Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm

Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 24; no. 7; pp. 7564 - 7573
Main Authors: Azad, Utkarsh, Behera, Bikash K., Ahmed, Emad A., Panigrahi, Prasanta K., Farouk, Ahmed
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1524-9050, 1558-0016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, initialization of variational parameters, and problem instance itself.
AbstractList Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, initialization of variational parameters, and problem instance itself.
Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by [Formula Omitted], initialization of variational parameters, and problem instance itself.
Author Behera, Bikash K.
Panigrahi, Prasanta K.
Azad, Utkarsh
Farouk, Ahmed
Ahmed, Emad A.
Author_xml – sequence: 1
  givenname: Utkarsh
  orcidid: 0000-0001-7020-0305
  surname: Azad
  fullname: Azad, Utkarsh
  email: utkarsh.azad@research.iiit.ac.in
  organization: Center for Computational Natural Sciences and Bioinformatics and the Center for Quantum Science and Technology, International Institute of Information Technology, Hyderabad, Telangana, India
– sequence: 2
  givenname: Bikash K.
  surname: Behera
  fullname: Behera, Bikash K.
  email: bikash@bikashsquantum.com
  organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
– sequence: 3
  givenname: Emad A.
  surname: Ahmed
  fullname: Ahmed, Emad A.
  email: emad@svu.edu.eg
  organization: Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt
– sequence: 4
  givenname: Prasanta K.
  orcidid: 0000-0001-5812-0353
  surname: Panigrahi
  fullname: Panigrahi, Prasanta K.
  email: pprasanta@iiserkol.ac.in
  organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
– sequence: 5
  givenname: Ahmed
  orcidid: 0000-0001-8702-7342
  surname: Farouk
  fullname: Farouk, Ahmed
  email: ahmed.farouk@sci.svu.edu.eg
  organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada, Egypt
BookMark eNp9UMtOwkAUnRhMBPQDjJsmrovz6mtJiA8SElDA7WQ6vYUhbadOp0b9elshLly4uo-cc-85Z4QGlakAoWuCJ4Tg5G4z36wnFFM6YSSilJMzNCRBEPsYk3DQ95T7CQ7wBRo1zaHb8oCQIVqtTfGuq533CnutCvBeTOv6eWVNWkDpbZt-em5l5drSm9a1NR-6lA68Ze10qb-k06bypsXOWO325SU6z2XRwNWpjtH24X4ze_IXy8f5bLrwFU2Y82nKmYIMQ5RJlhFQTMWSZCmTeahUTCmonEMax5mKwyiIeCrzzgMmgFmSQsrG6PZ4txP01kLjxMG0tupeChozznBMEt6hoiNKWdM0FnKhtPtR7KzUhSBY9PGJPj7RxydO8XVM8odZ2863_fyXc3PkaAD4xSdRxJOQsG9S-38D
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_cma_2025_117866
crossref_primary_10_3390_electronics11213476
crossref_primary_10_1007_s11227_025_07555_6
crossref_primary_10_1109_MNANO_2023_3249519
crossref_primary_10_1109_TSMC_2024_3428707
crossref_primary_10_1007_s13177_025_00503_x
crossref_primary_10_1002_cae_70004
crossref_primary_10_1016_j_inffus_2025_103043
crossref_primary_10_1007_s11128_025_04776_9
crossref_primary_10_1038_s41598_024_76967_w
crossref_primary_10_1007_s11227_023_05323_y
crossref_primary_10_1007_s11227_025_07394_5
crossref_primary_10_1007_s42484_024_00161_4
crossref_primary_10_1109_ACCESS_2025_3579248
crossref_primary_10_3390_e25081238
crossref_primary_10_23919_CHAIN_2024_000007
crossref_primary_10_20935_AcadQuant7900
crossref_primary_10_1088_1402_4896_ad67b4
crossref_primary_10_1007_s11128_025_04870_y
crossref_primary_10_1007_s00500_025_10540_z
crossref_primary_10_1016_j_istruc_2024_108086
crossref_primary_10_1007_s11128_024_04497_5
crossref_primary_10_3390_quantum7030032
crossref_primary_10_3390_app15052679
crossref_primary_10_1088_2058_9565_ace474
crossref_primary_10_1109_TCE_2024_3476156
crossref_primary_10_1134_S0021364023604256
crossref_primary_10_3390_pr12010180
crossref_primary_10_1007_s42154_024_00310_2
crossref_primary_10_1103_PhysRevApplied_20_034062
crossref_primary_10_1002_qute_202300309
crossref_primary_10_1109_TQE_2023_3303989
crossref_primary_10_1109_TITS_2023_3327157
crossref_primary_10_1016_j_engappai_2025_110431
crossref_primary_10_1364_JOCN_552061
crossref_primary_10_1038_s41534_025_01067_0
crossref_primary_10_1016_j_asoc_2025_113419
crossref_primary_10_1109_TQE_2024_3443660
crossref_primary_10_1016_j_compeleceng_2025_110322
crossref_primary_10_1145_3715751
crossref_primary_10_1002_qute_202400716
crossref_primary_10_1109_TITS_2025_3562860
crossref_primary_10_1109_TC_2025_3586027
Cites_doi 10.1103/PhysRevA.97.022304
10.1016/B0-12-176480-X/00191-1
10.1007/978-1-4471-4285-0
10.1155/2013/874349
10.3389/fict.2019.00013
10.1016/j.cma.2022.114570
10.22331/q-2021-07-01-491
10.1093/comjnl/7.2.155
10.1103/PhysRevA.101.012320
10.1145/3400302.3415745
10.1016/j.camwa.2008.10.045
10.1016/j.cor.2005.03.014
10.1109/JSEN.2021.3114266
10.1007/s11128-020-02692-8
10.1016/S0304-0208(08)73235-3
10.7566/JPSJ.90.032001
10.1002/net.3230110211
10.22331/q-2018-08-06-79
10.1016/j.cma.2020.113609
10.1103/PhysRevA.104.L010401
10.1016/j.ejco.2020.100003
10.1016/S0305-0548(02)00051-5
10.1103/RevModPhys.90.015002
10.1016/j.swevo.2021.100911
10.1109/FOCS.2004.8
10.1016/B978-0-12-818287-1.00008-5
10.1016/j.cam.2015.03.050
10.1038/s41467-018-07090-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3172241
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 7573
ExternalDocumentID 10_1109_TITS_2022_3172241
9774961
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-2b43ced0e7da3d1ec3c8a1db3af6cc822ecf4eb88dc867574baf15201e039beb3
IEDL.DBID RIE
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 30 04:34:39 EST 2025
Sat Nov 29 06:35:00 EST 2025
Tue Nov 18 22:18:25 EST 2025
Wed Aug 27 02:25:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2b43ced0e7da3d1ec3c8a1db3af6cc822ecf4eb88dc867574baf15201e039beb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7020-0305
0000-0001-5812-0353
0000-0001-8702-7342
PQID 2834308194
PQPubID 75735
PageCount 10
ParticipantIDs proquest_journals_2834308194
crossref_citationtrail_10_1109_TITS_2022_3172241
crossref_primary_10_1109_TITS_2022_3172241
ieee_primary_9774961
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
(ref17) 2009; 46
ref37
ref14
abraham (ref11) 2019
ref31
ref33
ref10
ref32
ref2
ref1
buhmann (ref34) 1997
ref39
fletcher (ref36) 1987
ref16
srinivasan (ref18) 2018
alam (ref44) 2019
smith (ref12) 2016
farhi (ref15) 2014
bennett (ref29) 2021; 9
farhi (ref38) 2014
wu (ref24) 2021
ref23
ref45
ref26
ref25
fitzek (ref30) 2021
ref42
ref41
ref43
lucas (ref20) 2014; 2
ref28
ref27
ref8
ref7
ref9
nowbagh (ref19) 2019
ref4
ref3
ref6
ref5
ref40
(ref22) 2018
(ref13) 2021
verdon (ref21) 2017
References_xml – volume: 9
  start-page: 692
  year: 2021
  ident: ref29
  article-title: Quantum walk-based vehicle routing optimisation
  publication-title: Frontiers in Physiology
– year: 2021
  ident: ref13
  publication-title: Cirq
– ident: ref37
  doi: 10.1103/PhysRevA.97.022304
– ident: ref1
  doi: 10.1016/B0-12-176480-X/00191-1
– ident: ref33
  doi: 10.1007/978-1-4471-4285-0
– ident: ref23
  doi: 10.1155/2013/874349
– ident: ref28
  doi: 10.3389/fict.2019.00013
– ident: ref26
  doi: 10.1016/j.cma.2022.114570
– ident: ref41
  doi: 10.22331/q-2021-07-01-491
– year: 2018
  ident: ref22
  publication-title: D-Wave Systems Difference between BQM Ising and QUBO Problems
– ident: ref35
  doi: 10.1093/comjnl/7.2.155
– ident: ref43
  doi: 10.1103/PhysRevA.101.012320
– ident: ref45
  doi: 10.1145/3400302.3415745
– ident: ref8
  doi: 10.1016/j.camwa.2008.10.045
– ident: ref7
  doi: 10.1016/j.cor.2005.03.014
– year: 1997
  ident: ref34
  publication-title: Approximation Theory and Optimization
– volume: 46
  start-page: 157
  year: 2009
  ident: ref17
  article-title: V12. 1: User's manual for CPLEX
  publication-title: International Business Machines Corp
– ident: ref3
  doi: 10.1109/JSEN.2021.3114266
– ident: ref39
  doi: 10.1007/s11128-020-02692-8
– ident: ref5
  doi: 10.1016/S0304-0208(08)73235-3
– ident: ref16
  doi: 10.7566/JPSJ.90.032001
– ident: ref4
  doi: 10.1002/net.3230110211
– ident: ref14
  doi: 10.22331/q-2018-08-06-79
– ident: ref27
  doi: 10.1016/j.cma.2020.113609
– year: 2016
  ident: ref12
  article-title: A practical quantum instruction set architecture
  publication-title: arXiv 1608 03355
– year: 2018
  ident: ref18
  article-title: Efficient quantum algorithm for solving travelling salesman problem: An IBM quantum experience
  publication-title: arXiv 1805 10928
– year: 2021
  ident: ref30
  article-title: Applying quantum approximate optimization to the heterogeneous vehicle routing problem
  publication-title: arXiv 2110 06799
– year: 2014
  ident: ref38
  article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem
  publication-title: arXiv 1412 6062
– volume: 2
  year: 2014
  ident: ref20
  article-title: Ising formulations of many NP problems
  publication-title: Frontiers in Physiology
– year: 2019
  ident: ref19
  article-title: A quantum approach for solving vehicle routing problem: An IBM quantum experience
– year: 2019
  ident: ref11
  article-title: Qiskit: An open-source framework for quantum computing
– ident: ref42
  doi: 10.1103/PhysRevA.104.L010401
– year: 2014
  ident: ref15
  article-title: A quantum approximate optimization algorithm
  publication-title: arXiv 1411 4028
– ident: ref6
  doi: 10.1016/j.ejco.2020.100003
– year: 1987
  ident: ref36
  publication-title: Practical Methods of Optimization?Vol 2
– ident: ref10
  doi: 10.1016/S0305-0548(02)00051-5
– ident: ref31
  doi: 10.1103/RevModPhys.90.015002
– year: 2017
  ident: ref21
  article-title: A quantum algorithm to train neural networks using low-depth circuits
  publication-title: arXiv 1712 05304
– ident: ref9
  doi: 10.1016/j.swevo.2021.100911
– ident: ref32
  doi: 10.1109/FOCS.2004.8
– ident: ref2
  doi: 10.1016/B978-0-12-818287-1.00008-5
– year: 2021
  ident: ref24
  article-title: Learning improvement heuristics for solving routing problems
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref25
  doi: 10.1016/j.cam.2015.03.050
– ident: ref40
  doi: 10.1038/s41467-018-07090-4
– year: 2019
  ident: ref44
  article-title: Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits
  publication-title: arXiv 1907 09631
SSID ssj0014511
Score 2.6319375
Snippet Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7564
SubjectTerms Algorithms
Approximation algorithms
combinatorial optimization
Critical components
Industrial applications
Industry 4.0
Intelligent transportation systems
Ising model
Optimization
Optimization algorithms
Program processors
quantum approximate algorithms
Quantum computing
Qubit
Qubits (quantum computing)
Routing
Supply chains
Traffic management
variational quantum algorithms
Vehicle routing
Vehicle routing problem
Title Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9774961
https://www.proquest.com/docview/2834308194
Volume 24
WOSCitedRecordID wos000799575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDJzE2yW66ybGIRS-10iq9hX1MtNCHtKn4893ZpEVRBG8JzEKY2czMtzvzDSEXTIgAuK891YqMx0OVeZKF4EUyttERFJeRccMmRLcbD4dJr0Ku1r0wAOCKz-AaH91dvpnpJR6VNTFXSRDrbAghil6t9Y0B8mw5btSQe4kfrW4wAz9pDu4HfYsEw9ACVIEh61sMckNVfnhiF146u__7sD2yU6aRtF3YfZ9UYHpAtr-QC9ZIrz8b42kBfYZXFKJY_IPvvWKGDHXVAvRxaXW7nNA2kot_jGwCC_TB-pFJ2aBJ2-OX2XyUv04OyVPndnBz55XzEzxtg3juhYozDcYHYSQzAWimYxkYxWTW0tpmBqAzDiqOjY4tbhBcyczqzw_AZ4myKPuIVKezKRwTGivJA-sKkV2PG5OoTEowMZMMIMq4rhN_pdFUl-TiOONinDqQ4ScpGiFFI6SlEerkcr3krWDW-Eu4hlpfC5YKr5PGymxp-e8tUpswcYaZDj_5fdUp2cKh8UXRbYNU8_kSzsimfs9Hi_m521afkkHNSA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBt1itugdPYjTJbkxyLKIoaq1YxVvYx8QW-pDaij_fnU1aFEXwlsAshJnNzHy7M98AHPA4DlD42lOnkfFEqHJP8hC9SCY2OqISMjJu2ETcaCTPz2mzAkfTXhhEdMVneEyP7i7fDPSYjspOKFdJCevMRkKEQdGtNb0zIKYtx44aCi_1o8kdZuCnJ62r1oPFgmFoIWpMQetbFHJjVX74YhdgLpb_92krsFQmkqxeWH4VKthfg8Uv9ILr0HwYdOm8gD1hm4QYlf_Qe7OYIsNcvQC7H1vtjnusTvTiHx2bwiK7s56kV7Zosnr3ZTDsjNq9DXi8OG-dXXrlBAVP2zA-8kIluEbjY2wkNwFqrhMZGMVlfqq1zQ1Q5wJVkhidWOQQCyVzqz8_QJ-nyuLsTZjpD_q4BSxRUgTWGRK_njAmVbmUaBIuOWKUC10Ff6LRTJf04jTlops5mOGnGRkhIyNkpRGqcDhd8lpwa_wlvE5anwqWCq9CbWK2rPz73jKbMglOuY7Y_n3VPsxftm5vspurxvUOLNAI-aIEtwYzo-EYd2FOv486b8M9t8U-AWZ70I8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Vehicle+Routing+Problem+Using+Quantum+Approximate+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Azad%2C+Utkarsh&rft.au=Behera%2C+Bikash+K.&rft.au=Ahmed%2C+Emad+A.&rft.au=Panigrahi%2C+Prasanta+K.&rft.date=2023-07-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=7&rft.spage=7564&rft.epage=7573&rft_id=info:doi/10.1109%2FTITS.2022.3172241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3172241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon