A Review on Evolutionary Multitask Optimization: Trends and Challenges
Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extra...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 26; H. 5; S. 941 - 960 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned. |
|---|---|
| AbstractList | Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned. |
| Author | Zhong, Jinghui Wei, Tingyang Wang, Shibin Liu, Dong Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Tingyang surname: Wei fullname: Wei, Tingyang email: dusting.way@foxmail.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Shibin surname: Wang fullname: Wang, Shibin email: wangshibin@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 3 givenname: Jinghui orcidid: 0000-0003-0113-3430 surname: Zhong fullname: Zhong, Jinghui email: jinghuizhong@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Dong orcidid: 0000-0003-4346-9565 surname: Liu fullname: Liu, Dong email: liudong@htu.edu.cn organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China – sequence: 5 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: Hanyang University, Ansan, South Korea |
| BookMark | eNp9kEFLAzEQhYNUsK3-APES8Lw1k2Q3ibdSWhUqBanibUm3s5q6zdbNbkV_vbtUPHjwNAPzvnm8NyA9X3ok5BzYCICZq-X0aTLijMNIgDBSqCPSByMhYownvXZn2kRK6ecTMghhwxjIGEyfzMb0AfcOP2jp6XRfFk3tSm-rT3rfFLWrbXiji13ttu7LdpdruqzQrwO1fk0nr7Yo0L9gOCXHuS0Cnv3MIXmcTZeT22i-uLmbjOdRxo2oI46cCQkriQa5FSiFhhUmMtYqy5MccpXkNpbc8HylUeZS6YzHTDLJrUrWRgzJ5eHvrirfGwx1uimbyreWKVdg4liC1q0KDqqsKkOoME93ldu2oVJgaVdX2tWVdnWlP3W1jPrDZG36LnJdWVf8S14cSIeIv04mSWKVaPENUg146g |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07787_6 crossref_primary_10_1109_TETCI_2024_3515013 crossref_primary_10_3390_electronics13234612 crossref_primary_10_7717_peerj_cs_1192 crossref_primary_10_3390_pr13092792 crossref_primary_10_1016_j_swevo_2025_102097 crossref_primary_10_1109_TEVC_2022_3215743 crossref_primary_10_1109_MCI_2023_3277769 crossref_primary_10_1109_TEVC_2023_3259067 crossref_primary_10_1016_j_ress_2023_109807 crossref_primary_10_1109_TCYB_2022_3214825 crossref_primary_10_1080_09540091_2023_2275534 crossref_primary_10_1109_TEVC_2023_3258491 crossref_primary_10_1109_TEVC_2023_3291874 crossref_primary_10_1016_j_ins_2024_121572 crossref_primary_10_1007_s00521_025_11534_6 crossref_primary_10_1016_j_engappai_2023_107463 crossref_primary_10_1016_j_asoc_2024_111605 crossref_primary_10_2118_219732_PA crossref_primary_10_1016_j_ins_2024_120921 crossref_primary_10_1007_s10586_023_04172_x crossref_primary_10_1016_j_eswa_2024_125105 crossref_primary_10_1007_s11227_024_06016_w crossref_primary_10_1080_13658816_2025_2502769 crossref_primary_10_1007_s12293_025_00446_6 crossref_primary_10_1007_s12293_025_00448_4 crossref_primary_10_1109_TEVC_2023_3330265 crossref_primary_10_1016_j_neucom_2025_130332 crossref_primary_10_1109_TCYB_2022_3222101 