. Math., pages 1–42. Amer. Math. Soc., Providence, RI, (2009)
– reference: DerauxMA new nonarithmetic lattice in PU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm PU}(3,1)$$\end{document}Algebr. Geom. Topol.2020202925963409231510.2140/agt.2020.20.9251457.22003
– reference: Kobayashi, R.: Uniformization of complex surfaces. In: Kähler metric and moduli spaces, volume 18 of Adv. Stud. Pure Math., pp. 313–394. Academic Press, Boston, MA (1990)
– reference: MostowGDBraids, hypergeometric functions, and latticesBull. Am. Math. Soc. (N.S.)198716222524687695910.1090/S0273-0979-1987-15510-80639.22005
– reference: YamazakiTYoshidaMOn Hirzebruch’s examples of surfaces with c12=3c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^{2}_{1}=3c_{2}$$\end{document}Math. Ann.1984266442143173552510.1007/BF014585370513.14008
– reference: Goldman, W. M.: Complex hyperbolic geometry. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1999). Oxford Science Publications
– reference: DerauxMParkerJRPaupertJNew nonarithmetic complex hyperbolic lattices IIMichigan Math. J.2021701135205425509110.1307/mmj/159253204407390741
– reference: Thurston, William P.: Shapes of polyhedra and triangulations of the sphere. In The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511–549. Geom. Topol. Publ., Coventry, (1998)
– reference: Paupert, Julien, Wells, Joseph: Hybrid lattices and thin subgroups of picard modular groups. arXiv preprint arXiv:1806.01438, (2019)
– reference: Maclachlan, Colin, Reid, Alan W.: The arithmetic of hyperbolic 3-manifolds. Graduate Texts in Mathematics, vol. 219. Springer-Verlag, New York (2003)
– reference: PaupertJNon-discrete hybrids in SU(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm SU}(2,1)$$\end{document}Geom. Dedicata.2012157259268289348810.1007/s10711-011-9609-91271.22008
– reference: WellsJNon-arithmetic hybrid lattices in PU(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rm PU(2,1)$$\end{document}Geom. Dedicata.2020208111414291310.1007/s10711-019-00506-51441.22023
– reference: Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pp. 113–140. Birkhäuser, Boston (1983)
– reference: MostowGDOn a remarkable class of polyhedra in complex hyperbolic spacePac. J. Math.198086117127658687610.2140/pjm.1980.86.1710456.22012
– reference: PasquinelliIDeligne-Mostow lattices with three fold symmetry and cone metrics on the sphereConform. Geom. Dyn.201620235281352298310.1090/ecgd/2991354.32014
– reference: Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und Algebraische Flächen. In: Aspects of Mathematics, D4. Friedr. Vieweg & Sohn, Braunschweig (1987)
– reference: Dashyan, R.: A construction of representations of 3-manifold groups into PU(2,1) through Lefschetz fibrations. arXiv:1909.10229 (2019)
– reference: DerauxMParkerJRPaupertJNew non-arithmetic complex hyperbolic latticesInvent. Math.20162033681771346136510.1007/s00222-015-0600-11337.22007
– reference: ParkerJRCone metrics on the sphere and Livné’s latticesActa Math.20061961164223720510.1007/s11511-006-0001-91100.57017
– reference: Tretkoff, Paula: Complex ball quotients and line arrangements in the projective plane, volume 51 of Mathematical Notes. Princeton University Press, Princeton, NJ, 2016. With an appendix by Hans-Christoph Im Hof
– reference: MostowGDGeneralized Picard lattices arising from half-integral conditionsInst. Hautes Études Sci. Publ. Math.1986639110684965210.1007/BF028316230615.22009
– reference: TakeuchiKArithmetic triangle groupsJ. Math. Soc. Japan19772919110642974410.2969/jmsj/029100910344.20035
– volume: 157
  start-page: 259
  year: 2012
  ident: 762_CR20
  publication-title: Geom. Dedicata.
  doi: 10.1007/s10711-011-9609-9
– volume: 302
  start-page: 201
  issue: 1
  year: 2019
  ident: 762_CR19
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.2019.302.201
– ident: 762_CR17
  doi: 10.1090/conm/501/09838
– ident: 762_CR23
  doi: 10.2140/gtm.1998.1.511
– ident: 762_CR10
  doi: 10.1007/978-1-4757-9286-7_7
– volume: 86
  start-page: 171
  issue: 1
  year: 1980
  ident: 762_CR12
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1980.86.171
– volume: 66
  start-page: 93
  year: 1988
  ident: 762_CR9
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02698928
– volume: 266
  start-page: 421
  issue: 4
  year: 1984
  ident: 762_CR26
  publication-title: Math. Ann.
  doi: 10.1007/BF01458537
– volume: 63
  start-page: 91
  year: 1986
  ident: 762_CR13
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02831623
– volume: 203
  start-page: 681
  issue: 3
  year: 2016
  ident: 762_CR6
  publication-title: Invent. Math.
  doi: 10.1007/s00222-015-0600-1
– ident: 762_CR11
  doi: 10.1016/B978-0-12-001011-0.50014-2
– volume: 16
  start-page: 225
  issue: 2
  year: 1987
  ident: 762_CR14
  publication-title: Bull. Am. Math. Soc. (N.S.)
  doi: 10.1090/S0273-0979-1987-15510-8
– volume: 20
  start-page: 235
  year: 2016
  ident: 762_CR18
  publication-title: Conform. Geom. Dyn.
  doi: 10.1090/ecgd/299
– volume: 101
  start-page: 69
  year: 2005
  ident: 762_CR2
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/s10240-005-0032-3
– ident: 762_CR8
  doi: 10.1093/oso/9780198537939.001.0001
– volume: 20
  start-page: 925
  issue: 2
  year: 2020
  ident: 762_CR4
  publication-title: Algebr. Geom. Topol.
  doi: 10.2140/agt.2020.20.925
– volume: 70
  start-page: 135
  issue: 1
  year: 2021
  ident: 762_CR7
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1592532044
– ident: 762_CR3
– ident: 762_CR21
  doi: 10.1016/j.topol.2019.106918
– volume: 63
  start-page: 5
  year: 1986
  ident: 762_CR5
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02831622
– ident: 762_CR24
  doi: 10.23943/princeton/9780691144771.001.0001
– volume: 208
  start-page: 1
  year: 2020
  ident: 762_CR25
  publication-title: Geom. Dedicata.
  doi: 10.1007/s10711-019-00506-5
– volume: 29
  start-page: 91
  issue: 1
  year: 1977
  ident: 762_CR22
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/02910091
– volume: 196
  start-page: 1
  issue: 1
  year: 2006
  ident: 762_CR16
  publication-title: Acta Math.
  doi: 10.1007/s11511-006-0001-9
– ident: 762_CR15
  doi: 10.1007/978-1-4757-6720-9
– ident: 762_CR1
  doi: 10.1007/978-3-322-92886-3
SSID ssj0009772
Score 2.29375
Snippet A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [ 1 , 10 ] and [ 24 ]) in...
A class of complex hyperbolic lattices in PU (2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [1, 10] and [24]) in terms of...
A class of complex hyperbolic lattices in PU(2, 1) called the Deligne-Mostow lattices has been reinterpreted by Hirzebruch (see [1, 10] and [24]) in terms of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms Algebraic Geometry
Construction
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Inequality
Lattices
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Quadrilaterals
Symmetry
Topology
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb3F90YM3DXbTZpOcRMTFi4ugwt5KnrhQ2rWt4v57kzbdouBePKcNYTKZmcxMvg-ACxEZhQaxgHxgNIwxt2eOMg4VFZiExsbkKqzJJsh4TCcT9uQTbqVvq2xtYm2oVS5djvw6Qq7Eg62S3MzeoWONctVVT6GxCtYcSgKqW_eeO9BdQhq08HgIbViC_aMZ_3SOuOSgvYq5YhSC85-OqYs2fxVIa78z2v7vinfAlo84g9tGRXbBis72wObjAq613Aehswqp_gre7K20EA4qOMgLMTV5qsqAZ8oOuJddQcor1yxXHoDX0f3L3QP0VApQWn9eWTPCmYykxFRzrVAo9RAxu09IEYI5N1rTyDBsMJUEK2ZoJKQNrhQdaI0FC6ND0MvyTB-BQAhBRIg1tgFvrFnMCQmplkMkqDWcMuqDQSvHRHqccUd3kSYdQrKTfWJln9SyT-Z9cLn4Z9agbCz9-rQVeOJPXJl00u6Dq3bLuuG_ZztePtsJ2HAM802zzinoVcWHPgPr8rOalsV5rW_fPubatw
  priority: 102
  providerName: ProQuest
Title Complex hyperbolic orbifolds and hybrid lattices
URI https://link.springer.com/article/10.1007/s10711-022-00762-y
https://www.proquest.com/docview/3254585006
Volume 217
WOSCitedRecordID wos000922037800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9168
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009772
  issn: 0046-5755
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9168
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009772
  issn: 0046-5755
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1572-9168
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009772
  issn: 0046-5755
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9168
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009772
  issn: 0046-5755
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RlgEG3ohCqTKwQaS8XNsjoFYsraoWULfIr4hKVYqSgOi_x86jAQRIsGSxY0V39t3n3N13ABfcj6TnBtxmbqTsADF95ghltiQcYSfSmFw6ebMJPBqR2YyOy6KwtMp2r0KSuaX-UOyGze88fXky4SPPXjWgpd0dMcdxMn2sqXYxLjjCg56twQgqS2W-X-OzO6ox5pewaO5tBrv_-8492CnRpXVdbId92FDxAWwP19Ss6SE4xgIs1Jv1pG-gCTe0wNYy4fNouZCpxWKpB0wVl7VgmUmMS4_gYdC_v72zy7YJttC-O9Mmg1HhC4GIYkp6jlA9j2qdeBJjxFikFPEjiiJEBEaSRsTnQgMpSVylEKeOfwzNeBmrE7A455g7SCENbgNFA4axQ5ToeZxoIyn8NriV9EJRcoqb1haLsGZDNtIItTTCXBrhqg2X63eeC0aNX2d3KqWE5elKQ98z4T6kDUYbriol1MM_r3b6t-lnsGW6yxeJOh1oZsmLOodN8ZrN06QLrZv-aDzpQmPojc0TT7v5TnwHnMTU6Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH5oFdSDu1jXHPSkwXSS6UwOIuKC0gUPCt7ibMFCaWtTl_4pf6NvshgU9ObB8yTDkLd9L2_e9wD2pB9rUgukK2qxcQMq0OZ4KFzNJWVejJhce-mwCdZu8_v78GYC3oteGHutsvCJqaPWfWX_kR_5xJZ4KCrJyeDJtVOjbHW1GKGRqUXDjF8xZUuOr89RvvuEXF7cnl25-VQBV2FoG6FFiVD5SlFuhNHEU6ZOQjwy0YxRIWJjuB-HNKZcMarDmPtSIc7QvGYMlaHn476TMBVgJmTtqkVuSpJfxjJ28qDuIgyieZNO3qrH7M9ITP1s8Yu446-BsES33wqyaZy7XPhvX2gR5nNE7ZxmJrAEE6a3DHOtTzraZAU86_W65s15xKx7KC0VstMfyk7c7-rEET2NC7ZzzemKkb0MmKzC3Z8ceQ0qvX7PrIMjpWTSo4YioA9MGAjGPG5UnUiOgUH5VagVcotUzqNux3l0o5IB2so6QllHqayjcRUOPt8ZZCwivz69VQg4yj1KEpXSrcJhoSLl8s-7bfy-2y7MXN22mlHzut3YhFmCGC67mLQFldHw2WzDtHoZdZLhTqrrDjz8tep8AIdIOoM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB60iuiDt1jPffBNl-6VJvsoalHUUvCgb0tOLCzbsruK_fcme7RVVBCfkw1hksx8szPzDcAJ85Xw3IDZ1FXSDhDVb46E1BaEIewojcmFUzSbwN0u6ffD3kwVf5HtXocky5oGw9KU5K2RUK2Zwjdsfu1pR8qEkjx7PA8LgWkaZPz1h-cp7S7GJV940LY1MEFV2cz3a3w2TVO8-SVEWlieztr_97wOqxXqtM7La7IBczLZhJX7CWVrtgWO0QyxfLdetGeaMkMXbA1TNlDDWGQWTYQeMNVdVkxzkzCXbcNT5-rx4tqu2inYXNv0XKsSGnKfc0QklcJzuGx7oT4rT2CMKFVSEl-FSCHCMRKhIj7jGmAJ4kqJWOj4O9BIhoncBYsxhpmDJNKgN5BhQDF2iORtjxGtPLnfBLeWZMQrrnHT8iKOpizJRhqRlkZUSCMaN-F08s2oZNr4dfZBfUBR9eqyyPdMGBBpRdKEs_pApsM_r7b3t-nHsNS77ER3N93bfVg2DejLXJ4DaOTpqzyERf6WD7L0qLiMHyIJ3S8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+hyperbolic+orbifolds+and+hybrid+lattices&rft.jtitle=Geometriae+dedicata&rft.au=Falbel%2C+Elisha&rft.au=Pasquinelli%2C+Irene&rft.date=2023-04-01&rft.issn=0046-5755&rft.eissn=1572-9168&rft.volume=217&rft.issue=2&rft_id=info:doi/10.1007%2Fs10711-022-00762-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10711_022_00762_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5755&client=summon