Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial
An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by usin...
Saved in:
| Published in: | IEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1941 - 1959 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by using IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. Up until now, over 100 articles related to this field have been published. However, to the best of our knowledge, there is no existing tutorial or review paper of IGA. Thus, we focus on FSPs and provide a tutorial and comprehensive literature review of IGA-based methods. First, we introduce a framework of basic IGA and give an example to clearly show its procedure. To help researchers and engineers learn and apply IGA to their FSPs, we provide an open platform to collect and share related materials. Then, we make classifications of the solved FSPs according to their scheduling scenarios, objective functions, and constraints. Next, we classify and introduce the specific methods and strategies used in each phase of IGA for FSPs. Besides, we summarize IGA variants and hybrid algorithms with IGA integrated, respectively. Finally, we discuss the current IGA-based methods and already-solved FSP instances, as well as some important future research directions according to their deficiency and open issues. Note to Practitioners -Many practical scheduling problems can be transformed into flow-shop scheduling problems (FSPs), most of which are NP-hard. In order to solve them in an industrial system setting, designing effective heuristics is important and practically useful and has, thus, attracted much attention from both researchers and engineers. As an easy and high-performance heuristic, an iterated greedy algorithm (IGA) is widely used and adapted to solve numerous FSPs. Its simple framework makes it easy to be implemented by practitioners, and its high performance implies its great potential to solve industrial scheduling problems. In this work, we aim to give practitioners a comprehensive overview of IGA and help them apply IGA to solve their particular industrial scheduling problems. We review the papers that solve FSPs with IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. First, we provide practitioners with a tutorial on IGA, where an example for solving an FSP is introduced and an open platform is constructed. The platform collects and shares the related materials, e.g., open-source code, benchmarks, and website links of important papers. Then, we introduce various FSPs and specific designs of IGA-based methods. Finally, we discuss the current research and point out future research issues. |
|---|---|
| AbstractList | An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by using IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. Up until now, over 100 articles related to this field have been published. However, to the best of our knowledge, there is no existing tutorial or review paper of IGA. Thus, we focus on FSPs and provide a tutorial and comprehensive literature review of IGA-based methods. First, we introduce a framework of basic IGA and give an example to clearly show its procedure. To help researchers and engineers learn and apply IGA to their FSPs, we provide an open platform to collect and share related materials. Then, we make classifications of the solved FSPs according to their scheduling scenarios, objective functions, and constraints. Next, we classify and introduce the specific methods and strategies used in each phase of IGA for FSPs. Besides, we summarize IGA variants and hybrid algorithms with IGA integrated, respectively. Finally, we discuss the current IGA-based methods and already-solved FSP instances, as well as some important future research directions according to their deficiency and open issues. Note to Practitioners -Many practical scheduling problems can be transformed into flow-shop scheduling problems (FSPs), most of which are NP-hard. In order to solve them in an industrial system setting, designing effective heuristics is important and practically useful and has, thus, attracted much attention from both researchers and engineers. As an easy and high-performance heuristic, an iterated greedy algorithm (IGA) is widely used and adapted to solve numerous FSPs. Its simple framework makes it easy to be implemented by practitioners, and its high performance implies its great potential to solve industrial scheduling problems. In this work, we aim to give practitioners a comprehensive overview of IGA and help them apply IGA to solve their particular industrial scheduling problems. We review the papers that solve FSPs with IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. First, we provide practitioners with a tutorial on IGA, where an example for solving an FSP is introduced and an open platform is constructed. The platform collects and shares the related materials, e.g., open-source code, benchmarks, and website links of important papers. Then, we introduce various FSPs and specific designs of IGA-based methods. Finally, we discuss the current research and point out future research issues. |
| Author | Zhao, ZiYan Zhou, MengChu Liu, ShiXin |
| Author_xml | – sequence: 1 givenname: ZiYan orcidid: 0000-0002-5858-4489 surname: Zhao fullname: Zhao, ZiYan email: neuzhaoziyan@163.com organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 2 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 3 givenname: ShiXin orcidid: 0000-0002-3404-9297 surname: Liu fullname: Liu, ShiXin email: sxliu@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| BookMark | eNp9kF1LwzAUhoNMcE5_gHgT8LozaZK28a6MfcFAYfM65KtbR9fMJEP2723Z8MILr86B8z7nheceDFrXWgCeMBpjjPjrplxPxylK8ZigLOWc3oAhZqxISF6QQb9TljDO2B24D2GPUEoLjoZgsYzWy2gNnHtrzRmWzdb5Ou4OAVbOw1njvpP1zh3hWu-sOTV1u4Uf3qnGHsIbLOHmFLu8bB7AbSWbYB-vcwQ-Z9PNZJGs3ufLSblKdMpJTAjCWONcYqIoLWjOpckyUmGlcHfIEFVaa2JUJjNUKWZkZZhhRY5karVimozAy-Xv0buvkw1R7N3Jt12lSLOC4YwQnHcpfElp70LwthJHXx-kPwuMRC9M9MJEL0xchXVM_ofRdZSxdm30sm7-JZ8vZG2t_W3ipCA0peQHccZ6BQ |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129716 crossref_primary_10_1109_MSMC_2022_3198027 crossref_primary_10_1016_j_ejor_2025_02_009 crossref_primary_10_1007_s10951_024_00814_z crossref_primary_10_3390_math10234519 crossref_primary_10_1088_1742_6596_1944_1_012034 crossref_primary_10_26599_TST_2024_9010012 crossref_primary_10_1007_s11047_022_09889_z crossref_primary_10_1016_j_cor_2024_106854 crossref_primary_10_1016_j_rineng_2024_102071 crossref_primary_10_1038_s41598_023_47729_x crossref_primary_10_1007_s11227_025_07581_4 crossref_primary_10_1016_j_jii_2022_100414 crossref_primary_10_1016_j_engappai_2024_108477 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1016_j_procs_2023_10_400 crossref_primary_10_1109_TASE_2024_3421889 crossref_primary_10_1088_1361_6501_ad2da6 crossref_primary_10_3390_machines11020292 crossref_primary_10_3390_math12060816 crossref_primary_10_1109_ACCESS_2024_3486813 crossref_primary_10_1145_3495214 crossref_primary_10_1109_TSMC_2023_3280207 crossref_primary_10_1109_LWC_2022_3215765 crossref_primary_10_3390_su15097600 crossref_primary_10_3390_logistics7030054 crossref_primary_10_1109_TSMC_2024_3358383 crossref_primary_10_3390_math12010009 crossref_primary_10_1016_j_eswa_2023_120837 crossref_primary_10_1016_j_omega_2024_103139 crossref_primary_10_1016_j_engappai_2025_112012 crossref_primary_10_1080_23307706_2022_2071775 crossref_primary_10_1016_j_cor_2024_106742 crossref_primary_10_1109_LWC_2025_3576717 crossref_primary_10_1109_TII_2024_3413335 crossref_primary_10_1002_int_22999 crossref_primary_10_1016_j_cie_2024_110806 crossref_primary_10_1016_j_swevo_2023_101320 crossref_primary_10_1109_TASE_2023_3236317 crossref_primary_10_1109_TCSS_2022_3217101 crossref_primary_10_1109_TASE_2024_3420107 crossref_primary_10_1007_s00500_024_09850_5 crossref_primary_10_1016_j_knosys_2024_111409 crossref_primary_10_1007_s11590_022_01966_7 crossref_primary_10_1080_24725579_2024_2428953 crossref_primary_10_1109_TMC_2024_3426945 crossref_primary_10_1109_JIOT_2024_3352658 crossref_primary_10_1007_s41965_024_00169_6 crossref_primary_10_1109_TCSS_2023_3238965 crossref_primary_10_1016_j_engappai_2023_105977 crossref_primary_10_1016_j_ejor_2023_03_038 crossref_primary_10_1016_j_matcom_2025_02_026 crossref_primary_10_1109_MSMC_2024_3371421 crossref_primary_10_1080_00207543_2024_2447932 crossref_primary_10_1016_j_eswa_2023_121856 crossref_primary_10_1080_00207543_2023_2255681 crossref_primary_10_1016_j_jii_2024_100631 crossref_primary_10_3390_math12060836 crossref_primary_10_1016_j_cor_2025_107044 crossref_primary_10_1016_j_rcim_2024_102747 crossref_primary_10_3390_su16104180 crossref_primary_10_3390_app14156562 crossref_primary_10_1016_j_comnet_2024_110744 crossref_primary_10_1371_journal_pone_0298417 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1109_TASE_2024_3440169 crossref_primary_10_32604_cmc_2024_058885 crossref_primary_10_1016_j_eswa_2025_126713 crossref_primary_10_1109_TETCI_2024_3360338 crossref_primary_10_1016_j_jmsy_2023_02_002 crossref_primary_10_1109_TSMC_2021_3131849 crossref_primary_10_1016_j_procs_2023_10_391 crossref_primary_10_1109_JIOT_2024_3468331 crossref_primary_10_1080_00207543_2024_2361441 crossref_primary_10_1109_TASE_2024_3418370 crossref_primary_10_1016_j_cie_2025_111330 crossref_primary_10_1016_j_ress_2023_109239 crossref_primary_10_1016_j_cor_2023_106224 crossref_primary_10_3390_pr12122615 crossref_primary_10_1016_j_swevo_2024_101489 crossref_primary_10_1109_TASE_2022_3192914 crossref_primary_10_3390_ph18081224 crossref_primary_10_1080_00207543_2021_1975839 |
| Cites_doi | 10.31449/inf.v44i2.2616 10.1109/TASE.2019.2895801 10.1016/j.cor.2016.07.002 10.1016/j.cie.2017.07.037 10.1109/ACCESS.2017.2732738 10.1016/j.cor.2016.11.022 10.1016/j.eswa.2020.113279 10.1007/s10479-011-1056-3 10.1109/TASE.2019.2953669 10.1080/00207540701418960 10.1016/j.cor.2020.104886 10.1080/0951192X.2011.592993 10.1109/CIPLS.2014.7007156 10.1109/CCDC.2017.7978693 10.1145/3377929.3398117 10.1109/4235.996017 10.1155/2018/8170294 10.1109/CEC.2013.6557675 10.1016/j.ejor.2005.12.009 10.1016/j.ejor.2006.07.029 10.1145/3205455.3205500 10.1016/j.eswa.2019.113147 10.1016/j.omega.2010.07.007 10.1016/j.eswa.2017.09.028 10.1016/j.ins.2011.04.018 10.1080/00207543.2013.828179 10.1080/00207721.2012.723054 10.1080/00207543.2015.1076941 10.1080/00207543.2015.1094584 10.1007/s00170-018-2171-y 10.1109/CEC.2003.1299757 10.1007/978-3-319-53480-0_94 10.1007/978-3-642-44973-4_36 10.1016/j.omega.2013.10.002 10.1016/j.cie.2017.10.034 10.1155/2020/7132469 10.1080/0305215x.2020.1797000 10.1109/TASE.2017.2731981 10.1016/0305-0483(83)90088-9 10.1080/0305215X.2016.1261247 10.1007/s00291-007-0098-z 10.1016/j.cor.2019.104839 10.1155/2017/3630869 10.1109/JAS.2017.7510352 10.1109/ACCESS.2017.2773645 10.1080/00207543.2014.962112 10.1145/3205455.3205614 10.1109/TCYB.2019.2901834 10.1016/j.swevo.2020.100660 10.1109/ACCESS.2018.2885137 10.1016/j.engappai.2019.103369 10.1109/CEC.2018.8477787 10.1007/s10732-014-9279-5 10.1016/j.cor.2019.06.009 10.1016/j.ejor.2012.12.031 10.1007/s00500-018-3014-3 10.1109/ICNSC.2019.8743328 10.1016/j.cor.2018.02.003 10.1109/TCYB.2015.2478486 10.1016/j.asoc.2014.11.022 10.1080/00207543.2014.910627 10.1016/j.cie.2016.06.012 10.1109/ICMSAO.2013.6552659 10.1016/j.knosys.2020.105527 10.1016/j.eswa.2017.01.006 10.1109/TEM.2017.2712611 10.1109/ICNSC48988.2020.9238075 10.1016/j.eswa.2018.12.039 10.1109/TSMC.2019.2907575 10.1016/j.eswa.2020.113716 10.1109/ICNSC.2019.8743188 10.1016/j.ejor.2019.10.004 10.1007/s10033-017-0108-2 10.1109/CEC.2015.7257235 10.1080/0305215X.2019.1632303 10.1016/j.ejor.2019.01.018 10.1080/0305215X.2015.1124870 10.5267/j.ijiec.2019.11.002 10.1080/00207543.2019.1581955 10.1057/jors.2014.100 10.1504/IJMR.2019.096746 10.1080/00207543.2019.1624857 10.1016/j.cie.2017.06.025 10.1016/j.ejor.2017.10.045 10.1016/j.knosys.2017.09.026 10.1080/00207543.2013.790571 10.1155/2020/2862186 10.1016/j.advengsoft.2010.06.004 10.1080/0305215x.2020.1757089 10.1109/TASE.2015.2427234 10.1080/00207543.2019.1571687 10.1007/978-3-319-03753-0_3 10.1016/j.engappai.2014.09.015 10.1016/j.eswa.2019.01.062 10.1016/j.cor.2013.01.005 10.1007/s00521-020-05174-1 10.1109/CEC.2017.7969289 10.1109/CSCWD.2012.6221909 10.1007/s10479-019-03490-x 10.1109/TSMC.2018.2818175 10.1109/ICAMechS.2015.7287134 10.1109/TASE.2015.2425404 10.1016/j.swevo.2020.100747 10.1007/s00170-007-1120-y 10.1016/j.eswa.2011.06.008 10.1057/palgrave.jors.2602625 10.1016/j.cor.2019.104767 10.1016/j.endm.2017.03.008 10.1080/0305215X.2015.1099639 10.1504/IJMTM.2016.077813 10.1109/TSMCA.2006.878979 10.1080/00207543.2018.1457812 10.1016/j.cie.2019.02.041 10.1109/TEVC.2018.2883888 10.1109/TSMC.2018.2847448 10.1016/j.asoc.2019.105492 10.1016/j.cie.2020.106369 10.1080/01605682.2019.1630330 10.1109/COASE.2019.8842885 10.1109/TASE.2020.2971512 10.1016/j.cie.2016.12.038 10.1109/ICNSC48988.2020.9238060 10.1109/CEC.2010.5586300 10.1016/j.swevo.2020.100742 10.1109/ICNSC.2019.8743232 10.1016/j.cie.2019.07.041 10.4028/www.scientific.net/AMR.933.459 10.1109/CEC.2014.6900460 10.1016/j.cie.2008.03.003 10.1109/JAS.2019.1911540 10.1016/j.eswa.2017.09.032 10.1016/j.cor.2016.12.021 10.1109/CEC.2012.6256167 10.1016/j.asoc.2015.02.006 10.1080/00207543.2010.543937 10.1109/TCYB.2018.2817240 10.1016/j.cor.2015.08.001 10.1016/j.ejor.2012.04.034 10.1109/TASE.2019.2958979 10.1177/1729881419879819 10.1016/j.ejor.2015.05.019 10.1109/TASE.2015.2477362 10.1080/0305215X.2018.1444163 10.1016/j.ejor.2010.05.041 10.1016/j.ins.2018.04.038 10.1109/TEVC.2013.2281535 10.1007/978-3-319-33625-1_9 10.1109/TCYB.2017.2707067 10.1016/j.ijpe.2015.07.027 10.1186/s10033-019-0337-7 10.17562/PB-53-10 10.1016/j.cor.2011.01.010 10.1016/j.cie.2016.07.027 10.1016/j.cor.2018.07.017 10.1016/j.omega.2018.03.004 10.1109/ICOA.2018.8370598 10.1109/TEVC.2007.913109 10.1080/00207540802070942 10.1109/70.843173 10.1504/EJIE.2012.045605 10.1016/j.eswa.2019.02.023 10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M 10.1080/00207543.2020.1757174 10.1016/j.eswa.2019.113166 10.1016/j.knosys.2020.105536 10.1016/j.eswa.2017.10.050 10.1109/ICSMC.2010.5642267 10.1109/4235.585893 10.1145/2576768.2598324 10.1109/CINTI.2012.6496734 10.1109/TEVC.2007.892759 10.1109/TSMCB.2004.833331 10.1080/00207543.2014.932935 10.1016/j.amc.2017.01.004 10.1016/j.ifacol.2018.08.472 10.1109/TASE.2020.3027532 10.1016/j.cie.2017.07.020 10.1109/IESM.2015.7380140 10.1007/978-3-319-77449-7_6 10.1080/00207543.2014.948578 10.1080/17517575.2015.1048833 10.1007/s00170-007-1104-y 10.1007/s11771-015-2887-x 10.1016/j.procs.2019.12.208 10.1002/nav.3800010110 10.1109/WOCC48579.2020.9114917 10.1016/j.knosys.2019.104894 10.1109/IEEM.2018.8607708 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2021.3062994 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 1959 |
| ExternalDocumentID | 10_1109_TASE_2021_3062994 9383424 |
| Genre | tutorial |
| GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 62073069 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFB0306400 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-3011c17a13b448479ad663f1bb111c604bccc3db6a60fb5dafd5d5870a2ecb5c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 139 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733533800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Jun 29 15:58:33 EDT 2025 Sat Nov 29 04:12:47 EST 2025 Tue Nov 18 21:20:28 EST 2025 Wed Aug 27 02:14:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-3011c17a13b448479ad663f1bb111c604bccc3db6a60fb5dafd5d5870a2ecb5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3404-9297 0000-0002-5858-4489 0000-0002-5408-8752 |
| PQID | 2685163317 |
| PQPubID | 27623 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1109_TASE_2021_3062994 proquest_journals_2685163317 ieee_primary_9383424 crossref_citationtrail_10_1109_TASE_2021_3062994 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Khorasanian (ref10) 2012; 23 ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref168 ref54 ref169 ref170 ref177 ref178 ref51 ref175 ref50 ref176 ref173 ref174 ref171 ref172 ref46 ref48 ref47 ref42 ref41 ref44 ref179 ref43 ref49 ref8 ref180 ref7 ref181 ref9 ref4 ref3 ref6 ref5 ref100 ref188 ref101 ref189 ref40 ref186 ref187 ref184 ref185 ref182 ref183 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref128 ref14 Naderi (ref45) 2009; 3 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref88 ref135 ref87 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 Tasgetiren (ref136) ref191 ref192 ref190 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 Glover (ref138) 2006; 57 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref99 doi: 10.31449/inf.v44i2.2616 – ident: ref154 doi: 10.1109/TASE.2019.2895801 – ident: ref7 doi: 10.1016/j.cor.2016.07.002 – ident: ref11 doi: 10.1016/j.cie.2017.07.037 – ident: ref20 doi: 10.1109/ACCESS.2017.2732738 – ident: ref48 doi: 10.1016/j.cor.2016.11.022 – ident: ref103 doi: 10.1016/j.eswa.2020.113279 – ident: ref77 doi: 10.1007/s10479-011-1056-3 – ident: ref177 doi: 10.1109/TASE.2019.2953669 – ident: ref104 doi: 10.1080/00207540701418960 – ident: ref145 doi: 10.1016/j.cor.2020.104886 – ident: ref102 doi: 10.1080/0951192X.2011.592993 – ident: ref119 doi: 10.1109/CIPLS.2014.7007156 – ident: ref127 doi: 10.1109/CCDC.2017.7978693 – ident: ref124 doi: 10.1145/3377929.3398117 – ident: ref166 doi: 10.1109/4235.996017 – ident: ref1 doi: 10.1155/2018/8170294 – ident: ref118 doi: 10.1109/CEC.2013.6557675 – ident: ref75 doi: 10.1016/j.ejor.2005.12.009 – ident: ref91 doi: 10.1016/j.ejor.2006.07.029 – ident: ref120 doi: 10.1145/3205455.3205500 – start-page: 753 volume-title: Proc. Int. Conf. Intell. Comput ident: ref136 article-title: Green permutation flowshop scheduling: A trade-off-between energy consumption and total flow time – ident: ref18 doi: 10.1016/j.eswa.2019.113147 – ident: ref4 doi: 10.1016/j.omega.2010.07.007 – ident: ref56 doi: 10.1016/j.eswa.2017.09.028 – ident: ref97 doi: 10.1016/j.ins.2011.04.018 – ident: ref176 doi: 10.1080/00207543.2013.828179 – ident: ref141 doi: 10.1080/00207721.2012.723054 – ident: ref5 doi: 10.1080/00207543.2015.1076941 – ident: ref73 doi: 10.1080/00207543.2015.1094584 – ident: ref81 doi: 10.1007/s00170-018-2171-y – ident: ref174 doi: 10.1109/CEC.2003.1299757 – ident: ref112 doi: 10.1007/978-3-319-53480-0_94 – ident: ref137 doi: 10.1007/978-3-642-44973-4_36 – ident: ref50 doi: 10.1016/j.omega.2013.10.002 – ident: ref182 doi: 10.1016/j.cie.2017.10.034 – ident: ref85 doi: 10.1155/2020/7132469 – ident: ref61 doi: 10.1080/0305215x.2020.1797000 – ident: ref189 doi: 10.1109/TASE.2017.2731981 – ident: ref147 doi: 10.1016/0305-0483(83)90088-9 – ident: ref161 doi: 10.1080/0305215X.2016.1261247 – ident: ref88 doi: 10.1007/s00291-007-0098-z – volume: 57 volume-title: Handbook Metaheuristics year: 2006 ident: ref138 – ident: ref71 doi: 10.1016/j.cor.2019.104839 – ident: ref74 doi: 10.1155/2017/3630869 – ident: ref152 doi: 10.1109/JAS.2017.7510352 – ident: ref185 doi: 10.1109/ACCESS.2017.2773645 – ident: ref15 doi: 10.1080/00207543.2014.962112 – ident: ref123 doi: 10.1145/3205455.3205614 – ident: ref173 doi: 10.1109/TCYB.2019.2901834 – ident: ref44 doi: 10.1016/j.swevo.2020.100660 – ident: ref64 doi: 10.1109/ACCESS.2018.2885137 – ident: ref163 doi: 10.1016/j.engappai.2019.103369 – ident: ref131 doi: 10.1109/CEC.2018.8477787 – ident: ref158 doi: 10.1007/s10732-014-9279-5 – ident: ref46 doi: 10.1016/j.cor.2019.06.009 – ident: ref90 doi: 10.1016/j.ejor.2012.12.031 – ident: ref142 doi: 10.1007/s00500-018-3014-3 – ident: ref143 doi: 10.1109/ICNSC.2019.8743328 – ident: ref69 doi: 10.1016/j.cor.2018.02.003 – ident: ref188 doi: 10.1109/TCYB.2015.2478486 – ident: ref86 doi: 10.1016/j.asoc.2014.11.022 – ident: ref110 doi: 10.1080/00207543.2014.910627 – ident: ref105 doi: 10.1016/j.cie.2016.06.012 – ident: ref130 doi: 10.1109/ICMSAO.2013.6552659 – ident: ref24 doi: 10.1016/j.knosys.2020.105527 – ident: ref19 doi: 10.1016/j.eswa.2017.01.006 – ident: ref108 doi: 10.1109/TEM.2017.2712611 – ident: ref187 doi: 10.1109/ICNSC48988.2020.9238075 – ident: ref16 doi: 10.1016/j.eswa.2018.12.039 – ident: ref153 doi: 10.1109/TSMC.2019.2907575 – ident: ref47 doi: 10.1016/j.eswa.2020.113716 – ident: ref155 doi: 10.1109/ICNSC.2019.8743188 – ident: ref43 doi: 10.1016/j.ejor.2019.10.004 – ident: ref80 doi: 10.1007/s10033-017-0108-2 – ident: ref114 doi: 10.1109/CEC.2015.7257235 – ident: ref2 doi: 10.1080/0305215X.2019.1632303 – ident: ref87 doi: 10.1016/j.ejor.2019.01.018 – ident: ref106 doi: 10.1080/0305215X.2015.1124870 – ident: ref8 doi: 10.5267/j.ijiec.2019.11.002 – ident: ref93 doi: 10.1080/00207543.2019.1581955 – ident: ref78 doi: 10.1057/jors.2014.100 – ident: ref160 doi: 10.1504/IJMR.2019.096746 – ident: ref181 doi: 10.1080/00207543.2019.1624857 – ident: ref29 doi: 10.1016/j.cie.2017.06.025 – ident: ref109 doi: 10.1016/j.ejor.2017.10.045 – ident: ref28 doi: 10.1016/j.knosys.2017.09.026 – ident: ref32 doi: 10.1080/00207543.2013.790571 – ident: ref92 doi: 10.1155/2020/2862186 – ident: ref150 doi: 10.1016/j.advengsoft.2010.06.004 – ident: ref3 doi: 10.1080/0305215x.2020.1757089 – ident: ref183 doi: 10.1109/TASE.2015.2427234 – ident: ref31 doi: 10.1080/00207543.2019.1571687 – ident: ref122 doi: 10.1007/978-3-319-03753-0_3 – ident: ref94 doi: 10.1016/j.engappai.2014.09.015 – ident: ref37 doi: 10.1016/j.eswa.2019.01.062 – ident: ref67 doi: 10.1016/j.cor.2013.01.005 – ident: ref83 doi: 10.1007/s00521-020-05174-1 – ident: ref117 doi: 10.1109/CEC.2017.7969289 – ident: ref125 doi: 10.1109/CSCWD.2012.6221909 – ident: ref9 doi: 10.1007/s10479-019-03490-x – ident: ref170 doi: 10.1109/TSMC.2018.2818175 – ident: ref113 doi: 10.1109/ICAMechS.2015.7287134 – ident: ref49 doi: 10.1109/TASE.2015.2425404 – ident: ref21 doi: 10.1016/j.swevo.2020.100747 – ident: ref58 doi: 10.1007/s00170-007-1120-y – ident: ref76 doi: 10.1016/j.eswa.2011.06.008 – ident: ref40 doi: 10.1057/palgrave.jors.2602625 – ident: ref82 doi: 10.1016/j.cor.2019.104767 – ident: ref146 doi: 10.1016/j.endm.2017.03.008 – ident: ref98 doi: 10.1080/0305215X.2015.1099639 – ident: ref162 doi: 10.1504/IJMTM.2016.077813 – ident: ref149 doi: 10.1109/TSMCA.2006.878979 – ident: ref26 doi: 10.1080/00207543.2018.1457812 – ident: ref52 doi: 10.1016/j.cie.2019.02.041 – ident: ref168 doi: 10.1109/TEVC.2018.2883888 – ident: ref192 doi: 10.1109/TSMC.2018.2847448 – volume: 3 start-page: 33 issue: 3 year: 2009 ident: ref45 article-title: An iterated greedy algorithm for flexible flow lines with sequence dependent setup times to minimize total weighted completion time publication-title: J. Optim. Ind. Eng. – ident: ref12 doi: 10.1016/j.asoc.2019.105492 – ident: ref84 doi: 10.1016/j.cie.2020.106369 – ident: ref95 doi: 10.1080/01605682.2019.1630330 – ident: ref116 doi: 10.1109/COASE.2019.8842885 – ident: ref171 doi: 10.1109/TASE.2020.2971512 – ident: ref144 doi: 10.1016/j.cie.2016.12.038 – ident: ref180 doi: 10.1109/ICNSC48988.2020.9238060 – ident: ref134 doi: 10.1109/CEC.2010.5586300 – ident: ref36 doi: 10.1016/j.swevo.2020.100742 – ident: ref186 doi: 10.1109/ICNSC.2019.8743232 – ident: ref42 doi: 10.1016/j.cie.2019.07.041 – ident: ref59 doi: 10.4028/www.scientific.net/AMR.933.459 – ident: ref126 doi: 10.1109/CEC.2014.6900460 – ident: ref100 doi: 10.1016/j.cie.2008.03.003 – ident: ref140 doi: 10.1109/JAS.2019.1911540 – ident: ref23 doi: 10.1016/j.eswa.2017.09.032 – ident: ref79 doi: 10.1016/j.cor.2016.12.021 – volume: 23 start-page: 301 year: 2012 ident: ref10 article-title: An iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time criteria publication-title: Int. J. Ind. Eng. Prod. Res. – ident: ref128 doi: 10.1109/CEC.2012.6256167 – ident: ref60 doi: 10.1016/j.asoc.2015.02.006 – ident: ref63 doi: 10.1080/00207543.2010.543937 – ident: ref165 doi: 10.1109/TCYB.2018.2817240 – ident: ref54 doi: 10.1016/j.cor.2015.08.001 – ident: ref101 doi: 10.1016/j.ejor.2012.04.034 – ident: ref175 doi: 10.1109/TASE.2019.2958979 – ident: ref22 doi: 10.1177/1729881419879819 – ident: ref96 doi: 10.1016/j.ejor.2015.05.019 – ident: ref178 doi: 10.1109/TASE.2015.2477362 – ident: ref68 doi: 10.1080/0305215X.2018.1444163 – ident: ref38 doi: 10.1016/j.ejor.2010.05.041 – ident: ref65 doi: 10.1016/j.ins.2018.04.038 – ident: ref167 doi: 10.1109/TEVC.2013.2281535 – ident: ref115 doi: 10.1007/978-3-319-33625-1_9 – ident: ref51 doi: 10.1109/TCYB.2017.2707067 – ident: ref13 doi: 10.1016/j.ijpe.2015.07.027 – ident: ref159 doi: 10.1186/s10033-019-0337-7 – ident: ref6 doi: 10.17562/PB-53-10 – ident: ref89 doi: 10.1016/j.cor.2011.01.010 – ident: ref27 doi: 10.1016/j.cie.2016.07.027 – ident: ref55 doi: 10.1016/j.cor.2018.07.017 – ident: ref35 doi: 10.1016/j.omega.2018.03.004 – ident: ref132 doi: 10.1109/ICOA.2018.8370598 – ident: ref172 doi: 10.1109/TEVC.2007.913109 – ident: ref62 doi: 10.1080/00207540802070942 – ident: ref190 doi: 10.1109/70.843173 – ident: ref39 doi: 10.1504/EJIE.2012.045605 – ident: ref57 doi: 10.1016/j.eswa.2019.02.023 – ident: ref139 doi: 10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M – ident: ref17 doi: 10.1080/00207543.2020.1757174 – ident: ref70 doi: 10.1016/j.eswa.2019.113166 – ident: ref25 doi: 10.1016/j.knosys.2020.105536 – ident: ref107 doi: 10.1016/j.eswa.2017.10.050 – ident: ref135 doi: 10.1109/ICSMC.2010.5642267 – ident: ref151 doi: 10.1109/4235.585893 – ident: ref111 doi: 10.1145/2576768.2598324 – ident: ref129 doi: 10.1109/CINTI.2012.6496734 – ident: ref169 doi: 10.1109/TEVC.2007.892759 – ident: ref191 doi: 10.1109/TSMCB.2004.833331 – ident: ref66 doi: 10.1080/00207543.2014.932935 – ident: ref41 doi: 10.1016/j.amc.2017.01.004 – ident: ref156 doi: 10.1016/j.ifacol.2018.08.472 – ident: ref179 doi: 10.1109/TASE.2020.3027532 – ident: ref30 doi: 10.1016/j.cie.2017.07.020 – ident: ref121 doi: 10.1109/IESM.2015.7380140 – ident: ref133 doi: 10.1007/978-3-319-77449-7_6 – ident: ref33 doi: 10.1080/00207543.2014.948578 – ident: ref184 doi: 10.1080/17517575.2015.1048833 – ident: ref53 doi: 10.1007/s00170-007-1104-y – ident: ref72 doi: 10.1007/s11771-015-2887-x – ident: ref14 doi: 10.1016/j.procs.2019.12.208 – ident: ref148 doi: 10.1002/nav.3800010110 – ident: ref157 doi: 10.1109/WOCC48579.2020.9114917 – ident: ref34 doi: 10.1016/j.knosys.2019.104894 – ident: ref164 doi: 10.1109/IEEM.2018.8607708 |
| SSID | ssj0024890 |
| Score | 2.6229017 |
| Snippet | An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1941 |
| SubjectTerms | Algorithms Engineers Flow-shop scheduling problem (FSP) Greedy algorithms heuristic algorithm Heuristic algorithms Heuristic methods iterated greedy algorithm (IGA) Job shop scheduling Job shops Linear programming Literature reviews Optimization Production scheduling review Scheduling Search methods Source code tutorial Tutorials Websites |
| Title | Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial |
| URI | https://ieeexplore.ieee.org/document/9383424 https://www.proquest.com/docview/2685163317 |
| Volume | 19 |
| WOSCitedRecordID | wos000733533800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWFzl4ErfNPrJpvC3SUi9SaIXeljy1ULvSrYr_3iTdVkURvO0hgWUmM_NNMvMNwIU0xjXJpIEU2tgEhZqAUx0HKm1TRQRmXGM_bILe3bVHI9Zfg6tVL4zW2hef6ab79G_5qpAv7qqsxWw6lURJDWqU0kWv1ievXtvfpzhEEBBGSPWCGWLWGmaDjs0Eo7Bp8bF1v8m3GOSHqvzwxD68dHf-92O7sF3BSJQt9L4Ha3q6D1tfyAXr0Lv1hMlaIVdbo95RNnkoZuP541OJLFJF3UnxFgwei2c0sIpTriL9AfUX82XKa5ShoaM3sMfzAO67neFNL6jmJgTSBu954GxWhpSHsbDJV0IZVxZXmFAI69hkihMhpYyVSHmKjSCKG0UUsYbLIy0FkfEhrE-LqT4CxIxWMSMyURFPKI25wUrwEMdS6oQq3gC8lGQuK1JxN9tikvvkArPcCT93ws8r4TfgcrXlecGo8dfiupP2amEl6AacLtWVVzZX5lFq0WMaW0B0_PuuE9iMXPOCL7Y9hfX57EWfwYZ8nY_L2bk_Th8_Psgf |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDp7E1exusmm8FbFU1CK0grclTxVqt_Sh-O9N0rUqiuBtDwksM5mZb5KZbwAOlbW-SSaLlDTWJSjMRoKZNNJZlWkqMRcGh2ETrNms3t_z2yk4nvTCGGNC8Zk58Z_hLV8XauSvyk65S6dIQqZhlhKSxONurU9mvWq4UfGYIKKc0vINM8b8tF1rXbhcMIlPHEJ2Dph8i0JhrMoPXxwCTH35f7-2AkslkES1seZXYcp012DxC73gOjQuA2Wy0chX1-g3VOs8FP2n4ePzADmsiuqd4jVqPRY91HKq074m_QHdjifMDM5QDbU9wYE7oBtwV79onzeicnJCpFz4HkbealXMRJxKl34RxoV2yMLGUjrXpjJMpFIq1TITGbaSamE11dSZrkiMklSlmzDTLbpmCxC3RqecKqITQRhLhcVaihinShnCtKgA_pBkrkpacT_dopOH9ALz3As_98LPS-FX4GiypTfm1Phr8bqX9mRhKegK7H6oKy-tbpAnmcOPWeog0fbvuw5gvtG-uc6vL5tXO7CQ-FaGUHq7CzPD_sjswZx6GT4N-vvhaL0D01nLZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterated+Greedy+Algorithms+for+Flow-Shop+Scheduling+Problems%3A+A+Tutorial&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhao%2C+ZiYan&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+ShiXin&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=3&rft.spage=1941&rft_id=info:doi/10.1109%2FTASE.2021.3062994&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |