A Novel Spatial Sampling Scheme for DOA Estimation With Movable Arbitrary Sparse Arrays
Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom (DOFs) is much larger than that of the number of physical sensors. However, the missing lags in the difference co-array reduce the DOF that is exp...
Uloženo v:
| Vydáno v: | IEEE sensors journal Ročník 22; číslo 11; s. 10974 - 10985 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom (DOFs) is much larger than that of the number of physical sensors. However, the missing lags in the difference co-array reduce the DOF that is expected. Recently, array motion has received considerable attention, since this operation can fill the missing lags, increase the DOF, and enlarge the array aperture without adding extra physical sensors. In this study, we investigate the DOA estimation of array mounted on a moving platform and propose the condition and corresponding spatial sampling scheme that can result in a complete consecutive difference co-array. Specifically, we first explore the general expression of the synthetic array, which is generated by collecting the sampling data of a moving array at different times. After that, the closed-form expression for the difference co-array corresponding to the synthetic array is derived. Thirdly, we introduce the condition that must be satisfied to generate a hole-free difference co-array for movable arbitrary arrays. Then, based on this condition, we develop a non-uniform sampling method that can fill all the missing lags and lead to a fully consecutive difference co-array regardless of the physical geometry, which can therefore improve uniform DOFs (uDOFs). Finally, several classical arrays, including uniform linear array, coprime array, nested array, etc., are adopted to apply the proposed sampling scheme, and the closed-form expressions of the resulting uDOFs are analyzed in detail. Numerical simulations are presented to illustrate the effectiveness and superiority of the proposed sampling scheme in DOA estimation performance. |
|---|---|
| AbstractList | Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom (DOFs) is much larger than that of the number of physical sensors. However, the missing lags in the difference co-array reduce the DOF that is expected. Recently, array motion has received considerable attention, since this operation can fill the missing lags, increase the DOF, and enlarge the array aperture without adding extra physical sensors. In this study, we investigate the DOA estimation of array mounted on a moving platform and propose the condition and corresponding spatial sampling scheme that can result in a complete consecutive difference co-array. Specifically, we first explore the general expression of the synthetic array, which is generated by collecting the sampling data of a moving array at different times. After that, the closed-form expression for the difference co-array corresponding to the synthetic array is derived. Thirdly, we introduce the condition that must be satisfied to generate a hole-free difference co-array for movable arbitrary arrays. Then, based on this condition, we develop a non-uniform sampling method that can fill all the missing lags and lead to a fully consecutive difference co-array regardless of the physical geometry, which can therefore improve uniform DOFs (uDOFs). Finally, several classical arrays, including uniform linear array, coprime array, nested array, etc., are adopted to apply the proposed sampling scheme, and the closed-form expressions of the resulting uDOFs are analyzed in detail. Numerical simulations are presented to illustrate the effectiveness and superiority of the proposed sampling scheme in DOA estimation performance. |
| Author | Zhang, Xiaofei Pan, Jingjing Li, Jianfeng Ma, Penghui |
| Author_xml | – sequence: 1 givenname: Penghui orcidid: 0000-0002-7098-9358 surname: Ma fullname: Ma, Penghui email: penghuima@nuaa.edu.cn organization: Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, and the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Jianfeng orcidid: 0000-0003-4055-7017 surname: Li fullname: Li, Jianfeng email: lijianfeng@nuaa.edu.cn organization: Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, and the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Jingjing orcidid: 0000-0001-7362-0778 surname: Pan fullname: Pan, Jingjing email: jingjingpan@nuaa.edu.cn organization: Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, and the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 4 givenname: Xiaofei orcidid: 0000-0003-1464-1987 surname: Zhang fullname: Zhang, Xiaofei email: zhangxiaofei@nuaa.edu.cn organization: Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, Ministry of Industry and Information Technology, and the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
| BookMark | eNp9kE1PwjAYxxuDiYB-AOOliedhX9auPS6Ib0E4oMFb045ORsY220HCt7cT4sGDp-fJk_9Lnt8A9Kq6sgBcYzTCGMm7l8VkNiKIkBHFXCRUnoE-ZkxEOIlFr9spimKafFyAgfcbhLBMWNIHyxTO6r0t4aLRbaHD1NumLKpPuMjWdmthXjt4P0_hxLfFNkjqCi6Ldg1f6702pYWpM0XrtDt0Cc53B6cP_hKc57r09uo0h-D9YfI2foqm88fncTqNMiJpGxGkkc4IiY1lBmmqmbCUG55YYQRZ4QwzIZlZxZbLILNmFY4x4zSXnLIc0yG4PeY2rv7aWd-qTb1zVahUhCcECYkECip8VGWu9t7ZXDUufOMOCiPV8VMdP9XxUyd-wZP88WRF-wMgvFuU_zpvjs7CWvvbFHhLyhn9BhVGfpM |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_TSP_2024_3438382 crossref_primary_10_1109_TVT_2025_3543865 crossref_primary_10_1016_j_dsp_2024_104514 crossref_primary_10_1016_j_sigpro_2025_110293 crossref_primary_10_3390_drones9080515 crossref_primary_10_1109_TVT_2023_3294605 crossref_primary_10_1109_JSEN_2022_3211024 crossref_primary_10_1109_TVT_2025_3541834 crossref_primary_10_1007_s00034_024_02629_x |
| Cites_doi | 10.1109/OCEANSE.2007.4302342 10.1109/LSP.2019.2894467 10.1109/LSP.2020.2993956 10.1109/ACSSC.2017.8335538 10.1109/AUV.1992.225217 10.1109/TSP.2010.2049264 10.1109/TSP.2015.2393838 10.1121/1.398335 10.1109/TSP.2016.2558159 10.1109/SAM.2014.6882458 10.1109/ICASSP.2019.8682851 10.1121/1.380866 10.1109/PROC.1977.10517 10.1109/TAP.1986.1143830 10.1109/TSP.2014.2314064 10.1109/LSP.2015.2409153 10.1121/1.4788176 10.1109/LSP.2018.2851385 10.1109/TSP.2004.842201 10.1109/48.126955 10.1016/j.sigpro.2020.107654 10.1109/TVT.2019.2925528 10.1109/TAP.2019.2955158 10.1109/TSP.2010.2089682 10.1109/TAP.1968.1139138 10.1109/TAP.2020.3005203 10.1109/LCOMM.2010.102610.101581 10.1109/JSEN.2020.3034761 10.1109/29.32276 10.1109/DSP-SPE.2011.5739227 10.1109/TSP.2019.2899292 10.1109/TSP.2018.2872012 10.1109/TSP.2019.2911261 10.1109/TAES.2012.6237621 10.1109/PROC.1986.13435 10.1029/RS015i006p01163 10.1109/tsp.2021.3083988 10.1109/TVT.2017.2704610 10.1109/LCOMM.2020.3029322 10.1016/j.dsp.2016.07.021 10.1016/j.sigpro.2021.108406 10.1109/TSP.2020.2994514 10.1109/LCOMM.2019.2947585 10.1109/TSP.2016.2558167 10.1109/OCEANSE.2005.1513261 10.1109/JOE.2002.805096 10.1109/TSP.2011.2178410 10.1109/TSP.2017.2736493 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3168739 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 10985 |
| ExternalDocumentID | 10_1109_JSEN_2022_3168739 9759365 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Jiangsu Key Research and Development Project grantid: BE2020101 – fundername: Sonar Technology Key Laboratory (Research on the theory and algorithm of signal processing for two-dimensional underwater acoustics coprime array and the Range estimation and location technology of passive target via multiple array combination) – fundername: National Key Research and Development Project grantid: 2020YFB1807602 – fundername: National Science Foundation of China grantid: 61971217; 61971218; 61631020; 61601167 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210281; BK20200444 funderid: 10.13039/501100004608 – fundername: China Postdoctoral Science Foundation grantid: 2020M681585 funderid: 10.13039/501100002858 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province grantid: KYCX21_0215 – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds grantid: 2020Z013 funderid: 10.13039/501100010242 – fundername: National Natural Science Foundation of China grantid: 62101250 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-20a0ac224be5b0a3a58e36b67e8b82d1c15895bd4e69c22ebd2d14563f9635f13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804789800097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:19:24 EDT 2025 Sat Nov 29 06:39:14 EST 2025 Tue Nov 18 22:06:28 EST 2025 Wed Aug 27 02:24:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-20a0ac224be5b0a3a58e36b67e8b82d1c15895bd4e69c22ebd2d14563f9635f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7362-0778 0000-0003-1464-1987 0000-0002-7098-9358 0000-0003-4055-7017 |
| PQID | 2672089080 |
| PQPubID | 75733 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2022_3168739 ieee_primary_9759365 crossref_primary_10_1109_JSEN_2022_3168739 proquest_journals_2672089080 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref39 doi: 10.1109/OCEANSE.2007.4302342 – ident: ref44 doi: 10.1109/LSP.2019.2894467 – ident: ref47 doi: 10.1109/LSP.2020.2993956 – ident: ref31 doi: 10.1109/ACSSC.2017.8335538 – ident: ref35 doi: 10.1109/AUV.1992.225217 – ident: ref20 doi: 10.1109/TSP.2010.2049264 – ident: ref28 doi: 10.1109/TSP.2015.2393838 – ident: ref37 doi: 10.1121/1.398335 – ident: ref24 doi: 10.1109/TSP.2016.2558159 – ident: ref40 doi: 10.1109/SAM.2014.6882458 – ident: ref43 doi: 10.1109/ICASSP.2019.8682851 – ident: ref32 doi: 10.1121/1.380866 – ident: ref18 doi: 10.1109/PROC.1977.10517 – ident: ref10 doi: 10.1109/TAP.1986.1143830 – ident: ref9 doi: 10.1109/TSP.2014.2314064 – ident: ref11 doi: 10.1109/LSP.2015.2409153 – ident: ref33 doi: 10.1121/1.4788176 – ident: ref15 doi: 10.1109/LSP.2018.2851385 – ident: ref1 doi: 10.1109/TSP.2004.842201 – ident: ref38 doi: 10.1109/48.126955 – ident: ref5 doi: 10.1016/j.sigpro.2020.107654 – ident: ref29 doi: 10.1109/TVT.2019.2925528 – ident: ref8 doi: 10.1109/TAP.2019.2955158 – ident: ref26 doi: 10.1109/TSP.2010.2089682 – ident: ref16 doi: 10.1109/TAP.1968.1139138 – ident: ref6 doi: 10.1109/TAP.2020.3005203 – ident: ref12 doi: 10.1109/LCOMM.2010.102610.101581 – ident: ref48 doi: 10.1109/JSEN.2020.3034761 – ident: ref13 doi: 10.1109/29.32276 – ident: ref27 doi: 10.1109/DSP-SPE.2011.5739227 – ident: ref30 doi: 10.1109/TSP.2019.2899292 – ident: ref4 doi: 10.1109/TSP.2018.2872012 – ident: ref42 doi: 10.1109/TSP.2019.2911261 – ident: ref2 doi: 10.1109/TAES.2012.6237621 – ident: ref19 doi: 10.1109/PROC.1986.13435 – ident: ref17 doi: 10.1029/RS015i006p01163 – ident: ref46 doi: 10.1109/tsp.2021.3083988 – ident: ref7 doi: 10.1109/TVT.2017.2704610 – ident: ref45 doi: 10.1109/LCOMM.2020.3029322 – ident: ref41 doi: 10.1016/j.dsp.2016.07.021 – ident: ref3 doi: 10.1016/j.sigpro.2021.108406 – ident: ref14 doi: 10.1109/TSP.2020.2994514 – ident: ref22 doi: 10.1109/LCOMM.2019.2947585 – ident: ref25 doi: 10.1109/TSP.2016.2558167 – ident: ref34 doi: 10.1109/OCEANSE.2005.1513261 – ident: ref36 doi: 10.1109/JOE.2002.805096 – ident: ref21 doi: 10.1109/TSP.2011.2178410 – ident: ref23 doi: 10.1109/TSP.2017.2736493 |
| SSID | ssj0019757 |
| Score | 2.3938878 |
| Snippet | Sparse arrays have been an important concept in the study of direction of arrival (DOA) estimation since they can obtain the number of degrees of freedom... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10974 |
| SubjectTerms | Apertures array motion Array signal processing Arrays Closed form solutions Degrees of freedom difference co-array Direction of arrival Direction of arrival (DOA) estimation Direction-of-arrival estimation Estimation Exact solutions Linear arrays Mathematical analysis Sampling methods Sensor arrays Sensors uniform degree of freedom (uDOF) |
| Title | A Novel Spatial Sampling Scheme for DOA Estimation With Movable Arbitrary Sparse Arrays |
| URI | https://ieeexplore.ieee.org/document/9759365 https://www.proquest.com/docview/2672089080 |
| Volume | 22 |
| WOSCitedRecordID | wos000804789800097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB7cRVAfvMX1Ig8-iXXTK8fjIisiWoT12LfSpKm7sG5lL9h_76StRVAE30qapKVfJjPTzMwHcO5nOsGFEDhUK-UEjKHMMS9ztHIFS3UgdRHt_nLPo0j0-_JxBS7rXBhjTBF8Zq7sZXGWn-Z6bn-VtSW3_HNhAxqcszJXqz4xwHu8rI1KncDn_eoE06WyfdfrRugJet6VZWnilhf8mw4qSFV-7MSFernZ-t-LbcNmZUaSTon7DqyY8S5sfCsuuAtrFb_5YLkHrx0S5QszIpaBGFcc6SU2knz8RnoI2rshaLoSdBNJFyW-TGYkr8PZgDzkC5tbhQ9SwyJB384wmdqGSbKc7sPzTffp-tapKBUcjXp9hjKR0ESj2lYmVDTxk1AYnynGjVDCS13thkKGKg0Mk9jNqBQb0cbyMxTUMHP9A2iO87E5BIKOZ2Y8jvujUrgLJCLwFJc69QVlaAj4LaBfHznWVb1xS3sxigu_g8rY4hJbXOIKlxZc1EM-ymIbf3Xes0DUHSsMWnDyhWRcieM09hj3qJBoHR_9PuoY1u3cZQzYCTRnk7k5hVW9mA2nk7NipX0Ch4XPGQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50FdQHb3E98-CTWDdN2xyPIiseaxHWY99Kk6a6oLuyF_jvnbR1ERTBt5ImTemXycw0M_MBHAW5SXEhhB41Wnsh5yhznOWe0b7kmQmVKaLdH1sijmWno-5m4GSaC2OtLYLP7Km7LM7ys74Zu19lDSUc_1w0C3NRGDJaZmtNzwzwriiro1IvDESnOsP0qWpct5sx-oKMnTqeJuGYwb9poYJW5cdeXCiYi5X_vdoqLFeGJDkrkV-DGdtbh6Vv5QXXYaFiOH_52ICnMxL3J_aVOA5iXHOknbpY8t4zaSNsb5ag8UrQUSRNlPkynZE8dUcv5LY_cdlVOJHuFin67gmDoWsYpB_DTXi4aN6fX3oVqYJnULOPUCpSmhpU3NpGmqZBGkkbcM2FlVqyzDd-JFWks9Byhd2szrARrawgR1GNcj_Yglqv37PbQND1zC0TuENqjftAKkOmhTJZIClHUyCoA_36yImpKo474ovXpPA8qEocLonDJalwqcPxdMh7WW7jr84bDohpxwqDOux9IZlUAjlMGBeMSoX28c7vow5h4fL-tpW0ruKbXVh085QRYXtQGw3Gdh_mzWTUHQ4OilX3CXhG0mA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Spatial+Sampling+Scheme+for+DOA+Estimation+With+Movable+Arbitrary+Sparse+Arrays&rft.jtitle=IEEE+sensors+journal&rft.au=Ma%2C+Penghui&rft.au=Li%2C+Jianfeng&rft.au=Pan%2C+Jingjing&rft.au=Zhang%2C+Xiaofei&rft.date=2022-06-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=11&rft.spage=10974&rft.epage=10985&rft_id=info:doi/10.1109%2FJSEN.2022.3168739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3168739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |