SAR Image Compression Using Discretized Gaussian Adaptive Model and Generalized Subtractive Normalization
Synthetic aperture radar (SAR) image compression plays an important role in the manipulation of images. However, the existing optical compression methods cannot properly handle SAR compression due to the absence of feature learning and representation for SAR images. In this letter, we propose an end...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 19; s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Synthetic aperture radar (SAR) image compression plays an important role in the manipulation of images. However, the existing optical compression methods cannot properly handle SAR compression due to the absence of feature learning and representation for SAR images. In this letter, we propose an end-to-end trainable model to effectively fit the feature distribution and reduce information dependencies toward SAR image compression. To better parameterize the distribution of latent codes, a discretized Gaussian adaptive model is designed to achieve a flexible entropy process. To further remove the remaining redundancies, generalized subtractive normalization (GSN) is introduced to reduce the statistical dependencies in SAR images. Extensive experiments show that the proposed compression method outperforms the traditional compression methods and learning-based algorithms on both the ICEYE and Sandia datasets. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1545-598X 1558-0571 |
| DOI: | 10.1109/LGRS.2022.3213375 |