Multiple objects automatic detection of GPR data based on the AC-EWV and Genetic Algorithm

The automatic detection of multiple objects in Ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects, which can reduce the subjectivity of operators and improve the identification accuracy. Based on Frequency-wavenumber (F-K) migration, the a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 61; s. 1
Hlavní autori: Cui, Guangyan, Xu, Jie, Wang, Yanhui, Zhao, Shengsheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The automatic detection of multiple objects in Ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects, which can reduce the subjectivity of operators and improve the identification accuracy. Based on Frequency-wavenumber (F-K) migration, the accurate calculation of electromagnetic wave velocity (AC-EWV) is proposed by searching for the minimum image entropy of migrated radargrams. To avoid global searching, potential positions of object hyperbolas are selected from the binarized radargram through the vertical gray gradient searching, then the sub_window is extracted with the potential position as the center. The best fitting hyperbola is detected with the genetic algorithm (GA) in the sub_window, and objects are finally determined with five hyperbolic matching criteria and the auto-categorization. This technique is verified with the simulated and measured GPR data about rebars, pipelines, and voids, and results demonstrate that it achieves the average correct rate, average missed rate, and the average misjudged rate is 98.46 %, 1.33%, and 0.36% respectively, and the average correct rate for GPR data of the double-layer rebars is 91.67%.
AbstractList The automatic detection of multiple objects in Ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects, which can reduce the subjectivity of operators and improve the identification accuracy. Based on Frequency-wavenumber (F-K) migration, the accurate calculation of electromagnetic wave velocity (AC-EWV) is proposed by searching for the minimum image entropy of migrated radargrams. To avoid global searching, potential positions of object hyperbolas are selected from the binarized radargram through the vertical gray gradient searching, then the sub_window is extracted with the potential position as the center. The best fitting hyperbola is detected with the genetic algorithm (GA) in the sub_window, and objects are finally determined with five hyperbolic matching criteria and the auto-categorization. This technique is verified with the simulated and measured GPR data about rebars, pipelines, and voids, and results demonstrate that it achieves the average correct rate, average missed rate, and the average misjudged rate is 98.46 %, 1.33%, and 0.36% respectively, and the average correct rate for GPR data of the double-layer rebars is 91.67%.
The automatic detection of multiple objects in ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects, which can reduce the subjectivity of operators and improve identification accuracy. Based on Frequency-wavenumber (F-K) migration, the accurate calculation of electromagnetic wave velocity (AC-EWV) is proposed by searching for the minimum image entropy of migrated radargrams. To avoid global searching, potential positions of object hyperbolas are selected from the binarized radargram through the vertical gray gradient searching, then the sub_window is extracted with the potential position as the center. The best fitting hyperbola is detected with the genetic algorithm (GA) in the sub_window, and objects are finally determined with five hyperbolic matching criteria and the auto-categorization. This technique is verified with the simulated and measured GPR data about rebars, pipelines, and voids, and results demonstrate that it achieves the average correct rate, average missed rate, and the average misjudged rate is 98.46%, 1.33%, and 0.36%, respectively, and the average correct rate for GPR data of the double-layer rebars is 91.67%.
Author Cui, Guangyan
Xu, Jie
Zhao, Shengsheng
Wang, Yanhui
Author_xml – sequence: 1
  givenname: Guangyan
  orcidid: 0000-0003-2251-2616
  surname: Cui
  fullname: Cui, Guangyan
  organization: School of Traffic and Transportation, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
  organization: School of Traffic and Transportation, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Yanhui
  orcidid: 0000-0002-2405-7306
  surname: Wang
  fullname: Wang, Yanhui
  organization: School of Traffic and Transportation, Beijing Research Center of Urban Traffic Information Sensing and Service Technology, Research and Development Center of Transport Industry of Technologies and Equipment of Urban Rail Operation Safety Management, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Shengsheng
  surname: Zhao
  fullname: Zhao, Shengsheng
  organization: School of Traffic and Transportation, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
BookMark eNp9kE1Lw0AQhhdRsK3-APGy4Dl1vzc5llKjUFFqVfASdpOJTUmzNbs5-O9NaPHgwdPAy_vMMM8YnTauAYSuKJlSSpLbdbp6mTLC2JQzFktNT9CIShlHRAlxikaEJipiccLO0dj7LSFUSKpH6OOxq0O1rwE7u4U8eGy64HYmVDkuIPRJ5RrsSpw-r3BhgsHWeChwH4YN4Nk8Wry_YdMUOIUGBmpWf7q2CpvdBTorTe3h8jgn6PVusZ7fR8un9GE-W0Y5S3iImAVibSGsTKBQudGGxbzk1pa6EEZzVlJKGS-4kTpPFC81GSYIq6UtheUTdHPYu2_dVwc-ZFvXtU1_MmNaKUUZVaxv6UMrb533LZRZXgUzfBdaU9UZJdkgMhtEZoPI7CiyJ-kfct9WO9N-_8tcH5gKAH77SRIzIRX_AUUogAQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115379
crossref_primary_10_1016_j_ndteint_2024_103244
crossref_primary_10_1109_TGRS_2023_3295380
crossref_primary_10_1109_TGRS_2024_3416960
Cites_doi 10.1016/j.autcon.2020.103106
10.1016/j.ndteint.2018.04.009
10.1109/CADIAG.2017.8075631
10.1016/S0922-3487(03)23001-X
10.1007/s11770-007-0043-6
10.1016/j.jappgeo.2018.09.038
10.1109/3477.662762
10.1016/j.buildenv.2022.109133
10.1016/j.measurement.2020.108330
10.1016/j.tust.2020.103740
10.1016/j.autcon.2016.03.011
10.1109/IGARSS.2008.4779044
10.1016/j.ndteint.2017.06.002
10.1088/2040-8986/abf891
10.1016/j.autcon.2020.103157
10.1016/j.ndteint.2016.05.002
10.1109/JSEN.2021.3050262
10.1016/s0922-3487(03)23002-1
10.1016/j.tranpol.2006.03.002
10.1016/j.aci.2018.10.001
10.1016/j.autcon.2014.05.004
10.1016/j.measurement.2020.107770
10.1109/IGARSS.2009.5417405
10.1016/j.conbuildmat.2017.02.126
10.1016/j.ndteint.2017.03.005
10.1109/IWAGPR.2017.7996100
10.1007/s11220-018-0209-8
10.1109/TGRS.2018.2799586
10.1016/j.chroma.2007.04.025
10.1016/j.ndteint.2017.04.002
10.1016/j.autcon.2018.03.002
10.1155/2014/280738
10.1016/j.asoc.2019.03.030
10.1016/j.autcon.2020.103186
10.1016/j.jappgeo.2019.103856
10.1016/j.autcon.2019.102839
10.1007/s12517-019-4686-4
10.1016/j.autcon.2011.09.010
10.1016/j.autcon.2021.103830
10.1190/1.1440826
10.1016/j.jappgeo.2020.103958
10.1016/j.autcon.2006.09.004
10.1109/TGRS.2003.813497
10.1016/j.ndteint.2017.07.013
10.1016/j.ndteint.2012.03.001
10.1016/j.autcon.2020.103279
10.1016/j.autcon.2018.02.017
10.1016/j.jappgeo.2021.104477
10.3390/electronics9111804
10.1109/TGRS.2009.2012701
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3228571
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3228571
9982456
Genre orig-research
GrantInformation_xml – fundername: Beijing Jiaotong University
  grantid: RCS2021ZZ003
  funderid: 10.13039/501100005022
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-2be0bbd4b59ed6ca7a283f3bbf7d4a732f11123d3a57c963f707c96e4b75bf4b3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917301700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:27:23 EDT 2025
Sat Nov 29 02:50:28 EST 2025
Tue Nov 18 21:28:58 EST 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2be0bbd4b59ed6ca7a283f3bbf7d4a732f11123d3a57c963f707c96e4b75bf4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2251-2616
0000-0002-2405-7306
0000-0002-3305-7105
PQID 2766612162
PQPubID 85465
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2022_3228571
proquest_journals_2766612162
ieee_primary_9982456
crossref_primary_10_1109_TGRS_2022_3228571
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
Changfeng (ref44) 2019
ref46
ref45
ref48
ref47
ref42
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Genetic (ref41) 2018; 51
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref19
  doi: 10.1016/j.autcon.2020.103106
– ident: ref16
  doi: 10.1016/j.ndteint.2018.04.009
– ident: ref27
  doi: 10.1109/CADIAG.2017.8075631
– ident: ref50
  doi: 10.1016/S0922-3487(03)23001-X
– ident: ref49
  doi: 10.1007/s11770-007-0043-6
– ident: ref14
  doi: 10.1016/j.jappgeo.2018.09.038
– ident: ref46
  doi: 10.1109/3477.662762
– ident: ref43
  doi: 10.1016/j.buildenv.2022.109133
– ident: ref25
  doi: 10.1016/j.measurement.2020.108330
– ident: ref8
  doi: 10.1016/j.tust.2020.103740
– ident: ref6
  doi: 10.1016/j.autcon.2016.03.011
– ident: ref3
  doi: 10.1109/IGARSS.2008.4779044
– ident: ref28
  doi: 10.1016/j.ndteint.2017.06.002
– ident: ref47
  doi: 10.1088/2040-8986/abf891
– ident: ref10
  doi: 10.1016/j.autcon.2020.103157
– ident: ref13
  doi: 10.1016/j.ndteint.2016.05.002
– volume: 51
  start-page: 187
  issue: 10
  year: 2018
  ident: ref41
  article-title: Classifier design by a multi-objective genetic algorithm GPR classifier design by a algorithm GPR classifier design by a approach GPR classifier design by a multi-objective genetic approach
  publication-title: IFAC-PapersOnLine
– ident: ref33
  doi: 10.1109/JSEN.2021.3050262
– ident: ref52
  doi: 10.1016/s0922-3487(03)23002-1
– ident: ref53
  doi: 10.1016/j.tranpol.2006.03.002
– ident: ref4
  doi: 10.1016/j.aci.2018.10.001
– ident: ref5
  doi: 10.1016/j.autcon.2014.05.004
– ident: ref35
  doi: 10.1016/j.measurement.2020.107770
– ident: ref39
  doi: 10.1109/IGARSS.2009.5417405
– ident: ref20
  doi: 10.1016/j.conbuildmat.2017.02.126
– ident: ref23
  doi: 10.1016/j.ndteint.2017.03.005
– ident: ref34
  doi: 10.1109/IWAGPR.2017.7996100
– ident: ref17
  doi: 10.1007/s11220-018-0209-8
– ident: ref31
  doi: 10.1109/TGRS.2018.2799586
– ident: ref51
  doi: 10.1016/j.chroma.2007.04.025
– ident: ref26
  doi: 10.1016/j.measurement.2020.107770
– ident: ref1
  doi: 10.1016/j.ndteint.2017.04.002
– ident: ref9
  doi: 10.1016/j.autcon.2018.03.002
– ident: ref15
  doi: 10.1155/2014/280738
– start-page: 63
  year: 2019
  ident: ref44
  article-title: Application of GPR to a site investigation involving shallow pipeline and research on GPR signal processing
– ident: ref40
  doi: 10.1016/j.asoc.2019.03.030
– ident: ref21
  doi: 10.1016/j.autcon.2020.103186
– ident: ref30
  doi: 10.1016/j.jappgeo.2019.103856
– ident: ref36
  doi: 10.1016/j.autcon.2019.102839
– ident: ref48
  doi: 10.1007/s12517-019-4686-4
– ident: ref12
  doi: 10.1016/j.autcon.2011.09.010
– ident: ref32
  doi: 10.1016/j.autcon.2021.103830
– ident: ref42
  doi: 10.1190/1.1440826
– ident: ref11
  doi: 10.1016/j.jappgeo.2020.103958
– ident: ref7
  doi: 10.1016/j.autcon.2006.09.004
– ident: ref45
  doi: 10.1109/TGRS.2003.813497
– ident: ref29
  doi: 10.1016/j.ndteint.2017.07.013
– ident: ref24
  doi: 10.1016/j.ndteint.2012.03.001
– ident: ref22
  doi: 10.1016/j.autcon.2020.103279
– ident: ref2
  doi: 10.1016/j.autcon.2018.02.017
– ident: ref37
  doi: 10.1016/j.jappgeo.2021.104477
– ident: ref18
  doi: 10.3390/electronics9111804
– ident: ref38
  doi: 10.1109/TGRS.2009.2012701
SSID ssj0014517
Score 2.450333
Snippet The automatic detection of multiple objects in Ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects,...
The automatic detection of multiple objects in ground penetrating radar (GPR) data is investigated by searching for the reflected hyperbolas of buried objects,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accurate Calculation of Electromagnetic Wave Velocity (AC-EWV)
Algorithms
Detection
Electromagnetic radiation
Electromagnetic scattering
Entropy
F-K migration
Fitting
Genetic algorithm
Genetic algorithms
GPR
Ground penetrating radar
Hyperbolas
Machine learning algorithms
Multiple objects automatic detection
Object recognition
Pipelines
Radar
Rebar
Search problems
Searching
Voids
Wave velocity
Wavelengths
Title Multiple objects automatic detection of GPR data based on the AC-EWV and Genetic Algorithm
URI https://ieeexplore.ieee.org/document/9982456
https://www.proquest.com/docview/2766612162
Volume 61
WOSCitedRecordID wos000917301700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5aUdCDrypWq-TgSUy7m32keyyl6kUp9YmXJU8t6K60W3-_SRqLogieNiwZWPbLvCczAMfcsEwWswxrlkY4lt0UM8EpZoGwiSghIq3dsAl6ddV9eMiGNThd3IVRSrniM9W2S5fLl6WY2VBZx7gGNk9Xhzql6fyu1iJjECehvxqdYuNEEJ_BDIOsc3M-ujaeICFtc3q7CQ2_6SA3VOWHJHbq5Wzjfx-2CevejES9Oe5bUFPFNqx9aS64DSuuuFNMG_B46asGUclt2GWK2KwqXa9WJFXlirEKVGp0PhwhWzKKrG6TyLw05iHq9fHg_g6xQiLbpNpS9V6eysm4en7dgduzwU3_AvuZClgYxV5hwlXAuYx5kimZCkaZsS90xLmmMmY0ItoIPxLJiCVUGObUNLBPFXOacB3zaBeWirJQe4CU2c6NSCCJUHHCs4wJIWSqqLExjeZPmxB8_uVc-Ibjdu7FS-4cjyDLLTC5BSb3wDThZEHyNu-28dfmhkVisdGD0ITWJ5S558dpTqhx00ISpmT_d6oDWLWD5OfBlRYsVZOZOoRl8V6Np5Mjd9Q-AFm20NU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BWQQceCPK0wdOKwyJ48TNsap4rBYqxHYBcYn8BCRIUJvy-7FdU4FASJxiRR4pyud5j2cA9oRlmZzyHBueJZiqVoa5FAzzSLpElJSJMX7YBOt2Wzc3-cUE7I_vwmitffGZPnBLn8tXlRy6UNmhdQ1cnm4SplJKSTS6rTXOGdA0DpejM2zdCBJymHGUH_ZOLv9ZX5CQA3t-WymLP2ghP1blkyz2CuZ44WeftgjzwZBE7RHySzChy2WYe9decBmmfXmnHKzA7XmoG0SVcIGXAeLDuvLdWpHStS_HKlFl0MnFJXJFo8hpN4XsS2sgonYHH11fIV4q5NpUO6r2413Vf6jvn1bh__FRr3OKw1QFLK1qrzEROhJCUZHmWmWSM24tDJMIYZiinCXEWPFHEpXwlEnLnoZF7qmpYKkwVCRr0CirUq8D0na7sEKBpFLTVOQ5l1KqTDNrZVrdnzUhevvLhQwtx93ki8fCux5RXjhgCgdMEYBpwu8xyfOo38Z3m1ccEuONAYQmbL1BWQSOHBSEWUctJnFGNr6m2oWZ0975WXH2p_t3E2bdWPlRqGULGnV_qLfhl3ypHwb9HX_sXgFhlNQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+objects+automatic+detection+of+GPR+data+based+on+the+AC-EWV+and+Genetic+Algorithm&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Cui%2C+Guangyan&rft.au=Xu%2C+Jie&rft.au=Wang%2C+Yanhui&rft.au=Zhao%2C+Shengsheng&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3228571&rft.externalDocID=9982456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon