SLCRF: Subspace Learning With Conditional Random Field for Hyperspectral Image Classification
Subspace learning (SL) plays an essential role in hyperspectral image (HSI) classification since it can provide an effective solution to reduce the redundant information in the image pixels of HSIs. Previous works about SL aim to improve the accuracy of HSI recognition. Using a large number of label...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 59; číslo 5; s. 4203 - 4217 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!