Unsupervised Multimodal Change Detection Based on Structural Relationship Graph Representation Learning

Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications. To address the challenge that multimodal remote sensing images cannot be directly compared due to their modal heterogeneity, we take advantage of tw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 60; p. 1
Main Authors: Chen, Hongruixuan, Yokoya, Naoto, Wu, Chen, Du, Bo
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications. To address the challenge that multimodal remote sensing images cannot be directly compared due to their modal heterogeneity, we take advantage of two types of modality-independent structural relationships in multimodal images. In particular, we present a structural relationship graph representation learning framework for measuring the similarity of the two structural relationships. Firstly, structural graphs are generated from preprocessed multimodal image pairs by means of an object-based image analysis approach. Then, a structural relationship graph convolutional autoencoder (SR-GCAE) is proposed to learn robust and representative features from graphs. Two loss functions aiming at reconstructing vertex information and edge information are presented to make the learned representations applicable for structural relationship similarity measurement. Subsequently, the similarity levels of two structural relationships are calculated from learned graph representations and two difference images are generated based on the similarity levels. After obtaining the difference images, an adaptive fusion strategy is presented to fuse the two difference images. Finally, a morphological filtering-based postprocessing approach is employed to refine the detection results. Experimental results on six datasets with different modal combinations demonstrate the effectiveness of the proposed method.
AbstractList Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications. To address the challenge that multimodal remote sensing images cannot be directly compared due to their modal heterogeneity, we take advantage of two types of modality-independent structural relationships in multimodal images. In particular, we present a structural relationship graph representation learning framework for measuring the similarity of the two structural relationships. Firstly, structural graphs are generated from preprocessed multimodal image pairs by means of an object-based image analysis approach. Then, a structural relationship graph convolutional autoencoder (SR-GCAE) is proposed to learn robust and representative features from graphs. Two loss functions aiming at reconstructing vertex information and edge information are presented to make the learned representations applicable for structural relationship similarity measurement. Subsequently, the similarity levels of two structural relationships are calculated from learned graph representations and two difference images are generated based on the similarity levels. After obtaining the difference images, an adaptive fusion strategy is presented to fuse the two difference images. Finally, a morphological filtering-based postprocessing approach is employed to refine the detection results. Experimental results on six datasets with different modal combinations demonstrate the effectiveness of the proposed method.
Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications. To address the challenge that multimodal remote sensing images cannot be directly compared due to their modal heterogeneity, we take advantage of two types of modality-independent structural relationships in multimodal images. In particular, we present a structural relationship graph representation learning framework for measuring the similarity of the two structural relationships. First, structural graphs are generated from preprocessed multimodal image pairs by means of an object-based image analysis approach. Then, a structural relationship graph convolutional autoencoder (SR-GCAE) is proposed to learn robust and representative features from graphs. Two loss functions aiming at reconstructing vertex information and edge information are presented to make the learned representations applicable for structural relationship similarity measurement. Subsequently, the similarity levels of two structural relationships are calculated from learned graph representations, and two difference images are generated based on the similarity levels. After obtaining the difference images, an adaptive fusion strategy is presented to fuse the two difference images. Finally, a morphological filtering-based postprocessing approach is employed to refine the detection results. Experimental results on six datasets with different modal combinations demonstrate the effectiveness of the proposed method.
Author Chen, Hongruixuan
Yokoya, Naoto
Du, Bo
Wu, Chen
Author_xml – sequence: 1
  givenname: Hongruixuan
  orcidid: 0000-0003-0100-4786
  surname: Chen
  fullname: Chen, Hongruixuan
  organization: Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
– sequence: 2
  givenname: Naoto
  orcidid: 0000-0002-7321-4590
  surname: Yokoya
  fullname: Yokoya, Naoto
  organization: Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
– sequence: 3
  givenname: Chen
  orcidid: 0000-0001-6461-8377
  surname: Wu
  fullname: Wu, Chen
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P.R. China
– sequence: 4
  givenname: Bo
  surname: Du
  fullname: Du, Bo
  organization: School of Computer Science, and Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, P.R. China
BookMark eNp9UMtOwzAQtFCRaAsfgLhE4pxiO65jH6FAQSpC6uMcOc6mdZU6wXaQ-HsSWnHgwGlXO48dzQgNbG0BoWuCJ4RgebeeL1cTiimdJJRKTNMzNCTTqYgxZ2yAhphIHlMh6QUaeb_HmLApSYdou7G-bcB9Gg9F9NZWwRzqQlXRbKfsFqJHCKCDqW30oHpGt6yCa3VoXUdaQqV60O9ME82danbdqXHgwYYfIFqActbY7SU6L1Xl4eo0x2jz_LSevcSL9_nr7H4RayqTEFMlsWI4oVzLkuuSq4IrpjkFoYRMhUgYLyiRQus8x5ywNAFSyoLlwHPFy2SMbo--jas_WvAh29ets93LjKZTkdKEdCZjlB5Z2tXeOygzbY6Bg1OmygjO-lazvtWsbzU7tdopyR9l48xBua9_NTdHjQGAX76UgvEuyzd9s4a5
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3493237
crossref_primary_10_1109_TGRS_2024_3524639
crossref_primary_10_1109_TGRS_2025_3591814
crossref_primary_10_1109_JSTARS_2025_3576127
crossref_primary_10_1109_TGRS_2024_3410389
crossref_primary_10_1109_TGRS_2023_3286440
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_1080_17538947_2025_2503443
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1109_JSTARS_2024_3378348
crossref_primary_10_1109_TGRS_2024_3400215
crossref_primary_10_1080_10095020_2025_2512893
crossref_primary_10_1080_10095020_2024_2446307
crossref_primary_10_1109_TGRS_2024_3455008
crossref_primary_10_1080_01431161_2025_2505257
crossref_primary_10_1111_phor_70021
crossref_primary_10_1109_JSTARS_2024_3427017
crossref_primary_10_1109_LGRS_2023_3309301
crossref_primary_10_3390_rs16040721
crossref_primary_10_1109_TIP_2025_3539461
crossref_primary_10_1109_TGRS_2023_3293143
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_TGRS_2025_3587704
crossref_primary_10_1109_TGRS_2024_3519195
crossref_primary_10_1109_TGRS_2024_3516001
crossref_primary_10_1109_TGRS_2025_3596064
crossref_primary_10_3390_s25123740
crossref_primary_10_1109_TGRS_2024_3480091
crossref_primary_10_1109_JSTARS_2023_3306274
crossref_primary_10_1109_JSTARS_2023_3310208
crossref_primary_10_1109_JSTARS_2024_3461988
crossref_primary_10_1109_TGRS_2023_3293190
crossref_primary_10_1109_TGRS_2023_3339210
crossref_primary_10_1109_TGRS_2025_3604532
crossref_primary_10_1109_TGRS_2025_3539732
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1080_17538947_2025_2528640
crossref_primary_10_1080_10095020_2023_2288179
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1109_TGRS_2023_3330826
crossref_primary_10_1109_JSTARS_2025_3583243
crossref_primary_10_1109_JSTARS_2023_3267137
crossref_primary_10_1109_TGRS_2025_3598588
crossref_primary_10_1117_1_JRS_18_024516
crossref_primary_10_1080_22797254_2024_2372854
crossref_primary_10_1080_22797254_2023_2293163
crossref_primary_10_1109_TGRS_2025_3584073
crossref_primary_10_3390_rs16213979
crossref_primary_10_1080_17538947_2024_2347457
crossref_primary_10_1109_TGRS_2023_3309855
crossref_primary_10_1109_TGRS_2024_3515258
crossref_primary_10_3390_rs16030560
crossref_primary_10_1109_TGRS_2025_3526993
crossref_primary_10_23919_JSEE_2024_000086
crossref_primary_10_1109_TGRS_2024_3456548
crossref_primary_10_1109_TGRS_2024_3490703
crossref_primary_10_1109_LGRS_2025_3575620
Cites_doi 10.1109/TGRS.2019.2901945
10.1109/TGRS.2017.2739800
10.1109/TIP.2017.2784560
10.1109/TGRS.2018.2863224
10.1109/TIP.2019.2933747
10.1109/TGRS.2021.3106381
10.1016/j.isprsjprs.2016.02.013
10.1109/TGRS.2020.3013673
10.1109/TGRS.2014.2321277
10.1109/CVPR.2005.38
10.1109/JSTARS.2019.2953128
10.1109/LGRS.2018.2843385
10.1016/j.patcog.2019.106971
10.1109/LGRS.2018.2868704
10.1109/IPTA.2019.8936127
10.1109/JSTARS.2019.2960518
10.1109/TGRS.2019.2930322
10.1016/j.isprsjprs.2018.09.002
10.1109/ICCV.2019.00612
10.1109/LGRS.2022.3201003
10.1080/01431161.2018.1448481
10.1109/TGRS.2020.2986239
10.1109/TNNLS.2022.3184414
10.1109/LGRS.2019.2892432
10.1109/MGRS.2019.2898520
10.3390/rs13234918
10.1109/TGRS.2018.2886643
10.1016/j.jag.2021.102615
10.1109/JSTARS.2020.2964409
10.1109/TIP.2021.3093766
10.1109/TGRS.2017.2748160
10.1109/TGRS.2009.2038274
10.5772/acrt.02
10.1109/IGARSS46834.2022.9883139
10.1016/j.patcog.2020.107598
10.1016/S0262-8856(03)00137-9
10.1109/Multi-Temp.2019.8866947
10.1137/090773908
10.1016/j.acha.2010.04.005
10.1080/01431168908903939
10.1109/ICCV.2019.00662
10.1109/TIP.2007.901238
10.1109/TGRS.2021.3110998
10.1109/LGRS.2013.2250908
10.1109/36.843009
10.1109/JSTARS.2020.2983993
10.1109/TGRS.2013.2295263
10.1016/j.rse.2017.07.009
10.1016/j.rse.2006.01.013
10.1109/TGRS.2015.2396686
10.1109/79.543975
10.1109/MGRS.2016.2540798
10.1016/j.isprsjprs.2022.01.004
10.1109/TPAMI.2012.120
10.1109/TGRS.2018.2849692
10.1016/j.rse.2021.112589
10.3390/rs12172683
10.1109/TGRS.2022.3168126
10.1109/IJCNN.2014.6889510
10.1109/TGRS.2019.2930348
10.1109/JSTARS.2022.3146167
10.1109/TGRS.2019.2956756
10.1109/LGRS.2020.3037930
10.1109/TGRS.2019.2909781
10.1109/TNNLS.2016.2636227
10.1109/TNNLS.2022.3172183
10.1109/TNNLS.2021.3056238
10.1109/TGRS.2021.3056196
10.1109/TCYB.2021.3086884
10.1109/TGRS.2019.2930682
10.1109/TGRS.2013.2266673
10.1109/LGRS.2016.2611001
10.1109/TSMC.1979.4310076
10.1109/TNNLS.2015.2435783
10.3390/rs10070980
10.1109/TGRS.2020.3011913
10.1109/MGRS.2017.2762307
10.1109/TIP.2011.2170702
10.1109/TGRS.2006.885408
10.1016/j.jag.2021.102503
10.1109/JSTARS.2021.3066508
10.1109/JSTARS.2019.2934602
10.1109/JSTARS.2021.3078437
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3229027
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3229027
9984688
Genre orig-research
GrantInformation_xml – fundername: Japan Science and Technology Agency
  grantid: FOREST under Grant Number JPMJFR206S
  funderid: 10.13039/501100002241
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI under Grant Number 22H03609
  funderid: 10.13039/501100001691
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-2a90a40326c9f6cf6ad6a4c62e8a89788346d2198ccbb061473e1f9d4be6ba6f3
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922341700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:30 EDT 2025
Tue Nov 18 21:25:31 EST 2025
Sat Nov 29 02:50:28 EST 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2a90a40326c9f6cf6ad6a4c62e8a89788346d2198ccbb061473e1f9d4be6ba6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6461-8377
0000-0003-0100-4786
0000-0002-7321-4590
PQID 2758723188
PQPubID 85465
PageCount 1
ParticipantIDs ieee_primary_9984688
crossref_citationtrail_10_1109_TGRS_2022_3229027
crossref_primary_10_1109_TGRS_2022_3229027
proquest_journals_2758723188
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
Wu (ref70)
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
Baatz (ref76)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref2
ref1
ref39
ref38
Velickovic (ref69) 2017
ref71
ref73
ref72
ref24
ref23
ref26
ref25
ref20
ref64
Defferrard (ref68); 29
ref63
ref22
ref66
Kipf (ref67) 2016
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref75
  doi: 10.1109/TGRS.2019.2901945
– ident: ref46
  doi: 10.1109/TGRS.2017.2739800
– ident: ref52
  doi: 10.1109/TIP.2017.2784560
– ident: ref11
  doi: 10.1109/TGRS.2018.2863224
– ident: ref29
  doi: 10.1109/TIP.2019.2933747
– ident: ref22
  doi: 10.1109/TGRS.2021.3106381
– ident: ref44
  doi: 10.1016/j.isprsjprs.2016.02.013
– ident: ref55
  doi: 10.1109/TGRS.2020.3013673
– ident: ref13
  doi: 10.1109/TGRS.2014.2321277
– ident: ref64
  doi: 10.1109/CVPR.2005.38
– ident: ref84
  doi: 10.1109/JSTARS.2019.2953128
– ident: ref48
  doi: 10.1109/LGRS.2018.2843385
– ident: ref79
  doi: 10.1016/j.patcog.2019.106971
– ident: ref38
  doi: 10.1109/LGRS.2018.2868704
– ident: ref39
  doi: 10.1109/IPTA.2019.8936127
– ident: ref27
  doi: 10.1109/JSTARS.2019.2960518
– ident: ref34
  doi: 10.1109/TGRS.2019.2930322
– ident: ref47
  doi: 10.1016/j.isprsjprs.2018.09.002
– ident: ref61
  doi: 10.1109/ICCV.2019.00612
– ident: ref43
  doi: 10.1109/LGRS.2022.3201003
– ident: ref51
  doi: 10.1080/01431161.2018.1448481
– ident: ref54
  doi: 10.1109/TGRS.2020.2986239
– ident: ref85
  doi: 10.1109/TNNLS.2022.3184414
– ident: ref33
  doi: 10.1109/LGRS.2019.2892432
– ident: ref12
  doi: 10.1109/MGRS.2019.2898520
– ident: ref36
  doi: 10.3390/rs13234918
– ident: ref18
  doi: 10.1109/TGRS.2018.2886643
– ident: ref32
  doi: 10.1016/j.jag.2021.102615
– ident: ref49
  doi: 10.1109/JSTARS.2020.2964409
– ident: ref57
  doi: 10.1109/TIP.2021.3093766
– ident: ref80
  doi: 10.1109/TGRS.2017.2748160
– ident: ref3
  doi: 10.1109/TGRS.2009.2038274
– ident: ref83
  doi: 10.5772/acrt.02
– ident: ref7
  doi: 10.1109/IGARSS46834.2022.9883139
– ident: ref56
  doi: 10.1016/j.patcog.2020.107598
– ident: ref73
  doi: 10.1016/S0262-8856(03)00137-9
– start-page: 12
  volume-title: Proc. Beutrage Zum AGIT-Symp.
  ident: ref76
  article-title: Multi resolution segmentation: An optimum approach for high quality multi scale image segmentation
– ident: ref17
  doi: 10.1109/Multi-Temp.2019.8866947
– ident: ref66
  doi: 10.1137/090773908
– year: 2017
  ident: ref69
  article-title: Graph attention networks
  publication-title: arXiv:1710.10903
– ident: ref72
  doi: 10.1016/j.acha.2010.04.005
– ident: ref1
  doi: 10.1080/01431168908903939
– ident: ref71
  doi: 10.1109/ICCV.2019.00662
– ident: ref65
  doi: 10.1109/TIP.2007.901238
– ident: ref86
  doi: 10.1109/TGRS.2021.3110998
– ident: ref35
  doi: 10.1109/LGRS.2013.2250908
– year: 2016
  ident: ref67
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
– ident: ref8
  doi: 10.1109/36.843009
– ident: ref40
  doi: 10.1109/JSTARS.2020.2983993
– start-page: 6861
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref70
  article-title: Simplifying graph convolutional networks
– ident: ref74
  doi: 10.1109/TGRS.2013.2295263
– ident: ref4
  doi: 10.1016/j.rse.2017.07.009
– ident: ref2
  doi: 10.1016/j.rse.2006.01.013
– ident: ref14
  doi: 10.1109/TGRS.2015.2396686
– ident: ref82
  doi: 10.1109/79.543975
– ident: ref59
  doi: 10.1109/MGRS.2016.2540798
– ident: ref30
  doi: 10.1016/j.isprsjprs.2022.01.004
– ident: ref77
  doi: 10.1109/TPAMI.2012.120
– ident: ref15
  doi: 10.1109/TGRS.2018.2849692
– ident: ref21
  doi: 10.1016/j.rse.2021.112589
– ident: ref62
  doi: 10.3390/rs12172683
– ident: ref63
  doi: 10.1109/TGRS.2022.3168126
– ident: ref87
  doi: 10.1109/IJCNN.2014.6889510
– ident: ref53
  doi: 10.1109/TGRS.2019.2930348
– ident: ref28
  doi: 10.1109/JSTARS.2022.3146167
– ident: ref31
  doi: 10.1109/TGRS.2019.2956756
– ident: ref88
  doi: 10.1109/LGRS.2020.3037930
– ident: ref26
  doi: 10.1109/TGRS.2019.2909781
– ident: ref45
  doi: 10.1109/TNNLS.2016.2636227
– volume: 29
  start-page: 3844
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref68
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref41
  doi: 10.1109/TNNLS.2022.3172183
– ident: ref50
  doi: 10.1109/TNNLS.2021.3056238
– ident: ref42
  doi: 10.1109/TGRS.2021.3056196
– ident: ref20
  doi: 10.1109/TCYB.2021.3086884
– ident: ref10
  doi: 10.1109/TGRS.2019.2930682
– ident: ref9
  doi: 10.1109/TGRS.2013.2266673
– ident: ref25
  doi: 10.1109/LGRS.2016.2611001
– ident: ref81
  doi: 10.1109/TSMC.1979.4310076
– ident: ref24
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref5
  doi: 10.3390/rs10070980
– ident: ref19
  doi: 10.1109/TGRS.2020.3011913
– ident: ref60
  doi: 10.1109/MGRS.2017.2762307
– ident: ref23
  doi: 10.1109/TIP.2011.2170702
– ident: ref78
  doi: 10.1109/TGRS.2006.885408
– ident: ref6
  doi: 10.1016/j.jag.2021.102503
– ident: ref16
  doi: 10.1109/JSTARS.2021.3066508
– ident: ref58
  doi: 10.1109/JSTARS.2019.2934602
– ident: ref37
  doi: 10.1109/JSTARS.2021.3078437
SSID ssj0014517
Score 2.614731
Snippet Unsupervised multimodal change detection is a practical and challenging topic that can play an important role in time-sensitive emergency applications. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Change detection
Detection
Feature extraction
graph convolutional autoencoder
graph representation learning
Graph representations
Graphical representations
Graphs
Heterogeneity
Image analysis
Image filters
Image processing
Image sensors
Learning
multimodal remote sensing images
Optical imaging
Optical sensors
Radar polarimetry
Remote sensing
Representation learning
Similarity
structural relationship
Title Unsupervised Multimodal Change Detection Based on Structural Relationship Graph Representation Learning
URI https://ieeexplore.ieee.org/document/9984688
https://www.proquest.com/docview/2758723188
Volume 60
WOSCitedRecordID wos000922341700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50UdCDb3F90YMnsZq-0vToa_W0iA_wVtpkogvaXeyuv99Jmq0LiuAtlCSUfG1mvmTmG4CjJGMYBkr7kcCUCIpkPlk55ask0BGmrMRY2WITab8vnp-zuzk4aXNhENEGn-Gpadq7fDWUE3NUdkbUIOZCzMN8mqZNrlZ7YxAngUuN5j6RiNDdYAYsO3u8uX8gJhiGp5FRNzcFZGZskC2q8mMntualt_q_F1uDFedGeucN7uswh9UGLM-IC27Aog3ulPUmvDxV9WRkNoUalWdTbt-HioY3qQXeFY5tQFblXRSmBzUerKyskeTw2nC518HIuzH61vRo9J21VHlOo_VlC55614-Xt74rsOBLsvJjPywyVsSMPDiZaS41LxQvYslDFIUgeikigo22NCFlWRrqmEYY6EzFJfKy4Drahk41rHAHPKYVxpzYUUJGH0UsONfkuiQ0caBDKbrApkueS6c-bopgvOWWhbAsNyjlBqXcodSF43bIqJHe-KvzpoGl7egQ6cL-FNfc_Zx1HhJHSsmvFWL391F7sGTmbk5a9qFDS44HsCA_x4P649B-d193S9ZA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0tlKrtoS1LUbelbQ6cUAOO4zjOEdoCVekKlV2JW5TYY0Bqsyuy8P2MHRNWalWJmxXZSeSXeObZM28AtrOCIU-MjVOFOREUzWKyciY2WWJTzFmNwvhiE_l4rM7Pi9MBfO5zYRDRB5_hrmv6s3wz0zduq2yPqIGQSq3Ak0wInnTZWv2ZgciSkBwtY6IRPJxhJqzYmxz9OiMuyPlu6vTNXQmZJSvky6r8tRZ7A3P46nGv9hpeBkcy2u-QX4cBNkN4sSQvOISnPrxTtxtwMW3am7lbFlo0kU-6_TMzNLxLLoi-4sKHZDXRQeV6UOPMC8s6UY6oD5i7vJpHR07hmi7NH_KWmiiotF68genht8mX4ziUWIg12flFzKuCVYKRD6cLK7WVlZGV0JKjqhQRTJUScLSoKa3r2pHHPMXEFkbUKOtK2nQTVptZg28hYtagkMSPMjL7qISS0pLzktGNE8u1GgG7n_JSB_1xVwbjd-l5CCtKh1LpUCoDSiPY6YfMO_GN_3XecLD0HQMiI9i6x7UMv2dbcmJJOXm2Sr3796hP8Ox48vOkPPk-_vEenrvndPsuW7BK048fYE3fLq7a64_-G7wDwy7Zhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Multimodal+Change+Detection+Based+on+Structural+Relationship+Graph+Representation+Learning&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chen%2C+Hongruixuan&rft.au=Yokoya%2C+Naoto&rft.au=Wu%2C+Chen&rft.au=Du%2C+Bo&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3229027&rft.externalDocID=9984688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon