Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial

An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by usin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1941 - 1959
Main Authors: Zhao, ZiYan, Zhou, MengChu, Liu, ShiXin
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by using IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. Up until now, over 100 articles related to this field have been published. However, to the best of our knowledge, there is no existing tutorial or review paper of IGA. Thus, we focus on FSPs and provide a tutorial and comprehensive literature review of IGA-based methods. First, we introduce a framework of basic IGA and give an example to clearly show its procedure. To help researchers and engineers learn and apply IGA to their FSPs, we provide an open platform to collect and share related materials. Then, we make classifications of the solved FSPs according to their scheduling scenarios, objective functions, and constraints. Next, we classify and introduce the specific methods and strategies used in each phase of IGA for FSPs. Besides, we summarize IGA variants and hybrid algorithms with IGA integrated, respectively. Finally, we discuss the current IGA-based methods and already-solved FSP instances, as well as some important future research directions according to their deficiency and open issues. Note to Practitioners -Many practical scheduling problems can be transformed into flow-shop scheduling problems (FSPs), most of which are NP-hard. In order to solve them in an industrial system setting, designing effective heuristics is important and practically useful and has, thus, attracted much attention from both researchers and engineers. As an easy and high-performance heuristic, an iterated greedy algorithm (IGA) is widely used and adapted to solve numerous FSPs. Its simple framework makes it easy to be implemented by practitioners, and its high performance implies its great potential to solve industrial scheduling problems. In this work, we aim to give practitioners a comprehensive overview of IGA and help them apply IGA to solve their particular industrial scheduling problems. We review the papers that solve FSPs with IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. First, we provide practitioners with a tutorial on IGA, where an example for solving an FSP is introduced and an open platform is constructed. The platform collects and shares the related materials, e.g., open-source code, benchmarks, and website links of important papers. Then, we introduce various FSPs and specific designs of IGA-based methods. Finally, we discuss the current research and point out future research issues.
AbstractList An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important branch of production scheduling problems. IGA was first developed to solve an FSP in 2007. Since then, various FSPs have been tackled by using IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. Up until now, over 100 articles related to this field have been published. However, to the best of our knowledge, there is no existing tutorial or review paper of IGA. Thus, we focus on FSPs and provide a tutorial and comprehensive literature review of IGA-based methods. First, we introduce a framework of basic IGA and give an example to clearly show its procedure. To help researchers and engineers learn and apply IGA to their FSPs, we provide an open platform to collect and share related materials. Then, we make classifications of the solved FSPs according to their scheduling scenarios, objective functions, and constraints. Next, we classify and introduce the specific methods and strategies used in each phase of IGA for FSPs. Besides, we summarize IGA variants and hybrid algorithms with IGA integrated, respectively. Finally, we discuss the current IGA-based methods and already-solved FSP instances, as well as some important future research directions according to their deficiency and open issues. Note to Practitioners -Many practical scheduling problems can be transformed into flow-shop scheduling problems (FSPs), most of which are NP-hard. In order to solve them in an industrial system setting, designing effective heuristics is important and practically useful and has, thus, attracted much attention from both researchers and engineers. As an easy and high-performance heuristic, an iterated greedy algorithm (IGA) is widely used and adapted to solve numerous FSPs. Its simple framework makes it easy to be implemented by practitioners, and its high performance implies its great potential to solve industrial scheduling problems. In this work, we aim to give practitioners a comprehensive overview of IGA and help them apply IGA to solve their particular industrial scheduling problems. We review the papers that solve FSPs with IGA-based methods, including basic IGA, its variants, and hybrid algorithms with IGA integrated. First, we provide practitioners with a tutorial on IGA, where an example for solving an FSP is introduced and an open platform is constructed. The platform collects and shares the related materials, e.g., open-source code, benchmarks, and website links of important papers. Then, we introduce various FSPs and specific designs of IGA-based methods. Finally, we discuss the current research and point out future research issues.
Author Zhao, ZiYan
Zhou, MengChu
Liu, ShiXin
Author_xml – sequence: 1
  givenname: ZiYan
  orcidid: 0000-0002-5858-4489
  surname: Zhao
  fullname: Zhao, ZiYan
  email: neuzhaoziyan@163.com
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 3
  givenname: ShiXin
  orcidid: 0000-0002-3404-9297
  surname: Liu
  fullname: Liu, ShiXin
  email: sxliu@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BookMark eNp9kF1LwzAUhoNMcE5_gHgT8LozaZK28a6MfcFAYfM65KtbR9fMJEP2723Z8MILr86B8z7nheceDFrXWgCeMBpjjPjrplxPxylK8ZigLOWc3oAhZqxISF6QQb9TljDO2B24D2GPUEoLjoZgsYzWy2gNnHtrzRmWzdb5Ou4OAVbOw1njvpP1zh3hWu-sOTV1u4Uf3qnGHsIbLOHmFLu8bB7AbSWbYB-vcwQ-Z9PNZJGs3ufLSblKdMpJTAjCWONcYqIoLWjOpckyUmGlcHfIEFVaa2JUJjNUKWZkZZhhRY5karVimozAy-Xv0buvkw1R7N3Jt12lSLOC4YwQnHcpfElp70LwthJHXx-kPwuMRC9M9MJEL0xchXVM_ofRdZSxdm30sm7-JZ8vZG2t_W3ipCA0peQHccZ6BQ
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129716
crossref_primary_10_1109_MSMC_2022_3198027
crossref_primary_10_1016_j_ejor_2025_02_009
crossref_primary_10_1007_s10951_024_00814_z
crossref_primary_10_3390_math10234519
crossref_primary_10_1088_1742_6596_1944_1_012034
crossref_primary_10_26599_TST_2024_9010012
crossref_primary_10_1007_s11047_022_09889_z
crossref_primary_10_1016_j_cor_2024_106854
crossref_primary_10_1016_j_rineng_2024_102071
crossref_primary_10_1038_s41598_023_47729_x
crossref_primary_10_1007_s11227_025_07581_4
crossref_primary_10_1016_j_jii_2022_100414
crossref_primary_10_1016_j_engappai_2024_108477
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1016_j_procs_2023_10_400
crossref_primary_10_1109_TASE_2024_3421889
crossref_primary_10_1088_1361_6501_ad2da6
crossref_primary_10_3390_machines11020292
crossref_primary_10_3390_math12060816
crossref_primary_10_1109_ACCESS_2024_3486813
crossref_primary_10_1145_3495214
crossref_primary_10_1109_TSMC_2023_3280207
crossref_primary_10_1109_LWC_2022_3215765
crossref_primary_10_3390_su15097600
crossref_primary_10_3390_logistics7030054
crossref_primary_10_1109_TSMC_2024_3358383
crossref_primary_10_3390_math12010009
crossref_primary_10_1016_j_eswa_2023_120837
crossref_primary_10_1016_j_omega_2024_103139
crossref_primary_10_1016_j_engappai_2025_112012
crossref_primary_10_1080_23307706_2022_2071775
crossref_primary_10_1016_j_cor_2024_106742
crossref_primary_10_1109_LWC_2025_3576717
crossref_primary_10_1109_TII_2024_3413335
crossref_primary_10_1002_int_22999
crossref_primary_10_1016_j_cie_2024_110806
crossref_primary_10_1016_j_swevo_2023_101320
crossref_primary_10_1109_TASE_2023_3236317
crossref_primary_10_1109_TCSS_2022_3217101
crossref_primary_10_1109_TASE_2024_3420107
crossref_primary_10_1007_s00500_024_09850_5
crossref_primary_10_1016_j_knosys_2024_111409
crossref_primary_10_1007_s11590_022_01966_7
crossref_primary_10_1080_24725579_2024_2428953
crossref_primary_10_1109_TMC_2024_3426945
crossref_primary_10_1109_JIOT_2024_3352658
crossref_primary_10_1007_s41965_024_00169_6
crossref_primary_10_1109_TCSS_2023_3238965
crossref_primary_10_1016_j_engappai_2023_105977
crossref_primary_10_1016_j_ejor_2023_03_038
crossref_primary_10_1016_j_matcom_2025_02_026
crossref_primary_10_1109_MSMC_2024_3371421
crossref_primary_10_1080_00207543_2024_2447932
crossref_primary_10_1016_j_eswa_2023_121856
crossref_primary_10_1080_00207543_2023_2255681
crossref_primary_10_1016_j_jii_2024_100631
crossref_primary_10_3390_math12060836
crossref_primary_10_1016_j_cor_2025_107044
crossref_primary_10_1016_j_rcim_2024_102747
crossref_primary_10_3390_su16104180
crossref_primary_10_3390_app14156562
crossref_primary_10_1016_j_comnet_2024_110744
crossref_primary_10_1371_journal_pone_0298417
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1109_TASE_2024_3440169
crossref_primary_10_32604_cmc_2024_058885
crossref_primary_10_1016_j_eswa_2025_126713
crossref_primary_10_1109_TETCI_2024_3360338
crossref_primary_10_1016_j_jmsy_2023_02_002
crossref_primary_10_1109_TSMC_2021_3131849
crossref_primary_10_1016_j_procs_2023_10_391
crossref_primary_10_1109_JIOT_2024_3468331
crossref_primary_10_1080_00207543_2024_2361441
crossref_primary_10_1109_TASE_2024_3418370
crossref_primary_10_1016_j_cie_2025_111330
crossref_primary_10_1016_j_ress_2023_109239
crossref_primary_10_1016_j_cor_2023_106224
crossref_primary_10_3390_pr12122615
crossref_primary_10_1016_j_swevo_2024_101489
crossref_primary_10_1109_TASE_2022_3192914
crossref_primary_10_3390_ph18081224
crossref_primary_10_1080_00207543_2021_1975839
Cites_doi 10.31449/inf.v44i2.2616
10.1109/TASE.2019.2895801
10.1016/j.cor.2016.07.002
10.1016/j.cie.2017.07.037
10.1109/ACCESS.2017.2732738
10.1016/j.cor.2016.11.022
10.1016/j.eswa.2020.113279
10.1007/s10479-011-1056-3
10.1109/TASE.2019.2953669
10.1080/00207540701418960
10.1016/j.cor.2020.104886
10.1080/0951192X.2011.592993
10.1109/CIPLS.2014.7007156
10.1109/CCDC.2017.7978693
10.1145/3377929.3398117
10.1109/4235.996017
10.1155/2018/8170294
10.1109/CEC.2013.6557675
10.1016/j.ejor.2005.12.009
10.1016/j.ejor.2006.07.029
10.1145/3205455.3205500
10.1016/j.eswa.2019.113147
10.1016/j.omega.2010.07.007
10.1016/j.eswa.2017.09.028
10.1016/j.ins.2011.04.018
10.1080/00207543.2013.828179
10.1080/00207721.2012.723054
10.1080/00207543.2015.1076941
10.1080/00207543.2015.1094584
10.1007/s00170-018-2171-y
10.1109/CEC.2003.1299757
10.1007/978-3-319-53480-0_94
10.1007/978-3-642-44973-4_36
10.1016/j.omega.2013.10.002
10.1016/j.cie.2017.10.034
10.1155/2020/7132469
10.1080/0305215x.2020.1797000
10.1109/TASE.2017.2731981
10.1016/0305-0483(83)90088-9
10.1080/0305215X.2016.1261247
10.1007/s00291-007-0098-z
10.1016/j.cor.2019.104839
10.1155/2017/3630869
10.1109/JAS.2017.7510352
10.1109/ACCESS.2017.2773645
10.1080/00207543.2014.962112
10.1145/3205455.3205614
10.1109/TCYB.2019.2901834
10.1016/j.swevo.2020.100660
10.1109/ACCESS.2018.2885137
10.1016/j.engappai.2019.103369
10.1109/CEC.2018.8477787
10.1007/s10732-014-9279-5
10.1016/j.cor.2019.06.009
10.1016/j.ejor.2012.12.031
10.1007/s00500-018-3014-3
10.1109/ICNSC.2019.8743328
10.1016/j.cor.2018.02.003
10.1109/TCYB.2015.2478486
10.1016/j.asoc.2014.11.022
10.1080/00207543.2014.910627
10.1016/j.cie.2016.06.012
10.1109/ICMSAO.2013.6552659
10.1016/j.knosys.2020.105527
10.1016/j.eswa.2017.01.006
10.1109/TEM.2017.2712611
10.1109/ICNSC48988.2020.9238075
10.1016/j.eswa.2018.12.039
10.1109/TSMC.2019.2907575
10.1016/j.eswa.2020.113716
10.1109/ICNSC.2019.8743188
10.1016/j.ejor.2019.10.004
10.1007/s10033-017-0108-2
10.1109/CEC.2015.7257235
10.1080/0305215X.2019.1632303
10.1016/j.ejor.2019.01.018
10.1080/0305215X.2015.1124870
10.5267/j.ijiec.2019.11.002
10.1080/00207543.2019.1581955
10.1057/jors.2014.100
10.1504/IJMR.2019.096746
10.1080/00207543.2019.1624857
10.1016/j.cie.2017.06.025
10.1016/j.ejor.2017.10.045
10.1016/j.knosys.2017.09.026
10.1080/00207543.2013.790571
10.1155/2020/2862186
10.1016/j.advengsoft.2010.06.004
10.1080/0305215x.2020.1757089
10.1109/TASE.2015.2427234
10.1080/00207543.2019.1571687
10.1007/978-3-319-03753-0_3
10.1016/j.engappai.2014.09.015
10.1016/j.eswa.2019.01.062
10.1016/j.cor.2013.01.005
10.1007/s00521-020-05174-1
10.1109/CEC.2017.7969289
10.1109/CSCWD.2012.6221909
10.1007/s10479-019-03490-x
10.1109/TSMC.2018.2818175
10.1109/ICAMechS.2015.7287134
10.1109/TASE.2015.2425404
10.1016/j.swevo.2020.100747
10.1007/s00170-007-1120-y
10.1016/j.eswa.2011.06.008
10.1057/palgrave.jors.2602625
10.1016/j.cor.2019.104767
10.1016/j.endm.2017.03.008
10.1080/0305215X.2015.1099639
10.1504/IJMTM.2016.077813
10.1109/TSMCA.2006.878979
10.1080/00207543.2018.1457812
10.1016/j.cie.2019.02.041
10.1109/TEVC.2018.2883888
10.1109/TSMC.2018.2847448
10.1016/j.asoc.2019.105492
10.1016/j.cie.2020.106369
10.1080/01605682.2019.1630330
10.1109/COASE.2019.8842885
10.1109/TASE.2020.2971512
10.1016/j.cie.2016.12.038
10.1109/ICNSC48988.2020.9238060
10.1109/CEC.2010.5586300
10.1016/j.swevo.2020.100742
10.1109/ICNSC.2019.8743232
10.1016/j.cie.2019.07.041
10.4028/www.scientific.net/AMR.933.459
10.1109/CEC.2014.6900460
10.1016/j.cie.2008.03.003
10.1109/JAS.2019.1911540
10.1016/j.eswa.2017.09.032
10.1016/j.cor.2016.12.021
10.1109/CEC.2012.6256167
10.1016/j.asoc.2015.02.006
10.1080/00207543.2010.543937
10.1109/TCYB.2018.2817240
10.1016/j.cor.2015.08.001
10.1016/j.ejor.2012.04.034
10.1109/TASE.2019.2958979
10.1177/1729881419879819
10.1016/j.ejor.2015.05.019
10.1109/TASE.2015.2477362
10.1080/0305215X.2018.1444163
10.1016/j.ejor.2010.05.041
10.1016/j.ins.2018.04.038
10.1109/TEVC.2013.2281535
10.1007/978-3-319-33625-1_9
10.1109/TCYB.2017.2707067
10.1016/j.ijpe.2015.07.027
10.1186/s10033-019-0337-7
10.17562/PB-53-10
10.1016/j.cor.2011.01.010
10.1016/j.cie.2016.07.027
10.1016/j.cor.2018.07.017
10.1016/j.omega.2018.03.004
10.1109/ICOA.2018.8370598
10.1109/TEVC.2007.913109
10.1080/00207540802070942
10.1109/70.843173
10.1504/EJIE.2012.045605
10.1016/j.eswa.2019.02.023
10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
10.1080/00207543.2020.1757174
10.1016/j.eswa.2019.113166
10.1016/j.knosys.2020.105536
10.1016/j.eswa.2017.10.050
10.1109/ICSMC.2010.5642267
10.1109/4235.585893
10.1145/2576768.2598324
10.1109/CINTI.2012.6496734
10.1109/TEVC.2007.892759
10.1109/TSMCB.2004.833331
10.1080/00207543.2014.932935
10.1016/j.amc.2017.01.004
10.1016/j.ifacol.2018.08.472
10.1109/TASE.2020.3027532
10.1016/j.cie.2017.07.020
10.1109/IESM.2015.7380140
10.1007/978-3-319-77449-7_6
10.1080/00207543.2014.948578
10.1080/17517575.2015.1048833
10.1007/s00170-007-1104-y
10.1007/s11771-015-2887-x
10.1016/j.procs.2019.12.208
10.1002/nav.3800010110
10.1109/WOCC48579.2020.9114917
10.1016/j.knosys.2019.104894
10.1109/IEEM.2018.8607708
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3062994
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1959
ExternalDocumentID 10_1109_TASE_2021_3062994
9383424
Genre tutorial
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 62073069
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0306400
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-3011c17a13b448479ad663f1bb111c604bccc3db6a60fb5dafd5d5870a2ecb5c3
IEDL.DBID RIE
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733533800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 15:58:33 EDT 2025
Sat Nov 29 04:12:47 EST 2025
Tue Nov 18 21:20:28 EST 2025
Wed Aug 27 02:14:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3011c17a13b448479ad663f1bb111c604bccc3db6a60fb5dafd5d5870a2ecb5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3404-9297
0000-0002-5858-4489
0000-0002-5408-8752
PQID 2685163317
PQPubID 27623
PageCount 19
ParticipantIDs crossref_primary_10_1109_TASE_2021_3062994
proquest_journals_2685163317
ieee_primary_9383424
crossref_citationtrail_10_1109_TASE_2021_3062994
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Khorasanian (ref10) 2012; 23
ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref168
ref54
ref169
ref170
ref177
ref178
ref51
ref175
ref50
ref176
ref173
ref174
ref171
ref172
ref46
ref48
ref47
ref42
ref41
ref44
ref179
ref43
ref49
ref8
ref180
ref7
ref181
ref9
ref4
ref3
ref6
ref5
ref100
ref188
ref101
ref189
ref40
ref186
ref187
ref184
ref185
ref182
ref183
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref128
ref14
Naderi (ref45) 2009; 3
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref88
ref135
ref87
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
Tasgetiren (ref136)
ref191
ref192
ref190
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
Glover (ref138) 2006; 57
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref99
  doi: 10.31449/inf.v44i2.2616
– ident: ref154
  doi: 10.1109/TASE.2019.2895801
– ident: ref7
  doi: 10.1016/j.cor.2016.07.002
– ident: ref11
  doi: 10.1016/j.cie.2017.07.037
– ident: ref20
  doi: 10.1109/ACCESS.2017.2732738
– ident: ref48
  doi: 10.1016/j.cor.2016.11.022
– ident: ref103
  doi: 10.1016/j.eswa.2020.113279
– ident: ref77
  doi: 10.1007/s10479-011-1056-3
– ident: ref177
  doi: 10.1109/TASE.2019.2953669
– ident: ref104
  doi: 10.1080/00207540701418960
– ident: ref145
  doi: 10.1016/j.cor.2020.104886
– ident: ref102
  doi: 10.1080/0951192X.2011.592993
– ident: ref119
  doi: 10.1109/CIPLS.2014.7007156
– ident: ref127
  doi: 10.1109/CCDC.2017.7978693
– ident: ref124
  doi: 10.1145/3377929.3398117
– ident: ref166
  doi: 10.1109/4235.996017
– ident: ref1
  doi: 10.1155/2018/8170294
– ident: ref118
  doi: 10.1109/CEC.2013.6557675
– ident: ref75
  doi: 10.1016/j.ejor.2005.12.009
– ident: ref91
  doi: 10.1016/j.ejor.2006.07.029
– ident: ref120
  doi: 10.1145/3205455.3205500
– start-page: 753
  volume-title: Proc. Int. Conf. Intell. Comput
  ident: ref136
  article-title: Green permutation flowshop scheduling: A trade-off-between energy consumption and total flow time
– ident: ref18
  doi: 10.1016/j.eswa.2019.113147
– ident: ref4
  doi: 10.1016/j.omega.2010.07.007
– ident: ref56
  doi: 10.1016/j.eswa.2017.09.028
– ident: ref97
  doi: 10.1016/j.ins.2011.04.018
– ident: ref176
  doi: 10.1080/00207543.2013.828179
– ident: ref141
  doi: 10.1080/00207721.2012.723054
– ident: ref5
  doi: 10.1080/00207543.2015.1076941
– ident: ref73
  doi: 10.1080/00207543.2015.1094584
– ident: ref81
  doi: 10.1007/s00170-018-2171-y
– ident: ref174
  doi: 10.1109/CEC.2003.1299757
– ident: ref112
  doi: 10.1007/978-3-319-53480-0_94
– ident: ref137
  doi: 10.1007/978-3-642-44973-4_36
– ident: ref50
  doi: 10.1016/j.omega.2013.10.002
– ident: ref182
  doi: 10.1016/j.cie.2017.10.034
– ident: ref85
  doi: 10.1155/2020/7132469
– ident: ref61
  doi: 10.1080/0305215x.2020.1797000
– ident: ref189
  doi: 10.1109/TASE.2017.2731981
– ident: ref147
  doi: 10.1016/0305-0483(83)90088-9
– ident: ref161
  doi: 10.1080/0305215X.2016.1261247
– ident: ref88
  doi: 10.1007/s00291-007-0098-z
– volume: 57
  volume-title: Handbook Metaheuristics
  year: 2006
  ident: ref138
– ident: ref71
  doi: 10.1016/j.cor.2019.104839
– ident: ref74
  doi: 10.1155/2017/3630869
– ident: ref152
  doi: 10.1109/JAS.2017.7510352
– ident: ref185
  doi: 10.1109/ACCESS.2017.2773645
– ident: ref15
  doi: 10.1080/00207543.2014.962112
– ident: ref123
  doi: 10.1145/3205455.3205614
– ident: ref173
  doi: 10.1109/TCYB.2019.2901834
– ident: ref44
  doi: 10.1016/j.swevo.2020.100660
– ident: ref64
  doi: 10.1109/ACCESS.2018.2885137
– ident: ref163
  doi: 10.1016/j.engappai.2019.103369
– ident: ref131
  doi: 10.1109/CEC.2018.8477787
– ident: ref158
  doi: 10.1007/s10732-014-9279-5
– ident: ref46
  doi: 10.1016/j.cor.2019.06.009
– ident: ref90
  doi: 10.1016/j.ejor.2012.12.031
– ident: ref142
  doi: 10.1007/s00500-018-3014-3
– ident: ref143
  doi: 10.1109/ICNSC.2019.8743328
– ident: ref69
  doi: 10.1016/j.cor.2018.02.003
– ident: ref188
  doi: 10.1109/TCYB.2015.2478486
– ident: ref86
  doi: 10.1016/j.asoc.2014.11.022
– ident: ref110
  doi: 10.1080/00207543.2014.910627
– ident: ref105
  doi: 10.1016/j.cie.2016.06.012
– ident: ref130
  doi: 10.1109/ICMSAO.2013.6552659
– ident: ref24
  doi: 10.1016/j.knosys.2020.105527
– ident: ref19
  doi: 10.1016/j.eswa.2017.01.006
– ident: ref108
  doi: 10.1109/TEM.2017.2712611
– ident: ref187
  doi: 10.1109/ICNSC48988.2020.9238075
– ident: ref16
  doi: 10.1016/j.eswa.2018.12.039
– ident: ref153
  doi: 10.1109/TSMC.2019.2907575
– ident: ref47
  doi: 10.1016/j.eswa.2020.113716
– ident: ref155
  doi: 10.1109/ICNSC.2019.8743188
– ident: ref43
  doi: 10.1016/j.ejor.2019.10.004
– ident: ref80
  doi: 10.1007/s10033-017-0108-2
– ident: ref114
  doi: 10.1109/CEC.2015.7257235
– ident: ref2
  doi: 10.1080/0305215X.2019.1632303
– ident: ref87
  doi: 10.1016/j.ejor.2019.01.018
– ident: ref106
  doi: 10.1080/0305215X.2015.1124870
– ident: ref8
  doi: 10.5267/j.ijiec.2019.11.002
– ident: ref93
  doi: 10.1080/00207543.2019.1581955
– ident: ref78
  doi: 10.1057/jors.2014.100
– ident: ref160
  doi: 10.1504/IJMR.2019.096746
– ident: ref181
  doi: 10.1080/00207543.2019.1624857
– ident: ref29
  doi: 10.1016/j.cie.2017.06.025
– ident: ref109
  doi: 10.1016/j.ejor.2017.10.045
– ident: ref28
  doi: 10.1016/j.knosys.2017.09.026
– ident: ref32
  doi: 10.1080/00207543.2013.790571
– ident: ref92
  doi: 10.1155/2020/2862186
– ident: ref150
  doi: 10.1016/j.advengsoft.2010.06.004
– ident: ref3
  doi: 10.1080/0305215x.2020.1757089
– ident: ref183
  doi: 10.1109/TASE.2015.2427234
– ident: ref31
  doi: 10.1080/00207543.2019.1571687
– ident: ref122
  doi: 10.1007/978-3-319-03753-0_3
– ident: ref94
  doi: 10.1016/j.engappai.2014.09.015
– ident: ref37
  doi: 10.1016/j.eswa.2019.01.062
– ident: ref67
  doi: 10.1016/j.cor.2013.01.005
– ident: ref83
  doi: 10.1007/s00521-020-05174-1
– ident: ref117
  doi: 10.1109/CEC.2017.7969289
– ident: ref125
  doi: 10.1109/CSCWD.2012.6221909
– ident: ref9
  doi: 10.1007/s10479-019-03490-x
– ident: ref170
  doi: 10.1109/TSMC.2018.2818175
– ident: ref113
  doi: 10.1109/ICAMechS.2015.7287134
– ident: ref49
  doi: 10.1109/TASE.2015.2425404
– ident: ref21
  doi: 10.1016/j.swevo.2020.100747
– ident: ref58
  doi: 10.1007/s00170-007-1120-y
– ident: ref76
  doi: 10.1016/j.eswa.2011.06.008
– ident: ref40
  doi: 10.1057/palgrave.jors.2602625
– ident: ref82
  doi: 10.1016/j.cor.2019.104767
– ident: ref146
  doi: 10.1016/j.endm.2017.03.008
– ident: ref98
  doi: 10.1080/0305215X.2015.1099639
– ident: ref162
  doi: 10.1504/IJMTM.2016.077813
– ident: ref149
  doi: 10.1109/TSMCA.2006.878979
– ident: ref26
  doi: 10.1080/00207543.2018.1457812
– ident: ref52
  doi: 10.1016/j.cie.2019.02.041
– ident: ref168
  doi: 10.1109/TEVC.2018.2883888
– ident: ref192
  doi: 10.1109/TSMC.2018.2847448
– volume: 3
  start-page: 33
  issue: 3
  year: 2009
  ident: ref45
  article-title: An iterated greedy algorithm for flexible flow lines with sequence dependent setup times to minimize total weighted completion time
  publication-title: J. Optim. Ind. Eng.
– ident: ref12
  doi: 10.1016/j.asoc.2019.105492
– ident: ref84
  doi: 10.1016/j.cie.2020.106369
– ident: ref95
  doi: 10.1080/01605682.2019.1630330
– ident: ref116
  doi: 10.1109/COASE.2019.8842885
– ident: ref171
  doi: 10.1109/TASE.2020.2971512
– ident: ref144
  doi: 10.1016/j.cie.2016.12.038
– ident: ref180
  doi: 10.1109/ICNSC48988.2020.9238060
– ident: ref134
  doi: 10.1109/CEC.2010.5586300
– ident: ref36
  doi: 10.1016/j.swevo.2020.100742
– ident: ref186
  doi: 10.1109/ICNSC.2019.8743232
– ident: ref42
  doi: 10.1016/j.cie.2019.07.041
– ident: ref59
  doi: 10.4028/www.scientific.net/AMR.933.459
– ident: ref126
  doi: 10.1109/CEC.2014.6900460
– ident: ref100
  doi: 10.1016/j.cie.2008.03.003
– ident: ref140
  doi: 10.1109/JAS.2019.1911540
– ident: ref23
  doi: 10.1016/j.eswa.2017.09.032
– ident: ref79
  doi: 10.1016/j.cor.2016.12.021
– volume: 23
  start-page: 301
  year: 2012
  ident: ref10
  article-title: An iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time criteria
  publication-title: Int. J. Ind. Eng. Prod. Res.
– ident: ref128
  doi: 10.1109/CEC.2012.6256167
– ident: ref60
  doi: 10.1016/j.asoc.2015.02.006
– ident: ref63
  doi: 10.1080/00207543.2010.543937
– ident: ref165
  doi: 10.1109/TCYB.2018.2817240
– ident: ref54
  doi: 10.1016/j.cor.2015.08.001
– ident: ref101
  doi: 10.1016/j.ejor.2012.04.034
– ident: ref175
  doi: 10.1109/TASE.2019.2958979
– ident: ref22
  doi: 10.1177/1729881419879819
– ident: ref96
  doi: 10.1016/j.ejor.2015.05.019
– ident: ref178
  doi: 10.1109/TASE.2015.2477362
– ident: ref68
  doi: 10.1080/0305215X.2018.1444163
– ident: ref38
  doi: 10.1016/j.ejor.2010.05.041
– ident: ref65
  doi: 10.1016/j.ins.2018.04.038
– ident: ref167
  doi: 10.1109/TEVC.2013.2281535
– ident: ref115
  doi: 10.1007/978-3-319-33625-1_9
– ident: ref51
  doi: 10.1109/TCYB.2017.2707067
– ident: ref13
  doi: 10.1016/j.ijpe.2015.07.027
– ident: ref159
  doi: 10.1186/s10033-019-0337-7
– ident: ref6
  doi: 10.17562/PB-53-10
– ident: ref89
  doi: 10.1016/j.cor.2011.01.010
– ident: ref27
  doi: 10.1016/j.cie.2016.07.027
– ident: ref55
  doi: 10.1016/j.cor.2018.07.017
– ident: ref35
  doi: 10.1016/j.omega.2018.03.004
– ident: ref132
  doi: 10.1109/ICOA.2018.8370598
– ident: ref172
  doi: 10.1109/TEVC.2007.913109
– ident: ref62
  doi: 10.1080/00207540802070942
– ident: ref190
  doi: 10.1109/70.843173
– ident: ref39
  doi: 10.1504/EJIE.2012.045605
– ident: ref57
  doi: 10.1016/j.eswa.2019.02.023
– ident: ref139
  doi: 10.1002/1520-6750(199510)42:7<1129::AID-NAV3220420711>3.0.CO;2-M
– ident: ref17
  doi: 10.1080/00207543.2020.1757174
– ident: ref70
  doi: 10.1016/j.eswa.2019.113166
– ident: ref25
  doi: 10.1016/j.knosys.2020.105536
– ident: ref107
  doi: 10.1016/j.eswa.2017.10.050
– ident: ref135
  doi: 10.1109/ICSMC.2010.5642267
– ident: ref151
  doi: 10.1109/4235.585893
– ident: ref111
  doi: 10.1145/2576768.2598324
– ident: ref129
  doi: 10.1109/CINTI.2012.6496734
– ident: ref169
  doi: 10.1109/TEVC.2007.892759
– ident: ref191
  doi: 10.1109/TSMCB.2004.833331
– ident: ref66
  doi: 10.1080/00207543.2014.932935
– ident: ref41
  doi: 10.1016/j.amc.2017.01.004
– ident: ref156
  doi: 10.1016/j.ifacol.2018.08.472
– ident: ref179
  doi: 10.1109/TASE.2020.3027532
– ident: ref30
  doi: 10.1016/j.cie.2017.07.020
– ident: ref121
  doi: 10.1109/IESM.2015.7380140
– ident: ref133
  doi: 10.1007/978-3-319-77449-7_6
– ident: ref33
  doi: 10.1080/00207543.2014.948578
– ident: ref184
  doi: 10.1080/17517575.2015.1048833
– ident: ref53
  doi: 10.1007/s00170-007-1104-y
– ident: ref72
  doi: 10.1007/s11771-015-2887-x
– ident: ref14
  doi: 10.1016/j.procs.2019.12.208
– ident: ref148
  doi: 10.1002/nav.3800010110
– ident: ref157
  doi: 10.1109/WOCC48579.2020.9114917
– ident: ref34
  doi: 10.1016/j.knosys.2019.104894
– ident: ref164
  doi: 10.1109/IEEM.2018.8607708
SSID ssj0024890
Score 2.6229017
Snippet An iterated greedy algorithm (IGA) is a simple and powerful heuristic algorithm. It is widely used to solve flow-shop scheduling problems (FSPs), an important...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1941
SubjectTerms Algorithms
Engineers
Flow-shop scheduling problem (FSP)
Greedy algorithms
heuristic algorithm
Heuristic algorithms
Heuristic methods
iterated greedy algorithm (IGA)
Job shop scheduling
Job shops
Linear programming
Literature reviews
Optimization
Production scheduling
review
Scheduling
Search methods
Source code
tutorial
Tutorials
Websites
Title Iterated Greedy Algorithms for Flow-Shop Scheduling Problems: A Tutorial
URI https://ieeexplore.ieee.org/document/9383424
https://www.proquest.com/docview/2685163317
Volume 19
WOSCitedRecordID wos000733533800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWFzl4ErfNPrJpvC3SUi9SaIXeljy1ULvSrYr_3iTdVkURvO0hgWUmM_NNMvMNwIU0xjXJpIEU2tgEhZqAUx0HKm1TRQRmXGM_bILe3bVHI9Zfg6tVL4zW2hef6ab79G_5qpAv7qqsxWw6lURJDWqU0kWv1ievXtvfpzhEEBBGSPWCGWLWGmaDjs0Eo7Bp8bF1v8m3GOSHqvzwxD68dHf-92O7sF3BSJQt9L4Ha3q6D1tfyAXr0Lv1hMlaIVdbo95RNnkoZuP541OJLFJF3UnxFgwei2c0sIpTriL9AfUX82XKa5ShoaM3sMfzAO67neFNL6jmJgTSBu954GxWhpSHsbDJV0IZVxZXmFAI69hkihMhpYyVSHmKjSCKG0UUsYbLIy0FkfEhrE-LqT4CxIxWMSMyURFPKI25wUrwEMdS6oQq3gC8lGQuK1JxN9tikvvkArPcCT93ws8r4TfgcrXlecGo8dfiupP2amEl6AacLtWVVzZX5lFq0WMaW0B0_PuuE9iMXPOCL7Y9hfX57EWfwYZ8nY_L2bk_Th8_Psgf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDp7E1exusmm8FbFU1CK0grclTxVqt_Sh-O9N0rUqiuBtDwksM5mZb5KZbwAOlbW-SSaLlDTWJSjMRoKZNNJZlWkqMRcGh2ETrNms3t_z2yk4nvTCGGNC8Zk58Z_hLV8XauSvyk65S6dIQqZhlhKSxONurU9mvWq4UfGYIKKc0vINM8b8tF1rXbhcMIlPHEJ2Dph8i0JhrMoPXxwCTH35f7-2AkslkES1seZXYcp012DxC73gOjQuA2Wy0chX1-g3VOs8FP2n4ePzADmsiuqd4jVqPRY91HKq074m_QHdjifMDM5QDbU9wYE7oBtwV79onzeicnJCpFz4HkbealXMRJxKl34RxoV2yMLGUjrXpjJMpFIq1TITGbaSamE11dSZrkiMklSlmzDTLbpmCxC3RqecKqITQRhLhcVaihinShnCtKgA_pBkrkpacT_dopOH9ALz3As_98LPS-FX4GiypTfm1Phr8bqX9mRhKegK7H6oKy-tbpAnmcOPWeog0fbvuw5gvtG-uc6vL5tXO7CQ-FaGUHq7CzPD_sjswZx6GT4N-vvhaL0D01nLZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterated+Greedy+Algorithms+for+Flow-Shop+Scheduling+Problems%3A+A+Tutorial&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhao%2C+ZiYan&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+ShiXin&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=3&rft.spage=1941&rft_id=info:doi/10.1109%2FTASE.2021.3062994&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon