Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm
Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set o...
Saved in:
| Published in: | IEEE transactions on intelligent transportation systems Vol. 24; no. 7; pp. 7564 - 7573 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1524-9050, 1558-0016 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, initialization of variational parameters, and problem instance itself. |
|---|---|
| AbstractList | Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, initialization of variational parameters, and problem instance itself. Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of their crucial utilization is in supply-chain management and scheduling for optimally routing transportation of goods by vehicles at a given set of locations. This paper discusses the broader problem of vehicle traffic management, more popularly known as the Vehicle Routing Problem (VRP), and investigates the possible use of near-term quantum devices for solving it. For this purpose, we give the Ising formulation for VRP and some of its constrained variants. Then, we present a detailed procedure to solve VRP by minimizing its corresponding Ising Hamiltonian using a hybrid quantum-classical heuristic called Quantum Approximate Optimization Algorithm (QAOA), implemented on the IBM Qiskit platform. We compare the performance of QAOA with classical solvers such as CPLEX on problem instances of up to 15 qubits. We find that performance of QAOA has a multifaceted dependence on the classical optimization routine used, the depth of the ansatz parameterized by [Formula Omitted], initialization of variational parameters, and problem instance itself. |
| Author | Behera, Bikash K. Panigrahi, Prasanta K. Azad, Utkarsh Farouk, Ahmed Ahmed, Emad A. |
| Author_xml | – sequence: 1 givenname: Utkarsh orcidid: 0000-0001-7020-0305 surname: Azad fullname: Azad, Utkarsh email: utkarsh.azad@research.iiit.ac.in organization: Center for Computational Natural Sciences and Bioinformatics and the Center for Quantum Science and Technology, International Institute of Information Technology, Hyderabad, Telangana, India – sequence: 2 givenname: Bikash K. surname: Behera fullname: Behera, Bikash K. email: bikash@bikashsquantum.com organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India – sequence: 3 givenname: Emad A. surname: Ahmed fullname: Ahmed, Emad A. email: emad@svu.edu.eg organization: Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt – sequence: 4 givenname: Prasanta K. orcidid: 0000-0001-5812-0353 surname: Panigrahi fullname: Panigrahi, Prasanta K. email: pprasanta@iiserkol.ac.in organization: Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India – sequence: 5 givenname: Ahmed orcidid: 0000-0001-8702-7342 surname: Farouk fullname: Farouk, Ahmed email: ahmed.farouk@sci.svu.edu.eg organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada, Egypt |
| BookMark | eNp9UMtOwkAUnRhMBPQDjJsmrovz6mtJiA8SElDA7WQ6vYUhbadOp0b9elshLly4uo-cc-85Z4QGlakAoWuCJ4Tg5G4z36wnFFM6YSSilJMzNCRBEPsYk3DQ95T7CQ7wBRo1zaHb8oCQIVqtTfGuq533CnutCvBeTOv6eWVNWkDpbZt-em5l5drSm9a1NR-6lA68Ze10qb-k06bypsXOWO325SU6z2XRwNWpjtH24X4ze_IXy8f5bLrwFU2Y82nKmYIMQ5RJlhFQTMWSZCmTeahUTCmonEMax5mKwyiIeCrzzgMmgFmSQsrG6PZ4txP01kLjxMG0tupeChozznBMEt6hoiNKWdM0FnKhtPtR7KzUhSBY9PGJPj7RxydO8XVM8odZ2863_fyXc3PkaAD4xSdRxJOQsG9S-38D |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_117866 crossref_primary_10_3390_electronics11213476 crossref_primary_10_1007_s11227_025_07555_6 crossref_primary_10_1109_MNANO_2023_3249519 crossref_primary_10_1109_TSMC_2024_3428707 crossref_primary_10_1007_s13177_025_00503_x crossref_primary_10_1002_cae_70004 crossref_primary_10_1016_j_inffus_2025_103043 crossref_primary_10_1007_s11128_025_04776_9 crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1007_s11227_023_05323_y crossref_primary_10_1007_s11227_025_07394_5 crossref_primary_10_1007_s42484_024_00161_4 crossref_primary_10_1109_ACCESS_2025_3579248 crossref_primary_10_3390_e25081238 crossref_primary_10_23919_CHAIN_2024_000007 crossref_primary_10_20935_AcadQuant7900 crossref_primary_10_1088_1402_4896_ad67b4 crossref_primary_10_1007_s11128_025_04870_y crossref_primary_10_1007_s00500_025_10540_z crossref_primary_10_1016_j_istruc_2024_108086 crossref_primary_10_1007_s11128_024_04497_5 crossref_primary_10_3390_quantum7030032 crossref_primary_10_3390_app15052679 crossref_primary_10_1088_2058_9565_ace474 crossref_primary_10_1109_TCE_2024_3476156 crossref_primary_10_1134_S0021364023604256 crossref_primary_10_3390_pr12010180 crossref_primary_10_1007_s42154_024_00310_2 crossref_primary_10_1103_PhysRevApplied_20_034062 crossref_primary_10_1002_qute_202300309 crossref_primary_10_1109_TQE_2023_3303989 crossref_primary_10_1109_TITS_2023_3327157 crossref_primary_10_1016_j_engappai_2025_110431 crossref_primary_10_1364_JOCN_552061 crossref_primary_10_1038_s41534_025_01067_0 crossref_primary_10_1016_j_asoc_2025_113419 crossref_primary_10_1109_TQE_2024_3443660 crossref_primary_10_1016_j_compeleceng_2025_110322 crossref_primary_10_1145_3715751 crossref_primary_10_1002_qute_202400716 crossref_primary_10_1109_TITS_2025_3562860 crossref_primary_10_1109_TC_2025_3586027 |
| Cites_doi | 10.1103/PhysRevA.97.022304 10.1016/B0-12-176480-X/00191-1 10.1007/978-1-4471-4285-0 10.1155/2013/874349 10.3389/fict.2019.00013 10.1016/j.cma.2022.114570 10.22331/q-2021-07-01-491 10.1093/comjnl/7.2.155 10.1103/PhysRevA.101.012320 10.1145/3400302.3415745 10.1016/j.camwa.2008.10.045 10.1016/j.cor.2005.03.014 10.1109/JSEN.2021.3114266 10.1007/s11128-020-02692-8 10.1016/S0304-0208(08)73235-3 10.7566/JPSJ.90.032001 10.1002/net.3230110211 10.22331/q-2018-08-06-79 10.1016/j.cma.2020.113609 10.1103/PhysRevA.104.L010401 10.1016/j.ejco.2020.100003 10.1016/S0305-0548(02)00051-5 10.1103/RevModPhys.90.015002 10.1016/j.swevo.2021.100911 10.1109/FOCS.2004.8 10.1016/B978-0-12-818287-1.00008-5 10.1016/j.cam.2015.03.050 10.1038/s41467-018-07090-4 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3172241 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 7573 |
| ExternalDocumentID | 10_1109_TITS_2022_3172241 9774961 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-2b43ced0e7da3d1ec3c8a1db3af6cc822ecf4eb88dc867574baf15201e039beb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Nov 30 04:34:39 EST 2025 Sat Nov 29 06:35:00 EST 2025 Tue Nov 18 22:18:25 EST 2025 Wed Aug 27 02:25:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-2b43ced0e7da3d1ec3c8a1db3af6cc822ecf4eb88dc867574baf15201e039beb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7020-0305 0000-0001-5812-0353 0000-0001-8702-7342 |
| PQID | 2834308194 |
| PQPubID | 75735 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2834308194 crossref_citationtrail_10_1109_TITS_2022_3172241 crossref_primary_10_1109_TITS_2022_3172241 ieee_primary_9774961 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 (ref17) 2009; 46 ref37 ref14 abraham (ref11) 2019 ref31 ref33 ref10 ref32 ref2 ref1 buhmann (ref34) 1997 ref39 fletcher (ref36) 1987 ref16 srinivasan (ref18) 2018 alam (ref44) 2019 smith (ref12) 2016 farhi (ref15) 2014 bennett (ref29) 2021; 9 farhi (ref38) 2014 wu (ref24) 2021 ref23 ref45 ref26 ref25 fitzek (ref30) 2021 ref42 ref41 ref43 lucas (ref20) 2014; 2 ref28 ref27 ref8 ref7 ref9 nowbagh (ref19) 2019 ref4 ref3 ref6 ref5 ref40 (ref22) 2018 (ref13) 2021 verdon (ref21) 2017 |
| References_xml | – volume: 9 start-page: 692 year: 2021 ident: ref29 article-title: Quantum walk-based vehicle routing optimisation publication-title: Frontiers in Physiology – year: 2021 ident: ref13 publication-title: Cirq – ident: ref37 doi: 10.1103/PhysRevA.97.022304 – ident: ref1 doi: 10.1016/B0-12-176480-X/00191-1 – ident: ref33 doi: 10.1007/978-1-4471-4285-0 – ident: ref23 doi: 10.1155/2013/874349 – ident: ref28 doi: 10.3389/fict.2019.00013 – ident: ref26 doi: 10.1016/j.cma.2022.114570 – ident: ref41 doi: 10.22331/q-2021-07-01-491 – year: 2018 ident: ref22 publication-title: D-Wave Systems Difference between BQM Ising and QUBO Problems – ident: ref35 doi: 10.1093/comjnl/7.2.155 – ident: ref43 doi: 10.1103/PhysRevA.101.012320 – ident: ref45 doi: 10.1145/3400302.3415745 – ident: ref8 doi: 10.1016/j.camwa.2008.10.045 – ident: ref7 doi: 10.1016/j.cor.2005.03.014 – year: 1997 ident: ref34 publication-title: Approximation Theory and Optimization – volume: 46 start-page: 157 year: 2009 ident: ref17 article-title: V12. 1: User's manual for CPLEX publication-title: International Business Machines Corp – ident: ref3 doi: 10.1109/JSEN.2021.3114266 – ident: ref39 doi: 10.1007/s11128-020-02692-8 – ident: ref5 doi: 10.1016/S0304-0208(08)73235-3 – ident: ref16 doi: 10.7566/JPSJ.90.032001 – ident: ref4 doi: 10.1002/net.3230110211 – ident: ref14 doi: 10.22331/q-2018-08-06-79 – ident: ref27 doi: 10.1016/j.cma.2020.113609 – year: 2016 ident: ref12 article-title: A practical quantum instruction set architecture publication-title: arXiv 1608 03355 – year: 2018 ident: ref18 article-title: Efficient quantum algorithm for solving travelling salesman problem: An IBM quantum experience publication-title: arXiv 1805 10928 – year: 2021 ident: ref30 article-title: Applying quantum approximate optimization to the heterogeneous vehicle routing problem publication-title: arXiv 2110 06799 – year: 2014 ident: ref38 article-title: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem publication-title: arXiv 1412 6062 – volume: 2 year: 2014 ident: ref20 article-title: Ising formulations of many NP problems publication-title: Frontiers in Physiology – year: 2019 ident: ref19 article-title: A quantum approach for solving vehicle routing problem: An IBM quantum experience – year: 2019 ident: ref11 article-title: Qiskit: An open-source framework for quantum computing – ident: ref42 doi: 10.1103/PhysRevA.104.L010401 – year: 2014 ident: ref15 article-title: A quantum approximate optimization algorithm publication-title: arXiv 1411 4028 – ident: ref6 doi: 10.1016/j.ejco.2020.100003 – year: 1987 ident: ref36 publication-title: Practical Methods of Optimization?Vol 2 – ident: ref10 doi: 10.1016/S0305-0548(02)00051-5 – ident: ref31 doi: 10.1103/RevModPhys.90.015002 – year: 2017 ident: ref21 article-title: A quantum algorithm to train neural networks using low-depth circuits publication-title: arXiv 1712 05304 – ident: ref9 doi: 10.1016/j.swevo.2021.100911 – ident: ref32 doi: 10.1109/FOCS.2004.8 – ident: ref2 doi: 10.1016/B978-0-12-818287-1.00008-5 – year: 2021 ident: ref24 article-title: Learning improvement heuristics for solving routing problems publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref25 doi: 10.1016/j.cam.2015.03.050 – ident: ref40 doi: 10.1038/s41467-018-07090-4 – year: 2019 ident: ref44 article-title: Analysis of quantum approximate optimization algorithm under realistic noise in superconducting qubits publication-title: arXiv 1907 09631 |
| SSID | ssj0014511 |
| Score | 2.6319375 |
| Snippet | Intelligent transportation systems (ITS) are a critical component of Industry 4.0 and 5.0, particularly having applications in logistic management. One of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7564 |
| SubjectTerms | Algorithms Approximation algorithms combinatorial optimization Critical components Industrial applications Industry 4.0 Intelligent transportation systems Ising model Optimization Optimization algorithms Program processors quantum approximate algorithms Quantum computing Qubit Qubits (quantum computing) Routing Supply chains Traffic management variational quantum algorithms Vehicle routing Vehicle routing problem |
| Title | Solving Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9774961 https://www.proquest.com/docview/2834308194 |
| Volume | 24 |
| WOSCitedRecordID | wos000799575600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDJzE2yW66ybGIRS-10iq9hX1MtNCHtKn4893ZpEVRBG8JzEKY2czMtzvzDSEXTIgAuK891YqMx0OVeZKF4EUyttERFJeRccMmRLcbD4dJr0Ku1r0wAOCKz-AaH91dvpnpJR6VNTFXSRDrbAghil6t9Y0B8mw5btSQe4kfrW4wAz9pDu4HfYsEw9ACVIEh61sMckNVfnhiF146u__7sD2yU6aRtF3YfZ9UYHpAtr-QC9ZIrz8b42kBfYZXFKJY_IPvvWKGDHXVAvRxaXW7nNA2kot_jGwCC_TB-pFJ2aBJ2-OX2XyUv04OyVPndnBz55XzEzxtg3juhYozDcYHYSQzAWimYxkYxWTW0tpmBqAzDiqOjY4tbhBcyczqzw_AZ4myKPuIVKezKRwTGivJA-sKkV2PG5OoTEowMZMMIMq4rhN_pdFUl-TiOONinDqQ4ScpGiFFI6SlEerkcr3krWDW-Eu4hlpfC5YKr5PGymxp-e8tUpswcYaZDj_5fdUp2cKh8UXRbYNU8_kSzsimfs9Hi_m521afkkHNSA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBt1itugdPYjTJbkxyLKIoaq1YxVvYx8QW-pDaij_fnU1aFEXwlsAshJnNzHy7M98AHPA4DlD42lOnkfFEqHJP8hC9SCY2OqISMjJu2ETcaCTPz2mzAkfTXhhEdMVneEyP7i7fDPSYjspOKFdJCevMRkKEQdGtNb0zIKYtx44aCi_1o8kdZuCnJ62r1oPFgmFoIWpMQetbFHJjVX74YhdgLpb_92krsFQmkqxeWH4VKthfg8Uv9ILr0HwYdOm8gD1hm4QYlf_Qe7OYIsNcvQC7H1vtjnusTvTiHx2bwiK7s56kV7Zosnr3ZTDsjNq9DXi8OG-dXXrlBAVP2zA-8kIluEbjY2wkNwFqrhMZGMVlfqq1zQ1Q5wJVkhidWOQQCyVzqz8_QJ-nyuLsTZjpD_q4BSxRUgTWGRK_njAmVbmUaBIuOWKUC10Ff6LRTJf04jTlops5mOGnGRkhIyNkpRGqcDhd8lpwa_wlvE5anwqWCq9CbWK2rPz73jKbMglOuY7Y_n3VPsxftm5vspurxvUOLNAI-aIEtwYzo-EYd2FOv486b8M9t8U-AWZ70I8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Vehicle+Routing+Problem+Using+Quantum+Approximate+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Azad%2C+Utkarsh&rft.au=Behera%2C+Bikash+K.&rft.au=Ahmed%2C+Emad+A.&rft.au=Panigrahi%2C+Prasanta+K.&rft.date=2023-07-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=7&rft.spage=7564&rft.epage=7573&rft_id=info:doi/10.1109%2FTITS.2022.3172241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3172241 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |