Optimal Sensor Placement for Estimation of Center of Plantar Pressure Based on the Improved Genetic Algorithms
Plantar pressure analysis can be used for clinical diagnosis, exercise guidance and daily monitoring. In actual use, the CoP trajectory is an important parameter for dynamic analysis, which is generally obtained with an in-shoe system in outdoor and daily monitoring. Therefore, it is a critical issu...
Gespeichert in:
| Veröffentlicht in: | IEEE sensors journal Jg. 21; H. 24; S. 28077 - 28086 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
15.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Plantar pressure analysis can be used for clinical diagnosis, exercise guidance and daily monitoring. In actual use, the CoP trajectory is an important parameter for dynamic analysis, which is generally obtained with an in-shoe system in outdoor and daily monitoring. Therefore, it is a critical issue to design the sensor placement to obtain accurate CoP estimation in a low-cost sensing insole. In this paper, a new sensor placement method, an improved genetic algorithm, was proposed, driven by a large amount of plantar pressure distribution data, with the objectives of reducing the trajectory estimation error and increasing the amount of information, and abstract the placement problem as a combinatorial optimization problem under multiple objectives. Through optimization iterations, a set of optimized sensor placements are determined and applied to practical use. Six subjects wore the optimal placement insoles and the mean absolute error was 3.81 mm (medial-lateral direction) and 8.61 mm (anterior-posterior direction) for comparison with the CoP trajectory provided by the measurement platform. Compared with previous results, the method proposed in this paper provides a more accurate CoP estimation with a 9.7% improvement. This study provides new guidelines for the selection of plantar pressure sensor placements and incorporates intelligent optimization algorithms into new ways to improve the accuracy of wearable device analysis. |
|---|---|
| AbstractList | Plantar pressure analysis can be used for clinical diagnosis, exercise guidance and daily monitoring. In actual use, the CoP trajectory is an important parameter for dynamic analysis, which is generally obtained with an in-shoe system in outdoor and daily monitoring. Therefore, it is a critical issue to design the sensor placement to obtain accurate CoP estimation in a low-cost sensing insole. In this paper, a new sensor placement method, an improved genetic algorithm, was proposed, driven by a large amount of plantar pressure distribution data, with the objectives of reducing the trajectory estimation error and increasing the amount of information, and abstract the placement problem as a combinatorial optimization problem under multiple objectives. Through optimization iterations, a set of optimized sensor placements are determined and applied to practical use. Six subjects wore the optimal placement insoles and the mean absolute error was 3.81 mm (medial-lateral direction) and 8.61 mm (anterior-posterior direction) for comparison with the CoP trajectory provided by the measurement platform. Compared with previous results, the method proposed in this paper provides a more accurate CoP estimation with a 9.7% improvement. This study provides new guidelines for the selection of plantar pressure sensor placements and incorporates intelligent optimization algorithms into new ways to improve the accuracy of wearable device analysis. |
| Author | Nong, Jinjin Xian, Xiaoming Zhou, Zikang Huang, Guowei Xie, Longhan Liu, Biao |
| Author_xml | – sequence: 1 givenname: Xiaoming orcidid: 0000-0001-8653-9952 surname: Xian fullname: Xian, Xiaoming email: msjanus@mail.scut.edu.cn organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zikang orcidid: 0000-0003-2251-9113 surname: Zhou fullname: Zhou, Zikang email: mezikang@mail.scut.edu.cn organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Guowei orcidid: 0000-0002-7442-3722 surname: Huang fullname: Huang, Guowei email: 616126836@qq.com organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Jinjin surname: Nong fullname: Nong, Jinjin email: 591265029@qq.com organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Biao orcidid: 0000-0002-1519-4712 surname: Liu fullname: Liu, Biao email: 437147672@qq.com organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China – sequence: 6 givenname: Longhan orcidid: 0000-0002-5137-1413 surname: Xie fullname: Xie, Longhan email: melhxie@scut.edu.cn organization: Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China |
| BookMark | eNp9kMtOAjEUhhuDiYg-gHHTxPVg27l0ukSCiCFigibuJqU9lSFDB9ti4tvbEeLChatzTvv9vXznqGdbCwhdUTKklIjbx-XkacgIo8OUsjzWE9SneV4mlGdlr-tTkmQpfztD595vCKGC57yP7GIX6q1s8BKsbx1-bqSCLdiATZwmvtsMdWtxa_A4LoPrukjZICPtwPu9A3wnPWgcsbAGPNvuXPsZ5ylYCLXCo-a9dXVYb_0FOjWy8XB5rAP0ej95GT8k88V0Nh7NE8VEGpI0NYVSeakKzuRKMEMLyU2mV5pybbSgsjCrTCqtBCt4qXVGBBMsAyZNwXKdDtDN4dz4ko89-FBt2r2z8cqKFZRQTgpRRoofKOVa7x2YStXh57vBybqpKKk6uVUnt-rkVke5MUn_JHcumnJf_2auD5kaAH55kQvBSZZ-A8HwiGw |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2024_01_005 crossref_primary_10_3389_fninf_2022_1006494 crossref_primary_10_1109_TNSRE_2024_3495530 crossref_primary_10_1109_TNSRE_2023_3338519 crossref_primary_10_1109_TIM_2022_3227990 crossref_primary_10_1109_TIM_2023_3306817 crossref_primary_10_1088_1742_6596_2704_1_012034 crossref_primary_10_1109_JBHI_2024_3512546 crossref_primary_10_1109_JSEN_2022_3217669 crossref_primary_10_3390_pr11020383 crossref_primary_10_1016_j_measurement_2023_113726 crossref_primary_10_1109_JSEN_2023_3268669 |
| Cites_doi | 10.1016/j.gaitpost.2016.01.026 10.3390/s120709884 10.1109/JBHI.2016.2608720 10.1016/j.aei.2018.10.002 10.1016/j.gaitpost.2019.11.001 10.1186/s12938-016-0237-3 10.3390/s18020421 10.1007/s12205-013-1467-6 10.3390/s20030656 10.3390/e21111128 10.1016/j.medengphy.2016.09.021 10.1016/j.neulet.2005.10.020 10.1016/j.fas.2018.12.005 10.1016/j.jbiomech.2008.05.007 10.1109/JIOT.2017.2723263 10.1109/JSEN.2017.2686641 10.1177/1475921719877579 10.1177/1475921717702537 10.1007/s40846-020-00512-z 10.1016/j.jnca.2011.12.006 10.1109/LRA.2017.2721550 10.1109/ACCESS.2020.3033194 10.1109/JSEN.2017.2750241 10.1109/TITB.2009.2038904 10.1109/TNSRE.2002.1021583 10.1186/1471-2318-8-8 10.1109/JSEN.2020.3048611 10.5535/arm.2014.38.2.145 10.1016/j.gaitpost.2004.04.011 10.1109/TBME.2013.2250972 10.1016/j.gaitpost.2019.09.027 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3125021 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 28086 |
| ExternalDocumentID | 10_1109_JSEN_2021_3125021 9599704 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52075177 funderid: 10.13039/501100001809 – fundername: Guangzhou Research Foundation grantid: 202002030324; 201903010028 – fundername: Zhongshan Research Foundation grantid: 2020B2020 – fundername: Shenzhen Institute of Artificial Intelligence and Robotics for Society grantid: AC01202005011 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-33f6cc58c672ab92f16a7f4dbd17dfd91a6fb4acdc92678dd4092924e2af625d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730544700094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:15:17 EDT 2025 Tue Nov 18 22:26:21 EST 2025 Sat Nov 29 06:39:05 EST 2025 Wed Aug 27 05:07:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-33f6cc58c672ab92f16a7f4dbd17dfd91a6fb4acdc92678dd4092924e2af625d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8653-9952 0000-0003-2251-9113 0000-0002-5137-1413 0000-0002-1519-4712 0000-0002-7442-3722 |
| PQID | 2610170698 |
| PQPubID | 75733 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3125021 proquest_journals_2610170698 ieee_primary_9599704 crossref_primary_10_1109_JSEN_2021_3125021 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 shu (ref17) 2010; 14 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref29 doi: 10.1016/j.gaitpost.2016.01.026 – ident: ref10 doi: 10.3390/s120709884 – ident: ref2 doi: 10.1109/JBHI.2016.2608720 – ident: ref9 doi: 10.1016/j.aei.2018.10.002 – ident: ref7 doi: 10.1016/j.gaitpost.2019.11.001 – ident: ref21 doi: 10.1186/s12938-016-0237-3 – ident: ref28 doi: 10.3390/s18020421 – ident: ref25 doi: 10.1007/s12205-013-1467-6 – ident: ref14 doi: 10.3390/s20030656 – ident: ref3 doi: 10.3390/e21111128 – ident: ref20 doi: 10.1016/j.medengphy.2016.09.021 – ident: ref6 doi: 10.1016/j.neulet.2005.10.020 – ident: ref11 doi: 10.1016/j.fas.2018.12.005 – ident: ref16 doi: 10.1016/j.jbiomech.2008.05.007 – ident: ref18 doi: 10.1109/JIOT.2017.2723263 – ident: ref22 doi: 10.1109/JSEN.2017.2686641 – ident: ref23 doi: 10.1177/1475921719877579 – ident: ref24 doi: 10.1177/1475921717702537 – ident: ref31 doi: 10.1007/s40846-020-00512-z – ident: ref12 doi: 10.1016/j.jnca.2011.12.006 – ident: ref27 doi: 10.1109/LRA.2017.2721550 – ident: ref1 doi: 10.1109/ACCESS.2020.3033194 – ident: ref19 doi: 10.1109/JSEN.2017.2750241 – volume: 14 start-page: 767 year: 2010 ident: ref17 article-title: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2009.2038904 – ident: ref15 doi: 10.1109/TNSRE.2002.1021583 – ident: ref4 doi: 10.1186/1471-2318-8-8 – ident: ref26 doi: 10.1109/JSEN.2020.3048611 – ident: ref8 doi: 10.5535/arm.2014.38.2.145 – ident: ref30 doi: 10.1016/j.gaitpost.2004.04.011 – ident: ref13 doi: 10.1109/TBME.2013.2250972 – ident: ref5 doi: 10.1016/j.gaitpost.2019.09.027 |
| SSID | ssj0019757 |
| Score | 2.404422 |
| Snippet | Plantar pressure analysis can be used for clinical diagnosis, exercise guidance and daily monitoring. In actual use, the CoP trajectory is an important... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 28077 |
| SubjectTerms | Combinatorial analysis Estimation Genetic algorithms Insoles Monitoring optimal sensor placement Optimization Placement Plantar pressure Plantar pressure analysis Pressure distribution Pressure sensors Sensor placement Sensors Trajectory Trajectory analysis Trajectory measurement Wearable technology |
| Title | Optimal Sensor Placement for Estimation of Center of Plantar Pressure Based on the Improved Genetic Algorithms |
| URI | https://ieeexplore.ieee.org/document/9599704 https://www.proquest.com/docview/2610170698 |
| Volume | 21 |
| WOSCitedRecordID | wos000730544700094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66MOj20G5px9JlQw99GnVryz8UPXYjZYyRBrKNvBlbJy2BxB6OM9h_vzvFDRsthb3J-E4IfZJO30m6AzhHlVlZog5KGg5BQjY20KW_NoWJQQyV85nnvn9Rk8loPtfTA7jYv4Wx1vrLZ_aSi_4sH2uzZVfZlU61Vhz884lS2e6t1v7EQCsf1ZMmcBgksZp3J5hRqK8-z8YTYoIyIoJKFl9G_9ggn1Tl3krszcvN8f817AUcddtIcb3D_SUc2KoPz_8KLtiHwy6_-eL3CVS3tDKsSWFGrLVuxJSd51ynoD2rGG_4JyMkaifY32sbLnFCo7YgaU_JGys-kMlDQWK0axQ7dwR9c-Rqaoa4Xv2om2W7WG9O4dvN-OvHT0GXaSEwZO7bII5dZkw6MpmSRamli7JCuQRLjBQ61FGRuTIpDBotybohEiuUxNysLBwRKIxfQa-qK_saRBorjahLR1gnrnSFk4kJcZQUpIZZOoDwru9z04Uh52wYq9zTkVDnDFfOcOUdXAN4v1f5uYvB8ZjwCeOzF-ygGcDwDuC8m6WbnNijDx-kR2cPa72BZ1w3X1-J0iH02mZr38JT86tdbpp3fgD-AZqq2e0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NA2nwAKwD0TGYH3hCC0ucH64fB2o1tlImbUN9ixKfTSt1zZRmSPz33LleBQIh8eYod4nlz_b5O9t3AG9RFVbWqKOaukOUkY2NdO2PTWFmEGPlfOa5r2M1mQymU32xBUebuzDWWn_4zL7not_Lx8bcsavsWOdaKw7--YAzZ4XbWps9A618XE8awnGUpWoa9jCTWB-fXQ4nxAVlQhSVbL5MfrNCPq3KH3OxNzCjp_9XtWfwJCwkxcka-V3YsssePP4lvGAPdkKG89mPPVh-obnhhhQuibc2rbhg9zl_U9CqVQxX_JIxEo0T7PG1LZc4pVFXkbQn5a0VH8jooSAxWjeKtUOCnjl2NVVDnCy-Ne28m92snsP1aHj18TQKuRYiQwa_i9LUFcbkA1MoWdVauqSolMuwxkShQ51UhauzyqDRkuwbIvFCSdzNysoRhcL0BWwvm6V9CSJPlUbUtSO0M1e7ysnMxDjIKlLDIu9DfN_2pQmByDkfxqL0hCTWJcNVMlxlgKsP7zYqt-soHP8S3mN8NoIBmj4c3ANchnG6Kok_-gBCerD_d61D2Dm9-jwux58m56_gEf-HD7Mk-QFsd-2dfQ0Pzfduvmrf-M74Exp03TY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Sensor+Placement+for+Estimation+of+Center+of+Plantar+Pressure+Based+on+the+Improved+Genetic+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Xian%2C+Xiaoming&rft.au=Zhou%2C+Zikang&rft.au=Huang%2C+Guowei&rft.au=Nong%2C+Jinjin&rft.date=2021-12-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=24&rft.spage=28077&rft.epage=28086&rft_id=info:doi/10.1109%2FJSEN.2021.3125021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3125021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |