A Review on Evolutionary Multitask Optimization: Trends and Challenges

Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 26; H. 5; S. 941 - 960
Hauptverfasser: Wei, Tingyang, Wang, Shibin, Zhong, Jinghui, Liu, Dong, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned.
AbstractList Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned.
Author Zhong, Jinghui
Wei, Tingyang
Wang, Shibin
Liu, Dong
Zhang, Jun
Author_xml – sequence: 1
  givenname: Tingyang
  surname: Wei
  fullname: Wei, Tingyang
  email: dusting.way@foxmail.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Shibin
  surname: Wang
  fullname: Wang, Shibin
  email: wangshibin@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 3
  givenname: Jinghui
  orcidid: 0000-0003-0113-3430
  surname: Zhong
  fullname: Zhong, Jinghui
  email: jinghuizhong@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Dong
  orcidid: 0000-0003-4346-9565
  surname: Liu
  fullname: Liu, Dong
  email: liudong@htu.edu.cn
  organization: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: Hanyang University, Ansan, South Korea
BookMark eNp9kEFLAzEQhYNUsK3-APES8Lw1k2Q3ibdSWhUqBanibUm3s5q6zdbNbkV_vbtUPHjwNAPzvnm8NyA9X3ok5BzYCICZq-X0aTLijMNIgDBSqCPSByMhYownvXZn2kRK6ecTMghhwxjIGEyfzMb0AfcOP2jp6XRfFk3tSm-rT3rfFLWrbXiji13ttu7LdpdruqzQrwO1fk0nr7Yo0L9gOCXHuS0Cnv3MIXmcTZeT22i-uLmbjOdRxo2oI46cCQkriQa5FSiFhhUmMtYqy5MccpXkNpbc8HylUeZS6YzHTDLJrUrWRgzJ5eHvrirfGwx1uimbyreWKVdg4liC1q0KDqqsKkOoME93ldu2oVJgaVdX2tWVdnWlP3W1jPrDZG36LnJdWVf8S14cSIeIv04mSWKVaPENUg146g
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s11227_025_07787_6
crossref_primary_10_1109_TETCI_2024_3515013
crossref_primary_10_3390_electronics13234612
crossref_primary_10_7717_peerj_cs_1192
crossref_primary_10_3390_pr13092792
crossref_primary_10_1016_j_swevo_2025_102097
crossref_primary_10_1109_TEVC_2022_3215743
crossref_primary_10_1109_MCI_2023_3277769
crossref_primary_10_1109_TEVC_2023_3259067
crossref_primary_10_1016_j_ress_2023_109807
crossref_primary_10_1109_TCYB_2022_3214825
crossref_primary_10_1080_09540091_2023_2275534
crossref_primary_10_1109_TEVC_2023_3258491
crossref_primary_10_1109_TEVC_2023_3291874
crossref_primary_10_1016_j_ins_2024_121572
crossref_primary_10_1007_s00521_025_11534_6
crossref_primary_10_1016_j_engappai_2023_107463
crossref_primary_10_1016_j_asoc_2024_111605
crossref_primary_10_2118_219732_PA
crossref_primary_10_1016_j_ins_2024_120921
crossref_primary_10_1007_s10586_023_04172_x
crossref_primary_10_1016_j_eswa_2024_125105
crossref_primary_10_1007_s11227_024_06016_w
crossref_primary_10_1080_13658816_2025_2502769
crossref_primary_10_1007_s12293_025_00446_6
crossref_primary_10_1007_s12293_025_00448_4
crossref_primary_10_1109_TEVC_2023_3330265
crossref_primary_10_1016_j_neucom_2025_130332
crossref_primary_10_1109_TCYB_2022_3222101
crossref_primary_10_1109_TEVC_2024_3373131
crossref_primary_10_1007_s40747_024_01489_x
crossref_primary_10_1109_TETCI_2024_3381512
crossref_primary_10_1088_1741_2552_ad7f8e
crossref_primary_10_1109_JSTARS_2022_3226516
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1109_ACCESS_2022_3156944
crossref_primary_10_1016_j_swevo_2024_101823
crossref_primary_10_1109_TEVC_2023_3319566
crossref_primary_10_1109_TETCI_2023_3281876
crossref_primary_10_1016_j_asoc_2024_112568
crossref_primary_10_1016_j_eswa_2023_121600
crossref_primary_10_1109_TETCI_2024_3393368
crossref_primary_10_1016_j_eswa_2025_128874
crossref_primary_10_1016_j_cja_2023_12_027
crossref_primary_10_1016_j_knosys_2025_113241
crossref_primary_10_1109_JIOT_2024_3395296
crossref_primary_10_1016_j_swevo_2024_101663
crossref_primary_10_1109_TEVC_2024_3417325
crossref_primary_10_1109_TSMC_2024_3417230
crossref_primary_10_1109_TETCI_2024_3353615
crossref_primary_10_1109_TII_2025_3567403
crossref_primary_10_1016_j_knosys_2025_113824
crossref_primary_10_1007_s10489_025_06389_2
crossref_primary_10_1109_TAI_2024_3442731
crossref_primary_10_1016_j_asoc_2024_112040
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TEVC_2023_3272663
crossref_primary_10_1007_s10489_022_03695_x
crossref_primary_10_1109_TEVC_2023_3349250
crossref_primary_10_1109_TEVC_2023_3263871
crossref_primary_10_23919_cje_2024_00_287
crossref_primary_10_1016_j_swevo_2024_101813
crossref_primary_10_1016_j_ijforecast_2025_07_002
crossref_primary_10_1007_s11227_024_06592_x
crossref_primary_10_1016_j_watres_2025_124422
crossref_primary_10_1109_TCYB_2022_3165044
crossref_primary_10_1016_j_swevo_2025_101931
crossref_primary_10_1016_j_swevo_2025_102146
crossref_primary_10_1109_TEVC_2024_3358854
crossref_primary_10_1109_TFUZZ_2025_3581421
crossref_primary_10_1016_j_swevo_2024_101570
crossref_primary_10_1109_JIOT_2024_3412777
crossref_primary_10_1109_TEVC_2024_3414442
crossref_primary_10_1109_TEVC_2022_3233409
crossref_primary_10_1109_TEVC_2024_3355781
crossref_primary_10_1109_TSMC_2025_3577732
crossref_primary_10_1016_j_eswa_2025_128614
crossref_primary_10_1109_JIOT_2025_3573710
crossref_primary_10_1007_s12293_025_00464_4
crossref_primary_10_1016_j_neucom_2024_127835
crossref_primary_10_1109_TCCN_2024_3427123
crossref_primary_10_1016_j_jii_2025_100829
crossref_primary_10_1016_j_eswa_2025_129580
crossref_primary_10_1016_j_isatra_2025_08_003
crossref_primary_10_1109_TEVC_2023_3348475
crossref_primary_10_1109_TEVC_2024_3353319
crossref_primary_10_1109_TR_2023_3324701
crossref_primary_10_1007_s40747_023_01109_0
crossref_primary_10_1016_j_compeleceng_2025_110640
crossref_primary_10_1016_j_swevo_2024_101569
crossref_primary_10_1016_j_swevo_2022_101203
crossref_primary_10_1016_j_knosys_2025_114076
crossref_primary_10_1109_TEVC_2023_3323877
Cites_doi 10.1007/s12293-021-00331-y
10.1109/CEC.2018.8477722
10.24963/ijcai.2018/538
10.1016/j.ins.2021.06.056
10.1109/TEVC.2009.2027359
10.5591/978-1-57735-516-8/IJCAI11-259
10.1109/TEVC.2019.2962747
10.1109/TEVC.2019.2894743
10.1109/CEC.2019.8790024
10.1109/TEVC.2019.2926107
10.1109/TENCON.2016.7848632
10.1109/CEC.2019.8790143
10.1109/TEVC.2018.2855411
10.1007/978-3-030-03991-2_66
10.1016/j.knosys.2019.105294
10.1609/aaai.v33i01.33014295
10.1109/TCYB.2021.3052509
10.1109/TCYB.2020.3036393
10.1109/MCI.2021.3108310
10.1109/TCYB.2020.2989465
10.1109/TEVC.2020.3048174
10.1016/j.ins.2019.09.058
10.1109/TETCI.2017.2769104
10.1109/TCYB.2020.2981733
10.1109/TCYB.2020.2969025
10.1109/CEC48606.2020.9185667
10.3390/math9080864
10.1109/TEVC.2020.2991717
10.1109/TETCI.2019.2916051
10.1109/TEVC.2021.3051608
10.1007/978-3-319-68759-9_38
10.2991/ijcis.d.191004.001
10.1007/BFb0029746
10.1109/CEC.2016.7743992
10.1109/TEVC.2019.2893614
10.1109/CVPR.2017.328
10.1145/3205651.3208228
10.1007/s12559-020-09777-7
10.1109/TCYB.2016.2554622
10.1109/TEVC.2019.2906927
10.1109/TEVC.2021.3065707
10.1109/TEVC.2021.3107435
10.1016/j.asoc.2007.07.010
10.1109/TCYB.2020.3029176
10.1109/TKDE.2021.3070203
10.1016/j.asoc.2019.105631
10.5555/2946645.2946704
10.1016/j.swevo.2012.05.001
10.1016/j.knosys.2020.106262
10.3389/fnins.2019.01396
10.1109/TEVC.2021.3083362
10.1109/TEVC.2015.2458037
10.1109/TEVC.2018.2868770
10.1145/3205651.3205736
10.1109/TEVC.2017.2657556
10.1109/CEC.2018.8477830
10.1007/s12559-022-10012-8
10.1109/TCYB.2018.2864345
10.1109/TEVC.2017.2783441
10.1109/TPAMI.2021.3057446
10.1109/TCYB.2021.3050516
10.1109/TEVC.2019.2904696
10.1109/CEC.2017.7969454
10.1109/CVPR.2012.6247911
10.1109/TPAMI.2021.3054719
10.1016/j.eswa.2019.07.015
10.1145/3377929.3398084
10.1109/ICCV.2013.368
10.1007/s10994-009-5152-4
10.1109/4235.996017
10.1109/SSCI.2016.7850040
10.1109/CEC.2009.4982949
10.1109/CEC48606.2020.9185660
10.1145/3205651.3205761
10.1109/TSMC.2018.2853719
10.1109/TEVC.2020.3004027
10.1109/TCYB.2020.2980888
10.1007/978-3-319-94472-2_10
10.1109/BigData47090.2019.9006274
10.1145/3341069.3342982
10.1109/CEC.2019.8789940
10.1007/978-981-15-3425-6_2
10.1109/TEVC.2021.3086308
10.1109/TCYB.2020.3017017
10.1109/CVPR.2017.316
10.1109/TCYB.2018.2845361
10.1007/s12293-021-00346-5
10.1007/s40747-016-0011-y
10.1109/SSCI.2016.7850039
10.1109/TEVC.2021.3097043
10.1109/TKDE.2009.191
10.1109/TEVC.2018.2881955
10.1109/CEC.2019.8790352
10.1007/978-3-030-58115-2_44
10.1109/CEC.2016.7744178
10.1109/CVPR.2019.00283
10.1109/TEVC.2020.3023480
10.1109/SSCI.2016.7850038
10.1109/TEVC.2021.3110506
10.1109/CEC48606.2020.9185907
10.1109/TEVC.2017.2785351
10.1007/978-3-642-12683-3_34
10.1145/3386252
10.1109/CEC.2017.7969596
10.1109/TCYB.2020.3043509
10.1109/TEVC.2020.3044711
10.1007/s12559-016-9395-7
10.1109/TETC.2019.2945775
10.1109/CEC.2019.8790034
10.1109/TSC.2018.2827070
10.1109/TCYB.2019.2955599
10.1109/TEVC.2007.892759
10.1109/TCYB.2020.2974100
10.1145/3377929.3389934
10.1109/TEVC.2019.2955110
10.1109/TEVC.2014.2308294
10.1109/TCYB.2019.2962865
10.1016/j.engappai.2017.05.008
10.1109/MCI.2020.3039066
10.1109/TFUZZ.2020.2968863
10.1109/TCYB.2020.3013271
10.1109/CEC.2019.8789909
10.1109/CEC.2018.8477860
10.1109/CDC.2017.8263646
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2021.3139437
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 960
ExternalDocumentID 10_1109_TEVC_2021_3139437
9665768
Genre orig-research
GrantInformation_xml – fundername: Key Project of Science and Technology Innovation 2030 through the Ministry of Science and Technology of China
  grantid: 2018AAA0101304
– fundername: National Natural Science Foundation of China
  grantid: 62076098
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62072160
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory
  grantid: 2020B121201001
– fundername: Guangdong Natural Science Foundation Research Team
  grantid: 2018B030312003
  funderid: 10.13039/501100003453
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-2e20341b4e9e2a3e4381be64587cf6f1f76fa54292fb8e4f478c2504042a76d93
IEDL.DBID RIE
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 06:53:27 EDT 2025
Sat Nov 29 03:13:49 EST 2025
Tue Nov 18 20:45:17 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2e20341b4e9e2a3e4381be64587cf6f1f76fa54292fb8e4f478c2504042a76d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0113-3430
0000-0003-4346-9565
0000-0001-7835-9871
PQID 2719554188
PQPubID 85418
PageCount 20
ParticipantIDs crossref_primary_10_1109_TEVC_2021_3139437
ieee_primary_9665768
proquest_journals_2719554188
crossref_citationtrail_10_1109_TEVC_2021_3139437
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
Yuan (ref128) 2017
ref52
ref55
ref54
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref39
ref38
ref24
Xu (ref14) 2021; 9
ref23
Tam (ref95) 2021; 576
ref26
ref25
ref20
ref22
Chen (ref8) 2021
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref92
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
Hoffman (ref114)
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
Liang (ref50) 2020
ref60
ref122
ref123
ref62
ref120
ref61
ref121
Da (ref33) 2017
References_xml – ident: ref72
  doi: 10.1007/s12293-021-00331-y
– ident: ref20
  doi: 10.1109/CEC.2018.8477722
– ident: ref31
  doi: 10.24963/ijcai.2018/538
– volume: 576
  start-page: 355
  year: 2021
  ident: ref95
  article-title: Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.06.056
– ident: ref68
  doi: 10.1109/TEVC.2009.2027359
– ident: ref105
  doi: 10.5591/978-1-57735-516-8/IJCAI11-259
– ident: ref65
  doi: 10.1109/TEVC.2019.2962747
– ident: ref124
  doi: 10.1109/TEVC.2019.2894743
– ident: ref101
  doi: 10.1109/CEC.2019.8790024
– ident: ref30
  doi: 10.1109/TEVC.2019.2926107
– ident: ref73
  doi: 10.1109/TENCON.2016.7848632
– ident: ref79
  doi: 10.1109/CEC.2019.8790143
– ident: ref125
  doi: 10.1109/TEVC.2018.2855411
– ident: ref77
  doi: 10.1007/978-3-030-03991-2_66
– ident: ref85
  doi: 10.1016/j.knosys.2019.105294
– ident: ref37
  doi: 10.1609/aaai.v33i01.33014295
– ident: ref120
  doi: 10.1109/TCYB.2021.3052509
– ident: ref55
  doi: 10.1109/TCYB.2020.3036393
– ident: ref78
  doi: 10.1109/MCI.2021.3108310
– ident: ref118
  doi: 10.1109/TCYB.2020.2989465
– year: 2017
  ident: ref128
  article-title: Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results
  publication-title: arXiv:1706.02766
– ident: ref4
  doi: 10.1109/TEVC.2020.3048174
– year: 2020
  ident: ref50
  article-title: A two stage adaptive knowledge transfer evolutionary multi-tasking based on population distribution for multi/many-objective optimization
  publication-title: arXiv:2001.00810
– ident: ref66
  doi: 10.1016/j.ins.2019.09.058
– ident: ref10
  doi: 10.1109/TETCI.2017.2769104
– ident: ref60
  doi: 10.1109/TCYB.2020.2981733
– ident: ref63
  doi: 10.1109/TCYB.2020.2969025
– ident: ref88
  doi: 10.1109/CEC48606.2020.9185667
– volume: 9
  start-page: 864
  issue: 8
  year: 2021
  ident: ref14
  article-title: Multi-task optimization and multi-task evolutionary computation in the past five years: A brief review
  publication-title: Mathematics
  doi: 10.3390/math9080864
– ident: ref98
  doi: 10.1109/TEVC.2020.2991717
– ident: ref17
  doi: 10.1109/TETCI.2019.2916051
– ident: ref2
  doi: 10.1109/TEVC.2021.3051608
– ident: ref81
  doi: 10.1007/978-3-319-68759-9_38
– ident: ref25
  doi: 10.2991/ijcis.d.191004.001
– ident: ref27
  doi: 10.1007/BFb0029746
– ident: ref70
  doi: 10.1109/CEC.2016.7743992
– ident: ref21
  doi: 10.1109/TEVC.2019.2893614
– ident: ref110
  doi: 10.1109/CVPR.2017.328
– ident: ref24
  doi: 10.1145/3205651.3208228
– ident: ref53
  doi: 10.1007/s12559-020-09777-7
– ident: ref59
  doi: 10.1109/TCYB.2016.2554622
– ident: ref38
  doi: 10.1109/TEVC.2019.2906927
– ident: ref96
  doi: 10.1109/TEVC.2021.3065707
– ident: ref83
  doi: 10.1109/TEVC.2021.3107435
– ident: ref100
  doi: 10.1016/j.asoc.2007.07.010
– ident: ref58
  doi: 10.1109/TCYB.2020.3029176
– ident: ref6
  doi: 10.1109/TKDE.2021.3070203
– ident: ref123
  doi: 10.1016/j.asoc.2019.105631
– ident: ref112
  doi: 10.5555/2946645.2946704
– ident: ref119
  doi: 10.1016/j.swevo.2012.05.001
– year: 2021
  ident: ref8
  article-title: Multi-task learning in natural language processing: An overview
  publication-title: arXiv:2109.09138
– ident: ref69
  doi: 10.1016/j.knosys.2020.106262
– ident: ref22
  doi: 10.3389/fnins.2019.01396
– ident: ref89
  doi: 10.1109/TEVC.2021.3083362
– ident: ref15
  doi: 10.1109/TEVC.2015.2458037
– ident: ref28
  doi: 10.1109/TEVC.2018.2868770
– ident: ref32
  doi: 10.1145/3205651.3205736
– ident: ref90
  doi: 10.1109/TEVC.2017.2657556
– ident: ref19
  doi: 10.1109/CEC.2018.8477830
– ident: ref13
  doi: 10.1007/s12559-022-10012-8
– ident: ref35
  doi: 10.1109/TCYB.2018.2864345
– ident: ref36
  doi: 10.1109/TEVC.2017.2783441
– ident: ref111
  doi: 10.1109/TPAMI.2021.3057446
– start-page: 1989
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref114
  article-title: CyCADA: Cycle-consistent adversarial domain adaptation
– ident: ref71
  doi: 10.1109/TCYB.2021.3050516
– ident: ref44
  doi: 10.1109/TEVC.2019.2904696
– ident: ref51
  doi: 10.1109/CEC.2017.7969454
– ident: ref107
  doi: 10.1109/CVPR.2012.6247911
– ident: ref7
  doi: 10.1109/TPAMI.2021.3054719
– ident: ref48
  doi: 10.1016/j.eswa.2019.07.015
– ident: ref42
  doi: 10.1145/3377929.3398084
– ident: ref104
  doi: 10.1109/ICCV.2013.368
– ident: ref108
  doi: 10.1007/s10994-009-5152-4
– year: 2017
  ident: ref33
  article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results
  publication-title: arXiv:1706.03470
– ident: ref61
  doi: 10.1109/4235.996017
– ident: ref86
  doi: 10.1109/SSCI.2016.7850040
– ident: ref67
  doi: 10.1109/CEC.2009.4982949
– ident: ref26
  doi: 10.1109/CEC48606.2020.9185660
– ident: ref16
  doi: 10.1145/3205651.3205761
– ident: ref76
  doi: 10.1109/TSMC.2018.2853719
– ident: ref116
  doi: 10.1109/TEVC.2020.3004027
– ident: ref56
  doi: 10.1109/TCYB.2020.2980888
– ident: ref94
  doi: 10.1007/978-3-319-94472-2_10
– ident: ref40
  doi: 10.1109/BigData47090.2019.9006274
– ident: ref122
  doi: 10.1145/3341069.3342982
– ident: ref45
  doi: 10.1109/CEC.2019.8789940
– ident: ref82
  doi: 10.1007/978-981-15-3425-6_2
– ident: ref93
  doi: 10.1109/TEVC.2021.3086308
– ident: ref117
  doi: 10.1109/TCYB.2020.3017017
– ident: ref113
  doi: 10.1109/CVPR.2017.316
– ident: ref52
  doi: 10.1109/TCYB.2018.2845361
– ident: ref92
  doi: 10.1007/s12293-021-00346-5
– ident: ref84
  doi: 10.1007/s40747-016-0011-y
– ident: ref74
  doi: 10.1109/SSCI.2016.7850039
– ident: ref91
  doi: 10.1109/TEVC.2021.3097043
– ident: ref103
  doi: 10.1109/TKDE.2009.191
– ident: ref99
  doi: 10.1109/TEVC.2018.2881955
– ident: ref41
  doi: 10.1109/CEC.2019.8790352
– ident: ref121
  doi: 10.1007/978-3-030-58115-2_44
– ident: ref34
  doi: 10.1109/CEC.2016.7744178
– ident: ref115
  doi: 10.1109/CVPR.2019.00283
– ident: ref57
  doi: 10.1109/TEVC.2020.3023480
– ident: ref87
  doi: 10.1109/SSCI.2016.7850038
– ident: ref126
  doi: 10.1109/TEVC.2021.3110506
– ident: ref127
  doi: 10.1109/CEC48606.2020.9185907
– ident: ref46
  doi: 10.1109/TEVC.2017.2785351
– ident: ref9
  doi: 10.1007/978-3-642-12683-3_34
– ident: ref109
  doi: 10.1145/3386252
– ident: ref47
  doi: 10.1109/CEC.2017.7969596
– ident: ref106
  doi: 10.1109/TCYB.2020.3043509
– ident: ref1
  doi: 10.1109/TEVC.2020.3044711
– ident: ref11
  doi: 10.1007/s12559-016-9395-7
– ident: ref18
  doi: 10.1109/TETC.2019.2945775
– ident: ref43
  doi: 10.1109/CEC.2019.8790034
– ident: ref5
  doi: 10.1109/TSC.2018.2827070
– ident: ref75
  doi: 10.1109/TCYB.2019.2955599
– ident: ref62
  doi: 10.1109/TEVC.2007.892759
– ident: ref80
  doi: 10.1109/TCYB.2020.2974100
– ident: ref97
  doi: 10.1145/3377929.3389934
– ident: ref129
  doi: 10.1109/TEVC.2019.2955110
– ident: ref39
  doi: 10.1109/TEVC.2014.2308294
– ident: ref54
  doi: 10.1109/TCYB.2019.2962865
– ident: ref23
  doi: 10.1016/j.engappai.2017.05.008
– ident: ref12
  doi: 10.1109/MCI.2020.3039066
– ident: ref49
  doi: 10.1109/TFUZZ.2020.2968863
– ident: ref3
  doi: 10.1109/TCYB.2020.3013271
– ident: ref29
  doi: 10.1109/CEC.2019.8789909
– ident: ref102
  doi: 10.1109/CEC.2018.8477860
– ident: ref64
  doi: 10.1109/CDC.2017.8263646
SSID ssj0014519
Score 2.6826053
SecondaryResourceType review_article
Snippet Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 941
SubjectTerms Algorithms
Costs
Evolutionary algorithm (EA)
Evolutionary algorithms
Evolutionary computation
evolutionary multitasking
Multitasking
Optimization
Sociology
Statistics
Task analysis
transfer optimization
Trends
Title A Review on Evolutionary Multitask Optimization: Trends and Challenges
URI https://ieeexplore.ieee.org/document/9665768
https://www.proquest.com/docview/2719554188
Volume 26
WOSCitedRecordID wos000862385200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6ViqEMFFoQ5SUPTIjQPNzYZkNVKwZUGKDqFjn2ZQFS1JfEv8d23KoSCIktgy1F-Xy-u9zd9wFcKeRMqUQFuZZ5QBU1NqepCDA37hCNi9Nu6n38yEYjPpmI5xrcbGZhENE1n-GtfXS1fD1VS_urrCtsmSDlO7DDGKtmtTYVA0uTUjXTCxMx8omvYEah6L4Mxn2TCcaRSVATQa3k-ZYPcqIqP25i516Gzf-92AHs-zCS3Fe4H0INyxY01xINxFtsC_a2-AZb0LChZcXM3IbhPakKA2RaksHKH0E5-yLVUK6cv5Enc6F8-EnNO1L1zxJZatJfa7DMj-B1OHjpPwReVSFQxrUvghjj0LiunKLAWCZoOb5yTGnPgFakRVSwtJBOxarIOdKCMq4sz5mxbslSLZJjqJfTEk-AaBabjC3qqYRTignntugZSpnohGoZ0Q6E6--cKU85bpUv3jOXeoQis9BkFprMQ9OB682Wz4pv46_FbYvFZqGHoQPnazAzb5HzLGaRMKFTxPnp77vOoBHb0QbXqHcO9cVsiRewq1YGl9mlO2zf02nQWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gfXgoypWq-bgSVy7j3Q38SalRbFWD7X0tmST2Yu6lb7Af2-STYugCN72kMCyXyYzszPzfQAXElkiZSS9TInMo5Jqm1OUe5hpd4jaxSk79T7oJr0eGw758wpcLWdhENE2n-G1ebS1fDWSM_OrrMFNmSBmq7DepDQMymmtZc3AEKWU7fRcx4xs6GqYgc8b_fagpXPBMNApasSpET3_5oWsrMqPu9g6mM7O_15tF7ZdIEluS-T3YAWLKuwsRBqIs9kqbH1jHKxCxQSXJTfzPnRuSVkaIKOCtOfuEIrxJynHcsXklTzpK-XdzWrekLKDlohCkdZChWVyAC-ddr915zldBU9q5z71Qgx97bwyihxDEaFh-cowpk0NWx7nQZ7EubA6VnnGkOY0YdIwnWn7FkmseHQIa8WowCMgKgl1zhY0ZcQoxYgxU_b0hYhURJUIaA38xXdOpSMdN9oXb6lNPnyeGmhSA03qoKnB5XLLR8m48dfifYPFcqGDoQb1BZips8lJGiYB18FTwNjx77vOYfOu_9hNu_e9hxOohGbQwbbt1WFtOp7hKWzIucZofGYP3hfVtdOh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Evolutionary+Multitask+Optimization%3A+Trends+and+Challenges&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wei%2C+Tingyang&rft.au=Wang%2C+Shibin&rft.au=Zhong%2C+Jinghui&rft.au=Liu%2C+Dong&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=26&rft.issue=5&rft.spage=941&rft.epage=960&rft_id=info:doi/10.1109%2FTEVC.2021.3139437&rft.externalDocID=9665768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon