A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring
Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-...
Uložené v:
| Vydané v: | IEEE transactions on geoscience and remote sensing Ročník 58; číslo 4; s. 2782 - 2795 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on "depolarization" of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m 3 m −3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale. |
|---|---|
| AbstractList | Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on “depolarization” of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m3m−3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale. Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index (SMI), which aims to capture the temporal variability of SM, irrespective of cloud cover and solar illumination, was developed by using the L-band SM active passive (SMAP) radiometer observations. The SMI was proposed on the basis of two key foundations: 1) vegetation and roughness have similar effects on "depolarization" of microwave emission, while SM enhances polarization differences and 2) vegetation and roughness generally impose positive effects on surface emissivity, while SM and emissivity are negatively correlated. Based on the two physical principles, it is possible to decouple the effects of SM and those of vegetation and surface roughness in a 2-D space independent of vegetation type and roughness condition. The proposed SMI was then validated by in situ measurements from five dense SM networks covering different vegetation and climatic conditions and also compared with SMAP passive and European space agency climate change initiative (ESA CCI) SM products at a coarse resolution of 36 km, and SMAP-enhanced passive and Japan Aerospace Exploration Agency (JAXA) advanced microwave scanning radiometer (AMSR2) SM products at a medium resolution of 9 km. The results show that the new SMI is able to well reproduce the temporal dynamic of SM with a favorable averaged correlation coefficient value of 0.87 and 0.84 at 36 and 9 km, respectively, higher than that of SMAP passive (0.80), SMAP-enhanced passive (0.77), ESA CCI (0.69), and JAXA AMSR2 (0.53). After removing the systematic differences between satellite and site-specific SM data by using the cumulative distribution function (CDF) matching technique, the SMI can achieve an average root mean squared error (RMSE) of 0.031 and 0.036 m 3 m −3 at 36 and 9 km during the validation period, respectively, lower than that of the satellite SM products. In addition to surface temperature, the SMI does not need any further information from other sensors [e.g., the optical normalized difference vegetation index (NDVI) or leaf area index (LAI) data] to guarantee an all-weather monitoring. Therefore, it has great potential to estimate SM variability on a global scale. |
| Author | Chen, Kun-Shan Zeng, Jiangyuan Cui, Chenyang Bai, Xiaojing |
| Author_xml | – sequence: 1 givenname: Jiangyuan orcidid: 0000-0002-5039-6774 surname: Zeng fullname: Zeng, Jiangyuan email: zengjy@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Kun-Shan orcidid: 0000-0001-7698-9861 surname: Chen fullname: Chen, Kun-Shan email: chenks@radi.ac.cn organization: State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Chenyang surname: Cui fullname: Cui, Chenyang organization: Suzhou Industrial Park Surveying, Mapping, and Geoinformation Company, Ltd., Suzhou, China – sequence: 4 givenname: Xiaojing orcidid: 0000-0001-9496-5214 surname: Bai fullname: Bai, Xiaojing organization: School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China |
| BookMark | eNp9kMlOwzAQhi1UJMryAIiLJc4pXjJZji2iBakVCArXyHEm1FUaFzsFKvHwJBRx6IHTjGb-b5b_mPRqWyMh55wNOGfp1Xzy-DQQjKcDkQJAKA5InwMkAYvCsEf6bScKRJKKI3Ls_ZIxHgKP--RrSB8WW2-0qqotHSmPBX2ypqIza3yzcUjv6gI_6djZFX1Q3pt3pDOjnf1QbTZy5nXR1Og9neNqjU51jKeldXtjXpQzqjG2bku1aawz9espOSxV5fHsN56Q5_HN_Po2mN5P7q6H00CLVDaBlEVesALCWJdMthHCRGmZxyqOmFKlAkyYBi1Ay6iEKIJcxliEhYgxlxHIE3K5m7t29m2DvsmWduPqdmUmZCKlAAGsVcU7Vfuc9w7LTJvm5-TGKVNlnGWd1VlnddZZnf1a3ZJ8j1w7s1Ju-y9zsWMMIv7pk1SCDFP5DQDfjhU |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_3390_rs15174243 crossref_primary_10_1016_j_scitotenv_2021_152880 crossref_primary_10_3390_atmos14091351 crossref_primary_10_1016_j_rse_2023_113569 crossref_primary_10_3390_rs14174191 crossref_primary_10_3390_su142114081 crossref_primary_10_1016_j_agrformet_2022_108985 crossref_primary_10_1175_JHM_D_22_0016_1 crossref_primary_10_1016_j_jag_2025_104652 crossref_primary_10_1016_j_rse_2024_114197 crossref_primary_10_1109_JSTARS_2022_3216267 crossref_primary_10_1016_j_jhydrol_2025_132762 crossref_primary_10_1016_j_rse_2024_114370 crossref_primary_10_1016_j_rse_2024_114018 crossref_primary_10_3390_rs14236020 crossref_primary_10_1016_j_rse_2022_113146 crossref_primary_10_1016_j_rse_2022_113344 crossref_primary_10_1109_TMTT_2025_3528078 crossref_primary_10_1016_j_rse_2022_112921 crossref_primary_10_1109_TGRS_2021_3116078 crossref_primary_10_1016_j_rse_2021_112605 crossref_primary_10_1080_01431161_2024_2372079 crossref_primary_10_3390_rs16224235 crossref_primary_10_1016_j_jhydrol_2025_133940 crossref_primary_10_1016_j_jhydrol_2024_131348 crossref_primary_10_1109_TGRS_2021_3115140 crossref_primary_10_5194_essd_14_4473_2022 crossref_primary_10_1016_j_jhydrol_2022_128350 crossref_primary_10_1175_JHM_D_21_0077_1 crossref_primary_10_1016_j_jag_2022_103114 crossref_primary_10_1109_TGRS_2025_3573374 crossref_primary_10_3390_rs12111719 crossref_primary_10_1016_j_compeleceng_2021_107142 crossref_primary_10_1109_TGRS_2024_3361890 crossref_primary_10_1109_TGRS_2025_3549755 crossref_primary_10_1016_j_rse_2022_113272 crossref_primary_10_5194_essd_13_3239_2021 crossref_primary_10_1016_j_rse_2024_114569 crossref_primary_10_1016_j_rsase_2024_101443 |
| Cites_doi | 10.1016/j.jhydrol.2018.06.024 10.3390/s80201174 10.1016/j.rse.2017.08.025 10.1109/TGRS.2017.2734070 10.1016/j.rse.2017.10.045 10.1016/j.rse.2018.10.022 10.1029/2007JF000769 10.3390/rs10121868 10.1016/j.rse.2017.08.007 10.1127/0941-2948/2010/0430 10.2136/vzj2014.08.0114 10.1029/2006JD008033 10.1109/TGRS.2016.2580459 10.1038/s41586-018-0848-x 10.1109/LGRS.2014.2326890 10.1109/TGRS.2005.857902 10.1016/j.rse.2019.03.029 10.5194/hess-15-1675-2011 10.1038/s41477-018-0304-9 10.1016/j.rse.2015.03.008 10.1016/j.rse.2007.02.039 10.1109/TGRS.2018.2864689 10.1175/BAMS-D-12-00203.1 10.1016/j.rse.2005.10.017 10.1109/JPROC.2010.2043032 10.1109/TGRS.2012.2186819 10.5194/hess-14-2605-2010 10.1016/j.jhydrol.2019.01.014 10.2307/1270993 10.1175/2009JCLI2832.1 10.1109/JSTARS.2017.2703629 10.1016/j.rse.2010.06.009 10.1029/2004GL020938 10.3390/rs10121859 10.1016/j.rse.2017.07.001 10.2134/jeq2013.08.0312 10.1109/TGRS.2017.2762462 10.1016/j.jhydrol.2005.02.007 10.1109/TGRS.2016.2553085 10.1029/JC086iC06p05277 10.1109/TGRS.2016.2631126 10.1109/TGRS.2012.2184548 10.1029/2005GL023623 10.1029/JC087iC13p11229 10.1201/b15610-21 10.2208/prohe.48.217 10.1109/TGRS.2009.2029343 10.1016/j.rse.2017.01.024 10.3390/rs10010107 10.1016/j.jhydrol.2011.12.039 10.1016/j.envsoft.2013.10.017 10.1038/s41586-018-0582-4 10.1080/01431161.2012.716923 10.1016/j.agwat.2010.07.014 10.1109/TGRS.2016.2629759 10.1016/j.rse.2017.01.021 10.1016/j.rse.2010.05.008 10.1016/j.jag.2015.06.010 10.1016/j.rse.2012.03.014 10.1109/LGRS.2018.2858269 10.1109/LGRS.2011.2182177 10.1002/hyp.8316 10.1109/JPROC.2010.2043918 10.1002/2016JD026388 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2019.2955542 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 2795 |
| ExternalDocumentID | 10_1109_TGRS_2019_2955542 8935349 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2018YFA0605403 funderid: 10.13039/501100012166 – fundername: Chinese Academy of Sciences grantid: 2018082 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 41971317; 41531175; 41801248 funderid: 10.13039/501100001809 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) grantid: 2019QZKK0206 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-33dbd0d547cf03d54548ac3b7a760aafa5e80c5c25c36f5665b37ed4d27eb3653 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538748900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:12:21 EDT 2025 Sat Nov 29 02:50:03 EST 2025 Tue Nov 18 22:24:33 EST 2025 Wed Aug 27 02:29:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-33dbd0d547cf03d54548ac3b7a760aafa5e80c5c25c36f5665b37ed4d27eb3653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5039-6774 0000-0001-9496-5214 0000-0001-7698-9861 |
| PQID | 2383325250 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2019_2955542 crossref_primary_10_1109_TGRS_2019_2955542 proquest_journals_2383325250 ieee_primary_8935349 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 cui (ref16) 2018; 10 ref17 ref19 paloscia (ref34) 2018; 10 o’neill (ref50) 2018 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 green (ref1) 2019; 565 saltelli (ref68) 2008 ref8 o’neill (ref51) 2018 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 entekhabi (ref56) 2014 ref39 ref38 o’neill (ref22) 2015 van der schalie (ref21) 2018; 10 ref71 ref70 fung (ref24) 2010 schwank (ref18) 2018; 10 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref65 ref28 ref27 ref29 ref60 ref62 wagner (ref47) 2008; 8 ref61 |
| References_xml | – ident: ref59 doi: 10.1016/j.jhydrol.2018.06.024 – volume: 8 start-page: 1174 year: 2008 ident: ref47 article-title: Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR) publication-title: SENSORS doi: 10.3390/s80201174 – ident: ref52 doi: 10.1016/j.rse.2017.08.025 – ident: ref53 doi: 10.1109/TGRS.2017.2734070 – ident: ref29 doi: 10.1016/j.rse.2017.10.045 – ident: ref19 doi: 10.1016/j.rse.2018.10.022 – ident: ref26 doi: 10.1029/2007JF000769 – volume: 10 start-page: 1868 year: 2018 ident: ref18 article-title: 'Tau-omega'- and two-stream emission models used for passive L-band retrievals: Application to close-range measurements over a forest publication-title: Remote Sens doi: 10.3390/rs10121868 – ident: ref57 doi: 10.1016/j.rse.2017.08.007 – ident: ref44 doi: 10.1127/0941-2948/2010/0430 – volume: 10 start-page: 30 year: 2018 ident: ref16 article-title: Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales publication-title: Remote Sens – ident: ref41 doi: 10.2136/vzj2014.08.0114 – ident: ref7 doi: 10.1029/2006JD008033 – ident: ref31 doi: 10.1109/TGRS.2016.2580459 – volume: 565 start-page: 476 year: 2019 ident: ref1 article-title: Large influence of soil moisture on long-term terrestrial carbon uptake publication-title: Nature doi: 10.1038/s41586-018-0848-x – year: 2018 ident: ref50 article-title: SMAP L3 radiometer global daily 36 km EASE-grid soil moisture, version 5 – ident: ref33 doi: 10.1109/LGRS.2014.2326890 – ident: ref55 doi: 10.1109/TGRS.2005.857902 – start-page: 1 year: 2008 ident: ref68 publication-title: Global Sensitivity Analysis The Primer – ident: ref60 doi: 10.1016/j.rse.2019.03.029 – ident: ref49 doi: 10.5194/hess-15-1675-2011 – ident: ref3 doi: 10.1038/s41477-018-0304-9 – ident: ref5 doi: 10.1016/j.rse.2015.03.008 – ident: ref9 doi: 10.1016/j.rse.2007.02.039 – ident: ref38 doi: 10.1109/TGRS.2018.2864689 – ident: ref42 doi: 10.1175/BAMS-D-12-00203.1 – ident: ref13 doi: 10.1016/j.rse.2005.10.017 – ident: ref14 doi: 10.1109/JPROC.2010.2043032 – ident: ref65 doi: 10.1109/TGRS.2012.2186819 – ident: ref20 doi: 10.5194/hess-14-2605-2010 – ident: ref45 doi: 10.1016/j.jhydrol.2019.01.014 – ident: ref69 doi: 10.2307/1270993 – ident: ref6 doi: 10.1175/2009JCLI2832.1 – year: 2010 ident: ref24 publication-title: Microwave Scattering and Emission Models for Users – ident: ref36 doi: 10.1109/JSTARS.2017.2703629 – year: 2014 ident: ref56 article-title: SMAP handbook-soil moisture active passive: Mapping soil moisture and freeze/thaw from space – ident: ref8 doi: 10.1016/j.rse.2010.06.009 – ident: ref66 doi: 10.1029/2004GL020938 – volume: 10 start-page: 1859 year: 2018 ident: ref34 article-title: Radiometric microwave indices for remote sensing of land surfaces publication-title: Remote Sens doi: 10.3390/rs10121859 – year: 2018 ident: ref51 article-title: SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture, version 2 – ident: ref12 doi: 10.1016/j.rse.2017.07.001 – ident: ref39 doi: 10.2134/jeq2013.08.0312 – ident: ref35 doi: 10.1109/TGRS.2017.2762462 – ident: ref40 doi: 10.1016/j.jhydrol.2005.02.007 – ident: ref30 doi: 10.1109/TGRS.2016.2553085 – ident: ref32 doi: 10.1029/JC086iC06p05277 – ident: ref62 doi: 10.1109/TGRS.2016.2631126 – ident: ref23 doi: 10.1109/TGRS.2012.2184548 – ident: ref67 doi: 10.1029/2005GL023623 – ident: ref17 doi: 10.1029/JC087iC13p11229 – ident: ref63 doi: 10.1201/b15610-21 – ident: ref54 doi: 10.2208/prohe.48.217 – ident: ref37 doi: 10.1109/TGRS.2009.2029343 – ident: ref4 doi: 10.1016/j.rse.2017.01.024 – volume: 10 start-page: 107 year: 2018 ident: ref21 article-title: The effect of three different data fusion approaches on the quality of soil moisture retrievals from multiple passive microwave sensors publication-title: Remote Sens doi: 10.3390/rs10010107 – ident: ref46 doi: 10.1016/j.jhydrol.2011.12.039 – ident: ref70 doi: 10.1016/j.envsoft.2013.10.017 – ident: ref2 doi: 10.1038/s41586-018-0582-4 – ident: ref10 doi: 10.1080/01431161.2012.716923 – ident: ref48 doi: 10.1016/j.agwat.2010.07.014 – ident: ref25 doi: 10.1109/TGRS.2016.2629759 – ident: ref61 doi: 10.1016/j.rse.2017.01.021 – ident: ref27 doi: 10.1016/j.rse.2010.05.008 – ident: ref58 doi: 10.1016/j.jag.2015.06.010 – ident: ref11 doi: 10.1016/j.rse.2012.03.014 – year: 2015 ident: ref22 article-title: Algorithm theoretical basis document (ATBD): L2/3_SM_P – ident: ref71 doi: 10.1109/LGRS.2018.2858269 – ident: ref28 doi: 10.1109/LGRS.2011.2182177 – ident: ref64 doi: 10.1002/hyp.8316 – ident: ref15 doi: 10.1109/JPROC.2010.2043918 – ident: ref43 doi: 10.1002/2016JD026388 |
| SSID | ssj0014517 |
| Score | 2.5054529 |
| Snippet | Soil moisture is a pivotal hydrological variable that links the terrestrial water, energy, and carbon cycles. In this article, a new soil moisture (SM) index... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2782 |
| SubjectTerms | Carbon cycle Climate change Climatic conditions Cloud cover Correlation coefficient Correlation coefficients Depolarization Distribution functions Emissivity Environmental monitoring Exploration Hydrology In situ measurement Japanese space program Land surface Leaf area Leaf area index Microwave emission Microwave radiometry Moisture index Monitoring Normalized difference vegetative index Products Radiometers Resolution Root-mean-square errors Rough surfaces Satellites SM active passive (SMAP) SM index (SMI) Soil Soil measurement Soil moisture Soil moisture (SM) Soils Surface roughness Surface temperature temporal variation Temporal variations Variability Vegetation vegetation and surface roughness Vegetation index Vegetation mapping Vegetation type Weather |
| Title | A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring |
| URI | https://ieeexplore.ieee.org/document/8935349 https://www.proquest.com/docview/2383325250 |
| Volume | 58 |
| WOSCitedRecordID | wos000538748900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9ULNQHW7Xi-VHy4FPp6t5ms7k8avFUUDn0Wnxb8jELB9fbch-K4B_vJBsPraXg0-YhWQK_7Px-szOZAdiXbUN2EXlSWGGS3EmVmMqoxOamEqiRGDd0LbmQV1ed21vVW4Dv87swiBiSz_DAD0Ms39V25n-VHRK3Cp6rRViUUjZ3teYRg1y049XoIiEnIosRzHaqDvun1zc-iUsdZEoQfWavOCg0VXljiQO9dD-9b2OfYTXKSHbU4L4GCzhah5UXxQXX4UNI7rSTDXg8Yr0Ix_CBHRNvOXZTD4bssiaQZ2Nk575mIuuO69-sR2qaLCC79Jl695pGx8GB9yaR9ZFUdlOFecJI7v71ml_keAekWWMq_Ea-wM_uSf_HWRK7LiSWqH-acO6MS53Ipa1STk_yabTlRmpZpFpXWmAntcJmwvKiIjUoDJfocpdJcswLwTdhaVSPcAuYztooOsbkiF7mFKbC1FUKjbGmY4VuQfqMQ2ljSXLfGWNYBtckVaWHrvTQlRG6FnybL_nT1OP43-QNj9V8YoSpBbvPYJfxi52UJF04z3yQd_vfq3bgY-Z97ZC1swtL0_EM92DZ3k0Hk_HXcBifAGW834M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAgIOPPoQCwV84IRIm_iRrI8tYmnF7mpFF9Rb5MdEqrRsqn2AkPjxjB13xUtInOKDHVn6nPm-yYxnAF5WhSW7iCIrnbKZ9JXObGN15qRtFBokxo1dS4bVeNy_uNCTLXi9uQuDiDH5DA_DMMbyfevW4VfZEXGrElLfgJtKSl50t7U2MQOpinQ5uszIjeAphlnk-mj67sN5SOPSh1wrIlD-CwvFtip_2OJIMIMH_7e1h3A_CUl23CH_CLZwvgP3fiovuAO3Y3qnW-7C92M2SYDMvrETYi7PztvLGRu1BPN6gewsVE1kg0X7mU1IT5MNZKOQq_fV0OgkuvDBKLIpks7u6jAvGQne317ziVzviDXrjEXYyB58HLydvjnNUt-FzBH5rzIhvPW5V7JyTS7oSV6NccJWpipzYxqjsJ875bhyomxIDyorKvTS84pc81KJfdiet3N8DMzwAlXfWokYhE5pG8x9o9FaZ_tOmR7k1zjULhUlD70xZnV0TnJdB-jqAF2doOvBq82Sq64ix78m7wasNhMTTD04uAa7Tt_ssibxIgQPYd4nf1_1Au6cTkfDeng2fv8U7vLgecccngPYXi3W-AxuuS-ry-XieTyYPwApF-LK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Physically+Based+Soil+Moisture+Index+From+Passive+Microwave+Brightness+Temperatures+for+Soil+Moisture+Variation+Monitoring&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zeng%2C+Jiangyuan&rft.au=Chen%2C+Kun-Shan&rft.au=Cui%2C+Chenyang&rft.au=Bai%2C+Xiaojing&rft.date=2020-04-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=4&rft.spage=2782&rft.epage=2795&rft_id=info:doi/10.1109%2FTGRS.2019.2955542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2019_2955542 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |