Asymmetric Adaptation of Deep Features for Cross-Domain Classification in Remote Sensing Imagery

In this letter, we introduce an asymmetric adaptation neural network (AANN) method for cross-domain classification in remote sensing images. Before the adaptation process, we feed the features obtained from a pretrained convolutional neural network to a denoising autoencoder (DAE) to perform dimensi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 15; číslo 4; s. 597 - 601
Hlavní autoři: Ammour, Nassim, Bashmal, Laila, Bazi, Yakoub, Al Rahhal, M. M., Zuair, Mansour
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, we introduce an asymmetric adaptation neural network (AANN) method for cross-domain classification in remote sensing images. Before the adaptation process, we feed the features obtained from a pretrained convolutional neural network to a denoising autoencoder (DAE) to perform dimensionality reduction. Then the first hidden layer of AANN (placed on the top of DAE) maps the labeled source data to the target space, while the subsequent layers control the separation between the available land-cover classes. To learn its weights, the network minimizes an objective function composed of two losses related to the distance between the source and target data distributions and class separation. The results of experiments conducted on six scenarios built from three benchmark scene remote sensing data sets (i.e., Merced, KSA, and AID data sets) are reported and discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2018.2800642