crossref_primary_10_1109_TEVC_2024_3373131 crossref_primary_10_1007_s40747_024_01489_x crossref_primary_10_1109_TETCI_2024_3381512 crossref_primary_10_1088_1741_2552_ad7f8e crossref_primary_10_1109_JSTARS_2022_3226516 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1109_ACCESS_2022_3156944 crossref_primary_10_1016_j_swevo_2024_101823 crossref_primary_10_1109_TEVC_2023_3319566 crossref_primary_10_1109_TETCI_2023_3281876 crossref_primary_10_1016_j_asoc_2024_112568 crossref_primary_10_1016_j_eswa_2023_121600 crossref_primary_10_1109_TETCI_2024_3393368 crossref_primary_10_1016_j_eswa_2025_128874 crossref_primary_10_1016_j_cja_2023_12_027 crossref_primary_10_1016_j_knosys_2025_113241 crossref_primary_10_1109_JIOT_2024_3395296 crossref_primary_10_1016_j_swevo_2024_101663 crossref_primary_10_1109_TEVC_2024_3417325 crossref_primary_10_1109_TSMC_2024_3417230 crossref_primary_10_1109_TETCI_2024_3353615 crossref_primary_10_1109_TII_2025_3567403 crossref_primary_10_1016_j_knosys_2025_113824 crossref_primary_10_1007_s10489_025_06389_2 crossref_primary_10_1109_TAI_2024_3442731 crossref_primary_10_1016_j_asoc_2024_112040 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TEVC_2023_3272663 crossref_primary_10_1007_s10489_022_03695_x crossref_primary_10_1109_TEVC_2023_3349250 crossref_primary_10_1109_TEVC_2023_3263871 crossref_primary_10_23919_cje_2024_00_287 crossref_primary_10_1016_j_swevo_2024_101813 crossref_primary_10_1016_j_ijforecast_2025_07_002 crossref_primary_10_1007_s11227_024_06592_x crossref_primary_10_1016_j_watres_2025_124422 crossref_primary_10_1109_TCYB_2022_3165044 crossref_primary_10_1016_j_swevo_2025_101931 crossref_primary_10_1016_j_swevo_2025_102146 crossref_primary_10_1109_TEVC_2024_3358854 crossref_primary_10_1109_TFUZZ_2025_3581421 crossref_primary_10_1016_j_swevo_2024_101570 crossref_primary_10_1109_JIOT_2024_3412777 crossref_primary_10_1109_TEVC_2024_3414442 crossref_primary_10_1109_TEVC_2022_3233409 crossref_primary_10_1109_TEVC_2024_3355781 crossref_primary_10_1109_TSMC_2025_3577732 crossref_primary_10_1016_j_eswa_2025_128614 crossref_primary_10_1109_JIOT_2025_3573710 crossref_primary_10_1007_s12293_025_00464_4 crossref_primary_10_1016_j_neucom_2024_127835 crossref_primary_10_1109_TCCN_2024_3427123 crossref_primary_10_1016_j_jii_2025_100829 crossref_primary_10_1016_j_eswa_2025_129580 crossref_primary_10_1016_j_isatra_2025_08_003 crossref_primary_10_1109_TEVC_2023_3348475 crossref_primary_10_1109_TEVC_2024_3353319 crossref_primary_10_1109_TR_2023_3324701 crossref_primary_10_1007_s40747_023_01109_0 crossref_primary_10_1016_j_compeleceng_2025_110640 crossref_primary_10_1016_j_swevo_2024_101569 crossref_primary_10_1016_j_swevo_2022_101203 crossref_primary_10_1016_j_knosys_2025_114076 crossref_primary_10_1109_TEVC_2023_3323877 |
| Cites_doi | 10.1007/s12293-021-00331-y 10.1109/CEC.2018.8477722 10.24963/ijcai.2018/538 10.1016/j.ins.2021.06.056 10.1109/TEVC.2009.2027359 10.5591/978-1-57735-516-8/IJCAI11-259 10.1109/TEVC.2019.2962747 10.1109/TEVC.2019.2894743 10.1109/CEC.2019.8790024 10.1109/TEVC.2019.2926107 10.1109/TENCON.2016.7848632 10.1109/CEC.2019.8790143 10.1109/TEVC.2018.2855411 10.1007/978-3-030-03991-2_66 10.1016/j.knosys.2019.105294 10.1609/aaai.v33i01.33014295 10.1109/TCYB.2021.3052509 10.1109/TCYB.2020.3036393 10.1109/MCI.2021.3108310 10.1109/TCYB.2020.2989465 10.1109/TEVC.2020.3048174 10.1016/j.ins.2019.09.058 10.1109/TETCI.2017.2769104 10.1109/TCYB.2020.2981733 10.1109/TCYB.2020.2969025 10.1109/CEC48606.2020.9185667 10.3390/math9080864 10.1109/TEVC.2020.2991717 10.1109/TETCI.2019.2916051 10.1109/TEVC.2021.3051608 10.1007/978-3-319-68759-9_38 10.2991/ijcis.d.191004.001 10.1007/BFb0029746 10.1109/CEC.2016.7743992 10.1109/TEVC.2019.2893614 10.1109/CVPR.2017.328 10.1145/3205651.3208228 10.1007/s12559-020-09777-7 10.1109/TCYB.2016.2554622 10.1109/TEVC.2019.2906927 10.1109/TEVC.2021.3065707 10.1109/TEVC.2021.3107435 10.1016/j.asoc.2007.07.010 10.1109/TCYB.2020.3029176 10.1109/TKDE.2021.3070203 10.1016/j.asoc.2019.105631 10.5555/2946645.2946704 10.1016/j.swevo.2012.05.001 10.1016/j.knosys.2020.106262 10.3389/fnins.2019.01396 10.1109/TEVC.2021.3083362 10.1109/TEVC.2015.2458037 10.1109/TEVC.2018.2868770 10.1145/3205651.3205736 10.1109/TEVC.2017.2657556 10.1109/CEC.2018.8477830 10.1007/s12559-022-10012-8 10.1109/TCYB.2018.2864345 10.1109/TEVC.2017.2783441 10.1109/TPAMI.2021.3057446 10.1109/TCYB.2021.3050516 10.1109/TEVC.2019.2904696 10.1109/CEC.2017.7969454 10.1109/CVPR.2012.6247911 10.1109/TPAMI.2021.3054719 10.1016/j.eswa.2019.07.015 10.1145/3377929.3398084 10.1109/ICCV.2013.368 10.1007/s10994-009-5152-4 10.1109/4235.996017 10.1109/SSCI.2016.7850040 10.1109/CEC.2009.4982949 10.1109/CEC48606.2020.9185660 10.1145/3205651.3205761 10.1109/TSMC.2018.2853719 10.1109/TEVC.2020.3004027 10.1109/TCYB.2020.2980888 10.1007/978-3-319-94472-2_10 10.1109/BigData47090.2019.9006274 10.1145/3341069.3342982 10.1109/CEC.2019.8789940 10.1007/978-981-15-3425-6_2 10.1109/TEVC.2021.3086308 10.1109/TCYB.2020.3017017 10.1109/CVPR.2017.316 10.1109/TCYB.2018.2845361 10.1007/s12293-021-00346-5 10.1007/s40747-016-0011-y 10.1109/SSCI.2016.7850039 10.1109/TEVC.2021.3097043 10.1109/TKDE.2009.191 10.1109/TEVC.2018.2881955 10.1109/CEC.2019.8790352 10.1007/978-3-030-58115-2_44 10.1109/CEC.2016.7744178 10.1109/CVPR.2019.00283 10.1109/TEVC.2020.3023480 10.1109/SSCI.2016.7850038 10.1109/TEVC.2021.3110506 10.1109/CEC48606.2020.9185907 10.1109/TEVC.2017.2785351 10.1007/978-3-642-12683-3_34 10.1145/3386252 10.1109/CEC.2017.7969596 10.1109/TCYB.2020.3043509 10.1109/TEVC.2020.3044711 10.1007/s12559-016-9395-7 10.1109/TETC.2019.2945775 10.1109/CEC.2019.8790034 10.1109/TSC.2018.2827070 10.1109/TCYB.2019.2955599 10.1109/TEVC.2007.892759 10.1109/TCYB.2020.2974100 10.1145/3377929.3389934 10.1109/TEVC.2019.2955110 10.1109/TEVC.2014.2308294 10.1109/TCYB.2019.2962865 10.1016/j.engappai.2017.05.008 10.1109/MCI.2020.3039066 10.1109/TFUZZ.2020.2968863 10.1109/TCYB.2020.3013271 10.1109/CEC.2019.8789909 10.1109/CEC.2018.8477860 10.1109/CDC.2017.8263646 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2021.3139437 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 960 |
| ExternalDocumentID | 10_1109_TEVC_2021_3139437 9665768 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Project of Science and Technology Innovation 2030 through the Ministry of Science and Technology of China grantid: 2018AAA0101304 – fundername: National Natural Science Foundation of China grantid: 62076098 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62072160 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory grantid: 2020B121201001 – fundername: Guangdong Natural Science Foundation Research Team grantid: 2018B030312003 funderid: 10.13039/501100003453 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-2e20341b4e9e2a3e4381be64587cf6f1f76fa54292fb8e4f478c2504042a76d93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 06:53:27 EDT 2025 Sat Nov 29 03:13:49 EST 2025 Tue Nov 18 20:45:17 EST 2025 Wed Aug 27 02:14:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-2e20341b4e9e2a3e4381be64587cf6f1f76fa54292fb8e4f478c2504042a76d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0113-3430 0000-0003-4346-9565 0000-0001-7835-9871 |
| PQID | 2719554188 |
| PQPubID | 85418 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2021_3139437 ieee_primary_9665768 proquest_journals_2719554188 crossref_citationtrail_10_1109_TEVC_2021_3139437 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref58 ref53 Yuan (ref128) 2017 ref52 ref55 ref54 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref39 ref38 ref24 Xu (ref14) 2021; 9 ref23 Tam (ref95) 2021; 576 ref26 ref25 ref20 ref22 Chen (ref8) 2021 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 Hoffman (ref114) ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 Liang (ref50) 2020 ref60 ref122 ref123 ref62 ref120 ref61 ref121 Da (ref33) 2017 |
| References_xml | – ident: ref72 doi: 10.1007/s12293-021-00331-y – ident: ref20 doi: 10.1109/CEC.2018.8477722 – ident: ref31 doi: 10.24963/ijcai.2018/538 – volume: 576 start-page: 355 year: 2021 ident: ref95 article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.06.056 – ident: ref68 doi: 10.1109/TEVC.2009.2027359 – ident: ref105 doi: 10.5591/978-1-57735-516-8/IJCAI11-259 – ident: ref65 doi: 10.1109/TEVC.2019.2962747 – ident: ref124 doi: 10.1109/TEVC.2019.2894743 – ident: ref101 doi: 10.1109/CEC.2019.8790024 – ident: ref30 doi: 10.1109/TEVC.2019.2926107 – ident: ref73 doi: 10.1109/TENCON.2016.7848632 – ident: ref79 doi: 10.1109/CEC.2019.8790143 – ident: ref125 doi: 10.1109/TEVC.2018.2855411 – ident: ref77 doi: 10.1007/978-3-030-03991-2_66 – ident: ref85 doi: 10.1016/j.knosys.2019.105294 – ident: ref37 doi: 10.1609/aaai.v33i01.33014295 – ident: ref120 doi: 10.1109/TCYB.2021.3052509 – ident: ref55 doi: 10.1109/TCYB.2020.3036393 – ident: ref78 doi: 10.1109/MCI.2021.3108310 – ident: ref118 doi: 10.1109/TCYB.2020.2989465 – year: 2017 ident: ref128 article-title: Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results publication-title: arXiv:1706.02766 – ident: ref4 doi: 10.1109/TEVC.2020.3048174 – year: 2020 ident: ref50 article-title: A two stage adaptive knowledge transfer evolutionary multi-tasking based on population distribution for multi/many-objective optimization publication-title: arXiv:2001.00810 – ident: ref66 doi: 10.1016/j.ins.2019.09.058 – ident: ref10 doi: 10.1109/TETCI.2017.2769104 – ident: ref60 doi: 10.1109/TCYB.2020.2981733 – ident: ref63 doi: 10.1109/TCYB.2020.2969025 – ident: ref88 doi: 10.1109/CEC48606.2020.9185667 – volume: 9 start-page: 864 issue: 8 year: 2021 ident: ref14 article-title: Multi-task optimization and multi-task evolutionary computation in the past five years: A brief review publication-title: Mathematics doi: 10.3390/math9080864 – ident: ref98 doi: 10.1109/TEVC.2020.2991717 – ident: ref17 doi: 10.1109/TETCI.2019.2916051 – ident: ref2 doi: 10.1109/TEVC.2021.3051608 – ident: ref81 doi: 10.1007/978-3-319-68759-9_38 – ident: ref25 doi: 10.2991/ijcis.d.191004.001 – ident: ref27 doi: 10.1007/BFb0029746 – ident: ref70 doi: 10.1109/CEC.2016.7743992 – ident: ref21 doi: 10.1109/TEVC.2019.2893614 – ident: ref110 doi: 10.1109/CVPR.2017.328 – ident: ref24 doi: 10.1145/3205651.3208228 – ident: ref53 doi: 10.1007/s12559-020-09777-7 – ident: ref59 doi: 10.1109/TCYB.2016.2554622 – ident: ref38 doi: 10.1109/TEVC.2019.2906927 – ident: ref96 doi: 10.1109/TEVC.2021.3065707 – ident: ref83 doi: 10.1109/TEVC.2021.3107435 – ident: ref100 doi: 10.1016/j.asoc.2007.07.010 – ident: ref58 doi: 10.1109/TCYB.2020.3029176 – ident: ref6 doi: 10.1109/TKDE.2021.3070203 – ident: ref123 doi: 10.1016/j.asoc.2019.105631 – ident: ref112 doi: 10.5555/2946645.2946704 – ident: ref119 doi: 10.1016/j.swevo.2012.05.001 – year: 2021 ident: ref8 article-title: Multi-task learning in natural language processing: An overview publication-title: arXiv:2109.09138 – ident: ref69 doi: 10.1016/j.knosys.2020.106262 – ident: ref22 doi: 10.3389/fnins.2019.01396 – ident: ref89 doi: 10.1109/TEVC.2021.3083362 – ident: ref15 doi: 10.1109/TEVC.2015.2458037 – ident: ref28 doi: 10.1109/TEVC.2018.2868770 – ident: ref32 doi: 10.1145/3205651.3205736 – ident: ref90 doi: 10.1109/TEVC.2017.2657556 – ident: ref19 doi: 10.1109/CEC.2018.8477830 – ident: ref13 doi: 10.1007/s12559-022-10012-8 – ident: ref35 doi: 10.1109/TCYB.2018.2864345 – ident: ref36 doi: 10.1109/TEVC.2017.2783441 – ident: ref111 doi: 10.1109/TPAMI.2021.3057446 – start-page: 1989 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref114 article-title: CyCADA: Cycle-consistent adversarial domain adaptation – ident: ref71 doi: 10.1109/TCYB.2021.3050516 – ident: ref44 doi: 10.1109/TEVC.2019.2904696 – ident: ref51 doi: 10.1109/CEC.2017.7969454 – ident: ref107 doi: 10.1109/CVPR.2012.6247911 – ident: ref7 doi: 10.1109/TPAMI.2021.3054719 – ident: ref48 doi: 10.1016/j.eswa.2019.07.015 – ident: ref42 doi: 10.1145/3377929.3398084 – ident: ref104 doi: 10.1109/ICCV.2013.368 – ident: ref108 doi: 10.1007/s10994-009-5152-4 – year: 2017 ident: ref33 article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results publication-title: arXiv:1706.03470 – ident: ref61 doi: 10.1109/4235.996017 – ident: ref86 doi: 10.1109/SSCI.2016.7850040 – ident: ref67 doi: 10.1109/CEC.2009.4982949 – ident: ref26 doi: 10.1109/CEC48606.2020.9185660 – ident: ref16 doi: 10.1145/3205651.3205761 – ident: ref76 doi: 10.1109/TSMC.2018.2853719 – ident: ref116 doi: 10.1109/TEVC.2020.3004027 – ident: ref56 doi: 10.1109/TCYB.2020.2980888 – ident: ref94 doi: 10.1007/978-3-319-94472-2_10 – ident: ref40 doi: 10.1109/BigData47090.2019.9006274 – ident: ref122 doi: 10.1145/3341069.3342982 – ident: ref45 doi: 10.1109/CEC.2019.8789940 – ident: ref82 doi: 10.1007/978-981-15-3425-6_2 – ident: ref93 doi: 10.1109/TEVC.2021.3086308 – ident: ref117 doi: 10.1109/TCYB.2020.3017017 – ident: ref113 doi: 10.1109/CVPR.2017.316 – ident: ref52 doi: 10.1109/TCYB.2018.2845361 – ident: ref92 doi: 10.1007/s12293-021-00346-5 – ident: ref84 doi: 10.1007/s40747-016-0011-y – ident: ref74 doi: 10.1109/SSCI.2016.7850039 – ident: ref91 doi: 10.1109/TEVC.2021.3097043 – ident: ref103 doi: 10.1109/TKDE.2009.191 – ident: ref99 doi: 10.1109/TEVC.2018.2881955 – ident: ref41 doi: 10.1109/CEC.2019.8790352 – ident: ref121 doi: 10.1007/978-3-030-58115-2_44 – ident: ref34 doi: 10.1109/CEC.2016.7744178 – ident: ref115 doi: 10.1109/CVPR.2019.00283 – ident: ref57 doi: 10.1109/TEVC.2020.3023480 – ident: ref87 doi: 10.1109/SSCI.2016.7850038 – ident: ref126 doi: 10.1109/TEVC.2021.3110506 – ident: ref127 doi: 10.1109/CEC48606.2020.9185907 – ident: ref46 doi: 10.1109/TEVC.2017.2785351 – ident: ref9 doi: 10.1007/978-3-642-12683-3_34 – ident: ref109 doi: 10.1145/3386252 – ident: ref47 doi: 10.1109/CEC.2017.7969596 – ident: ref106 doi: 10.1109/TCYB.2020.3043509 – ident: ref1 doi: 10.1109/TEVC.2020.3044711 – ident: ref11 doi: 10.1007/s12559-016-9395-7 – ident: ref18 doi: 10.1109/TETC.2019.2945775 – ident: ref43 doi: 10.1109/CEC.2019.8790034 – ident: ref5 doi: 10.1109/TSC.2018.2827070 – ident: ref75 doi: 10.1109/TCYB.2019.2955599 – ident: ref62 doi: 10.1109/TEVC.2007.892759 – ident: ref80 doi: 10.1109/TCYB.2020.2974100 – ident: ref97 doi: 10.1145/3377929.3389934 – ident: ref129 doi: 10.1109/TEVC.2019.2955110 – ident: ref39 doi: 10.1109/TEVC.2014.2308294 – ident: ref54 doi: 10.1109/TCYB.2019.2962865 – ident: ref23 doi: 10.1016/j.engappai.2017.05.008 – ident: ref12 doi: 10.1109/MCI.2020.3039066 – ident: ref49 doi: 10.1109/TFUZZ.2020.2968863 – ident: ref3 doi: 10.1109/TCYB.2020.3013271 – ident: ref29 doi: 10.1109/CEC.2019.8789909 – ident: ref102 doi: 10.1109/CEC.2018.8477860 – ident: ref64 doi: 10.1109/CDC.2017.8263646 |
| SSID | ssj0014519 |
| Score | 2.6826053 |
| SecondaryResourceType | review_article |
| Snippet | Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 941 |
| SubjectTerms | Algorithms Costs Evolutionary algorithm (EA) Evolutionary algorithms Evolutionary computation evolutionary multitasking Multitasking Optimization Sociology Statistics Task analysis transfer optimization Trends |
| Title | A Review on Evolutionary Multitask Optimization: Trends and Challenges |
| URI | https://ieeexplore.ieee.org/document/9665768 https://www.proquest.com/docview/2719554188 |
| Volume | 26 |
| WOSCitedRecordID | wos000862385200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6ViqEMFFoQ5SUPTIjQPNzYZkNVKwZUGKDqFjn2ZQFS1JfEv8d23KoSCIktgy1F-Xy-u9zd9wFcKeRMqUQFuZZ5QBU1NqepCDA37hCNi9Nu6n38yEYjPpmI5xrcbGZhENE1n-GtfXS1fD1VS_urrCtsmSDlO7DDGKtmtTYVA0uTUjXTCxMx8omvYEah6L4Mxn2TCcaRSVATQa3k-ZYPcqIqP25i516Gzf-92AHs-zCS3Fe4H0INyxY01xINxFtsC_a2-AZb0LChZcXM3IbhPakKA2RaksHKH0E5-yLVUK6cv5Enc6F8-EnNO1L1zxJZatJfa7DMj-B1OHjpPwReVSFQxrUvghjj0LiunKLAWCZoOb5yTGnPgFakRVSwtJBOxarIOdKCMq4sz5mxbslSLZJjqJfTEk-AaBabjC3qqYRTignntugZSpnohGoZ0Q6E6--cKU85bpUv3jOXeoQis9BkFprMQ9OB682Wz4pv46_FbYvFZqGHoQPnazAzb5HzLGaRMKFTxPnp77vOoBHb0QbXqHcO9cVsiRewq1YGl9mlO2zf02nQWg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gfXgoypWq-bgSVy7j3Q38SalRbFWD7X0tmST2Yu6lb7Af2-STYugCN72kMCyXyYzszPzfQAXElkiZSS9TInMo5Jqm1OUe5hpd4jaxSk79T7oJr0eGw758wpcLWdhENE2n-G1ebS1fDWSM_OrrMFNmSBmq7DepDQMymmtZc3AEKWU7fRcx4xs6GqYgc8b_fagpXPBMNApasSpET3_5oWsrMqPu9g6mM7O_15tF7ZdIEluS-T3YAWLKuwsRBqIs9kqbH1jHKxCxQSXJTfzPnRuSVkaIKOCtOfuEIrxJynHcsXklTzpK-XdzWrekLKDlohCkdZChWVyAC-ddr915zldBU9q5z71Qgx97bwyihxDEaFh-cowpk0NWx7nQZ7EubA6VnnGkOY0YdIwnWn7FkmseHQIa8WowCMgKgl1zhY0ZcQoxYgxU_b0hYhURJUIaA38xXdOpSMdN9oXb6lNPnyeGmhSA03qoKnB5XLLR8m48dfifYPFcqGDoQb1BZips8lJGiYB18FTwNjx77vOYfOu_9hNu_e9hxOohGbQwbbt1WFtOp7hKWzIucZofGYP3hfVtdOh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Evolutionary+Multitask+Optimization%3A+Trends+and+Challenges&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wei%2C+Tingyang&rft.au=Wang%2C+Shibin&rft.au=Zhong%2C+Jinghui&rft.au=Liu%2C+Dong&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=26&rft.issue=5&rft.spage=941&rft.epage=960&rft_id=info:doi/10.1109%2FTEVC.2021.3139437&rft.externalDocID=9665768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |