A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring

Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 58; číslo 4; s. 2782 - 2795
Hlavní autori: Zeng, Jiangyuan, Chen, Kun-Shan, Cui, Chenyang, Bai, Xiaojing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on "depolarization" of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m 3 m −3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale.
AbstractList Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on “depolarization” of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m3m−3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale.
Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on "depolarization" of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m 3 m −3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale.
Author Chen, Kun-Shan
Zeng, Jiangyuan
Cui, Chenyang
Bai, Xiaojing
Author_xml – sequence: 1
  givenname: Jiangyuan
  orcidid: 0000-0002-5039-6774
  surname: Zeng
  fullname: Zeng, Jiangyuan
  email: zengjy@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Kun-Shan
  orcidid: 0000-0001-7698-9861
  surname: Chen
  fullname: Chen, Kun-Shan
  email: chenks@radi.ac.cn
  organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Chenyang
  surname: Cui
  fullname: Cui, Chenyang
  organization: Suzhou Industrial Park Surveying, Mapping, and Geoinformation Company, Ltd., Suzhou, China
– sequence: 4
  givenname: Xiaojing
  orcidid: 0000-0001-9496-5214
  surname: Bai
  fullname: Bai, Xiaojing
  organization: School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNp9kMlOwzAQhi1UJMryAIiLJc4pXjJZji2iBakVCArXyHEm1FUaFzsFKvHwJBRx6IHTjGb-b5b_mPRqWyMh55wNOGfp1Xzy-DQQjKcDkQJAKA5InwMkAYvCsEf6bScKRJKKI3Ls_ZIxHgKP--RrSB8WW2-0qqotHSmPBX2ypqIza3yzcUjv6gI_6djZFX1Q3pt3pDOjnf1QbTZy5nXR1Og9neNqjU51jKeldXtjXpQzqjG2bku1aawz9espOSxV5fHsN56Q5_HN_Po2mN5P7q6H00CLVDaBlEVesALCWJdMthHCRGmZxyqOmFKlAkyYBi1Ay6iEKIJcxliEhYgxlxHIE3K5m7t29m2DvsmWduPqdmUmZCKlAAGsVcU7Vfuc9w7LTJvm5-TGKVNlnGWd1VlnddZZnf1a3ZJ8j1w7s1Ju-y9zsWMMIv7pk1SCDFP5DQDfjhU
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs15174243
crossref_primary_10_1016_j_scitotenv_2021_152880
crossref_primary_10_3390_atmos14091351
crossref_primary_10_1016_j_rse_2023_113569
crossref_primary_10_3390_rs14174191
crossref_primary_10_3390_su142114081
crossref_primary_10_1016_j_agrformet_2022_108985
crossref_primary_10_1175_JHM_D_22_0016_1
crossref_primary_10_1016_j_jag_2025_104652
crossref_primary_10_1016_j_rse_2024_114197
crossref_primary_10_1109_JSTARS_2022_3216267
crossref_primary_10_1016_j_jhydrol_2025_132762
crossref_primary_10_1016_j_rse_2024_114370
crossref_primary_10_1016_j_rse_2024_114018
crossref_primary_10_3390_rs14236020
crossref_primary_10_1016_j_rse_2022_113146
crossref_primary_10_1016_j_rse_2022_113344
crossref_primary_10_1109_TMTT_2025_3528078
crossref_primary_10_1016_j_rse_2022_112921
crossref_primary_10_1109_TGRS_2021_3116078
crossref_primary_10_1016_j_rse_2021_112605
crossref_primary_10_1080_01431161_2024_2372079
crossref_primary_10_3390_rs16224235
crossref_primary_10_1016_j_jhydrol_2025_133940
crossref_primary_10_1016_j_jhydrol_2024_131348
crossref_primary_10_1109_TGRS_2021_3115140
crossref_primary_10_5194_essd_14_4473_2022
crossref_primary_10_1016_j_jhydrol_2022_128350
crossref_primary_10_1175_JHM_D_21_0077_1
crossref_primary_10_1016_j_jag_2022_103114
crossref_primary_10_1109_TGRS_2025_3573374
crossref_primary_10_3390_rs12111719
crossref_primary_10_1016_j_compeleceng_2021_107142
crossref_primary_10_1109_TGRS_2024_3361890
crossref_primary_10_1109_TGRS_2025_3549755
crossref_primary_10_1016_j_rse_2022_113272
crossref_primary_10_5194_essd_13_3239_2021
crossref_primary_10_1016_j_rse_2024_114569
crossref_primary_10_1016_j_rsase_2024_101443
Cites_doi 10.1016/j.jhydrol.2018.06.024
10.3390/s80201174
10.1016/j.rse.2017.08.025
10.1109/TGRS.2017.2734070
10.1016/j.rse.2017.10.045
10.1016/j.rse.2018.10.022
10.1029/2007JF000769
10.3390/rs10121868
10.1016/j.rse.2017.08.007
10.1127/0941-2948/2010/0430
10.2136/vzj2014.08.0114
10.1029/2006JD008033
10.1109/TGRS.2016.2580459
10.1038/s41586-018-0848-x
10.1109/LGRS.2014.2326890
10.1109/TGRS.2005.857902
10.1016/j.rse.2019.03.029
10.5194/hess-15-1675-2011
10.1038/s41477-018-0304-9
10.1016/j.rse.2015.03.008
10.1016/j.rse.2007.02.039
10.1109/TGRS.2018.2864689
10.1175/BAMS-D-12-00203.1
10.1016/j.rse.2005.10.017
10.1109/JPROC.2010.2043032
10.1109/TGRS.2012.2186819
10.5194/hess-14-2605-2010
10.1016/j.jhydrol.2019.01.014
10.2307/1270993
10.1175/2009JCLI2832.1
10.1109/JSTARS.2017.2703629
10.1016/j.rse.2010.06.009
10.1029/2004GL020938
10.3390/rs10121859
10.1016/j.rse.2017.07.001
10.2134/jeq2013.08.0312
10.1109/TGRS.2017.2762462
10.1016/j.jhydrol.2005.02.007
10.1109/TGRS.2016.2553085
10.1029/JC086iC06p05277
10.1109/TGRS.2016.2631126
10.1109/TGRS.2012.2184548
10.1029/2005GL023623
10.1029/JC087iC13p11229
10.1201/b15610-21
10.2208/prohe.48.217
10.1109/TGRS.2009.2029343
10.1016/j.rse.2017.01.024
10.3390/rs10010107
10.1016/j.jhydrol.2011.12.039
10.1016/j.envsoft.2013.10.017
10.1038/s41586-018-0582-4
10.1080/01431161.2012.716923
10.1016/j.agwat.2010.07.014
10.1109/TGRS.2016.2629759
10.1016/j.rse.2017.01.021
10.1016/j.rse.2010.05.008
10.1016/j.jag.2015.06.010
10.1016/j.rse.2012.03.014
10.1109/LGRS.2018.2858269
10.1109/LGRS.2011.2182177
10.1002/hyp.8316
10.1109/JPROC.2010.2043918
10.1002/2016JD026388
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2019.2955542
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 2795
ExternalDocumentID 10_1109_TGRS_2019_2955542
8935349
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFA0605403
  funderid: 10.13039/501100012166
– fundername: Chinese Academy of Sciences
  grantid: 2018082
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 41971317; 41531175; 41801248
  funderid: 10.13039/501100001809
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
  grantid: 2019QZKK0206
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-33dbd0d547cf03d54548ac3b7a760aafa5e80c5c25c36f5665b37ed4d27eb3653
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538748900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:12:21 EDT 2025
Sat Nov 29 02:50:03 EST 2025
Tue Nov 18 22:24:33 EST 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-33dbd0d547cf03d54548ac3b7a760aafa5e80c5c25c36f5665b37ed4d27eb3653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5039-6774
0000-0001-9496-5214
0000-0001-7698-9861
PQID 2383325250
PQPubID 85465
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2019_2955542
crossref_primary_10_1109_TGRS_2019_2955542
proquest_journals_2383325250
ieee_primary_8935349
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
cui (ref16) 2018; 10
ref17
ref19
paloscia (ref34) 2018; 10
o’neill (ref50) 2018
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
green (ref1) 2019; 565
saltelli (ref68) 2008
ref8
o’neill (ref51) 2018
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
entekhabi (ref56) 2014
ref39
ref38
o’neill (ref22) 2015
van der schalie (ref21) 2018; 10
ref71
ref70
fung (ref24) 2010
schwank (ref18) 2018; 10
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref65
ref28
ref27
ref29
ref60
ref62
wagner (ref47) 2008; 8
ref61
References_xml – ident: ref59
  doi: 10.1016/j.jhydrol.2018.06.024
– volume: 8
  start-page: 1174
  year: 2008
  ident: ref47
  article-title: Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR)
  publication-title: SENSORS
  doi: 10.3390/s80201174
– ident: ref52
  doi: 10.1016/j.rse.2017.08.025
– ident: ref53
  doi: 10.1109/TGRS.2017.2734070
– ident: ref29
  doi: 10.1016/j.rse.2017.10.045
– ident: ref19
  doi: 10.1016/j.rse.2018.10.022
– ident: ref26
  doi: 10.1029/2007JF000769
– volume: 10
  start-page: 1868
  year: 2018
  ident: ref18
  article-title: 'Tau-omega'- and two-stream emission models used for passive L-band retrievals: Application to close-range measurements over a forest
  publication-title: Remote Sens
  doi: 10.3390/rs10121868
– ident: ref57
  doi: 10.1016/j.rse.2017.08.007
– ident: ref44
  doi: 10.1127/0941-2948/2010/0430
– volume: 10
  start-page: 30
  year: 2018
  ident: ref16
  article-title: Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales
  publication-title: Remote Sens
– ident: ref41
  doi: 10.2136/vzj2014.08.0114
– ident: ref7
  doi: 10.1029/2006JD008033
– ident: ref31
  doi: 10.1109/TGRS.2016.2580459
– volume: 565
  start-page: 476
  year: 2019
  ident: ref1
  article-title: Large influence of soil moisture on long-term terrestrial carbon uptake
  publication-title: Nature
  doi: 10.1038/s41586-018-0848-x
– year: 2018
  ident: ref50
  article-title: SMAP L3 radiometer global daily 36 km EASE-grid soil moisture, version 5
– ident: ref33
  doi: 10.1109/LGRS.2014.2326890
– ident: ref55
  doi: 10.1109/TGRS.2005.857902
– start-page: 1
  year: 2008
  ident: ref68
  publication-title: Global Sensitivity Analysis The Primer
– ident: ref60
  doi: 10.1016/j.rse.2019.03.029
– ident: ref49
  doi: 10.5194/hess-15-1675-2011
– ident: ref3
  doi: 10.1038/s41477-018-0304-9
– ident: ref5
  doi: 10.1016/j.rse.2015.03.008
– ident: ref9
  doi: 10.1016/j.rse.2007.02.039
– ident: ref38
  doi: 10.1109/TGRS.2018.2864689
– ident: ref42
  doi: 10.1175/BAMS-D-12-00203.1
– ident: ref13
  doi: 10.1016/j.rse.2005.10.017
– ident: ref14
  doi: 10.1109/JPROC.2010.2043032
– ident: ref65
  doi: 10.1109/TGRS.2012.2186819
– ident: ref20
  doi: 10.5194/hess-14-2605-2010
– ident: ref45
  doi: 10.1016/j.jhydrol.2019.01.014
– ident: ref69
  doi: 10.2307/1270993
– ident: ref6
  doi: 10.1175/2009JCLI2832.1
– year: 2010
  ident: ref24
  publication-title: Microwave Scattering and Emission Models for Users
– ident: ref36
  doi: 10.1109/JSTARS.2017.2703629
– year: 2014
  ident: ref56
  article-title: SMAP handbook-soil moisture active passive: Mapping soil moisture and freeze/thaw from space
– ident: ref8
  doi: 10.1016/j.rse.2010.06.009
– ident: ref66
  doi: 10.1029/2004GL020938
– volume: 10
  start-page: 1859
  year: 2018
  ident: ref34
  article-title: Radiometric microwave indices for remote sensing of land surfaces
  publication-title: Remote Sens
  doi: 10.3390/rs10121859
– year: 2018
  ident: ref51
  article-title: SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture, version 2
– ident: ref12
  doi: 10.1016/j.rse.2017.07.001
– ident: ref39
  doi: 10.2134/jeq2013.08.0312
– ident: ref35
  doi: 10.1109/TGRS.2017.2762462
– ident: ref40
  doi: 10.1016/j.jhydrol.2005.02.007
– ident: ref30
  doi: 10.1109/TGRS.2016.2553085
– ident: ref32
  doi: 10.1029/JC086iC06p05277
– ident: ref62
  doi: 10.1109/TGRS.2016.2631126
– ident: ref23
  doi: 10.1109/TGRS.2012.2184548
– ident: ref67
  doi: 10.1029/2005GL023623
– ident: ref17
  doi: 10.1029/JC087iC13p11229
– ident: ref63
  doi: 10.1201/b15610-21
– ident: ref54
  doi: 10.2208/prohe.48.217
– ident: ref37
  doi: 10.1109/TGRS.2009.2029343
– ident: ref4
  doi: 10.1016/j.rse.2017.01.024
– volume: 10
  start-page: 107
  year: 2018
  ident: ref21
  article-title: The effect of three different data fusion approaches on the quality of soil moisture retrievals from multiple passive microwave sensors
  publication-title: Remote Sens
  doi: 10.3390/rs10010107
– ident: ref46
  doi: 10.1016/j.jhydrol.2011.12.039
– ident: ref70
  doi: 10.1016/j.envsoft.2013.10.017
– ident: ref2
  doi: 10.1038/s41586-018-0582-4
– ident: ref10
  doi: 10.1080/01431161.2012.716923
– ident: ref48
  doi: 10.1016/j.agwat.2010.07.014
– ident: ref25
  doi: 10.1109/TGRS.2016.2629759
– ident: ref61
  doi: 10.1016/j.rse.2017.01.021
– ident: ref27
  doi: 10.1016/j.rse.2010.05.008
– ident: ref58
  doi: 10.1016/j.jag.2015.06.010
– ident: ref11
  doi: 10.1016/j.rse.2012.03.014
– year: 2015
  ident: ref22
  article-title: Algorithm theoretical basis document (ATBD): L2/3_SM_P
– ident: ref71
  doi: 10.1109/LGRS.2018.2858269
– ident: ref28
  doi: 10.1109/LGRS.2011.2182177
– ident: ref64
  doi: 10.1002/hyp.8316
– ident: ref15
  doi: 10.1109/JPROC.2010.2043918
– ident: ref43
  doi: 10.1002/2016JD026388
SSID ssj0014517
Score 2.5054529
Snippet Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2782
SubjectTerms Carbon cycle
Climate change
Climatic conditions
Cloud cover
Correlation coefficient
Correlation coefficients
Depolarization
Distribution functions
Emissivity
Environmental monitoring
Exploration
Hydrology
In situ measurement
Japanese space program
Land surface
Leaf area
Leaf area index
Microwave emission
Microwave radiometry
Moisture index
Monitoring
Normalized difference vegetative index
Products
Radiometers
Resolution
Root-mean-square errors
Rough surfaces
Satellites
SM active passive (SMAP)
SM index (SMI)
Soil
Soil measurement
Soil moisture
Soil moisture (SM)
Soils
Surface roughness
Surface temperature
temporal variation
Temporal variations
Variability
Vegetation
vegetation and surface roughness
Vegetation index
Vegetation mapping
Vegetation type
Weather
Title A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring
URI https://ieeexplore.ieee.org/document/8935349
https://www.proquest.com/docview/2383325250
Volume 58
WOSCitedRecordID wos000538748900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9ULNQHW7Xi-VHy4FPp6t5ms7k8avFUUDn0Wnxb8jELB9fbch-K4B_vJBsPraXg0-YhWQK_7Px-szOZAdiXbUN2EXlSWGGS3EmVmMqoxOamEqiRGDd0LbmQV1ed21vVW4Dv87swiBiSz_DAD0Ms39V25n-VHRK3Cp6rRViUUjZ3teYRg1y049XoIiEnIosRzHaqDvun1zc-iUsdZEoQfWavOCg0VXljiQO9dD-9b2OfYTXKSHbU4L4GCzhah5UXxQXX4UNI7rSTDXg8Yr0Ix_CBHRNvOXZTD4bssiaQZ2Nk575mIuuO69-sR2qaLCC79Jl695pGx8GB9yaR9ZFUdlOFecJI7v71ml_keAekWWMq_Ea-wM_uSf_HWRK7LiSWqH-acO6MS53Ipa1STk_yabTlRmpZpFpXWmAntcJmwvKiIjUoDJfocpdJcswLwTdhaVSPcAuYztooOsbkiF7mFKbC1FUKjbGmY4VuQfqMQ2ljSXLfGWNYBtckVaWHrvTQlRG6FnybL_nT1OP43-QNj9V8YoSpBbvPYJfxi52UJF04z3yQd_vfq3bgY-Z97ZC1swtL0_EM92DZ3k0Hk_HXcBifAGW834M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAgIOPPoQCwV84IRIm_iRrI8tYmnF7mpFF9Rb5MdEqrRsqn2AkPjxjB13xUtInOKDHVn6nPm-yYxnAF5WhSW7iCIrnbKZ9JXObGN15qRtFBokxo1dS4bVeNy_uNCTLXi9uQuDiDH5DA_DMMbyfevW4VfZEXGrElLfgJtKSl50t7U2MQOpinQ5uszIjeAphlnk-mj67sN5SOPSh1wrIlD-CwvFtip_2OJIMIMH_7e1h3A_CUl23CH_CLZwvgP3fiovuAO3Y3qnW-7C92M2SYDMvrETYi7PztvLGRu1BPN6gewsVE1kg0X7mU1IT5MNZKOQq_fV0OgkuvDBKLIpks7u6jAvGQne317ziVzviDXrjEXYyB58HLydvjnNUt-FzBH5rzIhvPW5V7JyTS7oSV6NccJWpipzYxqjsJ875bhyomxIDyorKvTS84pc81KJfdiet3N8DMzwAlXfWokYhE5pG8x9o9FaZ_tOmR7k1zjULhUlD70xZnV0TnJdB-jqAF2doOvBq82Sq64ix78m7wasNhMTTD04uAa7Tt_ssibxIgQPYd4nf1_1Au6cTkfDeng2fv8U7vLgecccngPYXi3W-AxuuS-ry-XieTyYPwApF-LK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Physically+Based+Soil+Moisture+Index+From+Passive+Microwave+Brightness+Temperatures+for+Soil+Moisture+Variation+Monitoring&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Jiangyuan&rft.au=Chen%2C+Kun-Shan&rft.au=Cui%2C+Chenyang&rft.au=Bai%2C+Xiaojing&rft.date=2020-04-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=4&rft.spage=2782&rft.epage=2795&rft_id=info:doi/10.1109%2FTGRS.2019.2955542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2955542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon