An Estimation of Distribution Algorithm for Mixed-Variable Newsvendor Problems

As one of the classical problems in the economic market, the newsvendor problem aims to make maximal profit by determining the optimal order quantity of products. However, the previous newsvendor models assume that the selling price of a product is a predefined constant and only regard the order qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 24; H. 3; S. 479 - 493
Hauptverfasser: Wang, Feng, Li, Yixuan, Zhou, Aimin, Tang, Ke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As one of the classical problems in the economic market, the newsvendor problem aims to make maximal profit by determining the optimal order quantity of products. However, the previous newsvendor models assume that the selling price of a product is a predefined constant and only regard the order quantity as a decision variable, which may result in an unreasonable investment decision. In this article, a new newsvendor model is first proposed, which involves of both order quantity and selling price as decision variables. In this way, the newsvendor problem is reformulated as a mixed-variable nonlinear programming problem, rather than an integer linear programming problem as in previous investigations. In order to solve the mixed-variable newsvendor problem, a histogram model-based estimation of distribution algorithm (EDA) called <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> is developed, in which an adaptive-width histogram model is used to deal with the continuous variables and a learning-based histogram model is applied to deal with the discrete variables. The performance of <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> was assessed on a test suite with eight representative instances generated by the orthogonal experiment design method and a real-world instance generated from real market data of Alibaba. The experimental results show that, <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> outperforms not only the state-of-the-art mixed-variable evolutionary algorithms, but also a commercial software, i.e., Lingo.
AbstractList As one of the classical problems in the economic market, the newsvendor problem aims to make maximal profit by determining the optimal order quantity of products. However, the previous newsvendor models assume that the selling price of a product is a predefined constant and only regard the order quantity as a decision variable, which may result in an unreasonable investment decision. In this article, a new newsvendor model is first proposed, which involves of both order quantity and selling price as decision variables. In this way, the newsvendor problem is reformulated as a mixed-variable nonlinear programming problem, rather than an integer linear programming problem as in previous investigations. In order to solve the mixed-variable newsvendor problem, a histogram model-based estimation of distribution algorithm (EDA) called <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> is developed, in which an adaptive-width histogram model is used to deal with the continuous variables and a learning-based histogram model is applied to deal with the discrete variables. The performance of <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> was assessed on a test suite with eight representative instances generated by the orthogonal experiment design method and a real-world instance generated from real market data of Alibaba. The experimental results show that, <inline-formula> <tex-math notation="LaTeX">{\mathrm{ EDA}}_{mvn} </tex-math></inline-formula> outperforms not only the state-of-the-art mixed-variable evolutionary algorithms, but also a commercial software, i.e., Lingo.
As one of the classical problems in the economic market, the newsvendor problem aims to make maximal profit by determining the optimal order quantity of products. However, the previous newsvendor models assume that the selling price of a product is a predefined constant and only regard the order quantity as a decision variable, which may result in an unreasonable investment decision. In this article, a new newsvendor model is first proposed, which involves of both order quantity and selling price as decision variables. In this way, the newsvendor problem is reformulated as a mixed-variable nonlinear programming problem, rather than an integer linear programming problem as in previous investigations. In order to solve the mixed-variable newsvendor problem, a histogram model-based estimation of distribution algorithm (EDA) called [Formula Omitted] is developed, in which an adaptive-width histogram model is used to deal with the continuous variables and a learning-based histogram model is applied to deal with the discrete variables. The performance of [Formula Omitted] was assessed on a test suite with eight representative instances generated by the orthogonal experiment design method and a real-world instance generated from real market data of Alibaba. The experimental results show that, [Formula Omitted] outperforms not only the state-of-the-art mixed-variable evolutionary algorithms, but also a commercial software, i.e., Lingo.
Author Tang, Ke
Li, Yixuan
Zhou, Aimin
Wang, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  email: fengwang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Hubei, China
– sequence: 2
  givenname: Yixuan
  surname: Li
  fullname: Li, Yixuan
  email: liyixuan@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Hubei, China
– sequence: 3
  givenname: Aimin
  orcidid: 0000-0002-4768-5946
  surname: Zhou
  fullname: Zhou, Aimin
  email: amzhou@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 4
  givenname: Ke
  orcidid: 0000-0002-6236-2002
  surname: Tang
  fullname: Tang, Ke
  email: tangk3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kMlOwzAQhi1UJNrCAyAukTineJw4to9VKYtUCodScYscxwZXbVzslOXtcRdx4MBptv-fsb8e6jSu0QidAx4AYHE1G89HA4JBDIjISEHyI9QFkUOKMSk6McdcpIzxlxPUC2GBMeQURBdNh00yDq1dyda6JnEmubah9bba7Orh8tV5276tEuN88mC_dJ3OpbeyWupkqj_Dh27qOHnyLnZW4RQdG7kM-uwQ--j5Zjwb3aWTx9v70XCSqvi8NgWtGKsYVqzitAKqgAqigdeyplrSKsuloaRSBVFCAzOZZAB5UWhTGJFnJuujy_3etXfvGx3acuE2voknS5JjXlCWRV0fsb1KeReC16ZUtt19tPXSLkvA5RZeuYVXbuGVB3jRCX-cax8Z-e9_PRd7j9Va_-o543nGafYD9Vl88g
CODEN ITEVF5
CitedBy_id crossref_primary_10_1002_cpe_6773
crossref_primary_10_1007_s40747_021_00514_7
crossref_primary_10_1016_j_ins_2020_03_064
crossref_primary_10_4018_IJSIR_352060
crossref_primary_10_55195_jscai_1216193
crossref_primary_10_1007_s40747_021_00380_3
crossref_primary_10_1109_TCYB_2021_3064676
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1016_j_eswa_2022_119455
crossref_primary_10_1007_s11356_021_13352_4
crossref_primary_10_1007_s40747_020_00171_2
crossref_primary_10_1016_j_ins_2020_02_034
crossref_primary_10_1016_j_ins_2022_07_016
crossref_primary_10_32604_cmes_2021_017310
crossref_primary_10_1109_TEVC_2021_3139304
crossref_primary_10_1109_TSMC_2024_3519537
crossref_primary_10_1016_j_asoc_2022_109585
crossref_primary_10_1016_j_asoc_2020_106693
crossref_primary_10_7717_peerj_cs_2095
Cites_doi 10.1145/2530540
10.1016/j.ejor.2011.10.053
10.1109/TEVC.2013.2260548
10.1016/j.ins.2018.07.035
10.1057/palgrave.jors.2600952
10.1109/4235.930316
10.1007/s11390-008-9108-0
10.1109/TEVC.2014.2387433
10.1057/palgrave.jors.2600955
10.1080/03052150802582175
10.1016/j.swevo.2014.07.002
10.1016/j.compstruc.2011.08.002
10.1016/j.ejor.2005.11.002
10.1016/j.ijpe.2003.09.004
10.1109/TEVC.2009.2015574
10.1016/j.ejor.2018.02.019
10.1109/TEVC.2010.2058121
10.1016/j.cor.2004.02.002
10.1109/TCYB.2016.2632159
10.1007/s11846-007-0005-7
10.1080/03052150410001704854
10.1007/s11590-017-1215-9
10.1145/2739480.2754740
10.1109/TEVC.2018.2840056
10.1016/j.ejor.2017.08.055
10.1109/TEVC.2014.2382135
10.1109/TEVC.2013.2238240
10.1109/TEVC.2017.2765682
10.1109/TEVC.2017.2782571
10.1016/j.eswa.2009.01.058
10.1162/EVCO_a_00059
10.1109/TEVC.2017.2657787
10.1016/j.ejor.2010.06.024
10.1016/j.ijpe.2008.10.003
10.1016/j.cie.2018.04.040
10.1080/00207543.2018.1480070
10.1109/TEVC.2017.2672689
10.1109/TEVC.2013.2281531
10.1080/00207543.2013.835497
10.1016/j.ejor.2013.01.033
10.1109/TEVC.2017.2742502
10.1007/978-3-642-02568-6_21
10.1109/TEVC.2011.2150753
10.1016/j.compstruc.2009.01.004
10.1016/j.asoc.2010.11.013
10.1109/TEVC.2005.860766
10.1016/j.ins.2018.11.049
10.1016/j.ejor.2015.10.033
10.1287/msom.1120.0379
10.1109/CEC.2016.7744347
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2932624
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Computer Science
EISSN 1941-0026
EndPage 493
ExternalDocumentID 10_1109_TEVC_2019_2932624
8784385
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 61773296; 61673180; 61672478; 61731009
  funderid: 10.13039/501100001809
– fundername: Research Fund for Academic Team of Young Scholars at Wuhan University
  grantid: Whu2016013
  funderid: 10.13039/501100007046
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1ec77b70c7b85b15c1592e18dad5ea5b34af52bc62c9e17f3a711466ef6f943f3
IEDL.DBID RIE
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542951100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Oct 05 00:26:48 EDT 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 22:35:25 EST 2025
Wed Aug 27 02:38:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1ec77b70c7b85b15c1592e18dad5ea5b34af52bc62c9e17f3a711466ef6f943f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6236-2002
0000-0002-4768-5946
PQID 2408657394
PQPubID 85418
PageCount 15
ParticipantIDs proquest_journals_2408657394
crossref_citationtrail_10_1109_TEVC_2019_2932624
crossref_primary_10_1109_TEVC_2019_2932624
ieee_primary_8784385
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref11
ref17
ref16
ref19
ref18
nan (ref41) 2008; 23
ref51
ref50
ref46
ref45
ref48
ref47
ref44
ref43
hongfu (ref52) 2018; 56
ref49
ref8
ref7
ujjwal (ref10) 2019; 478
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
lin (ref36) 2017
jing (ref42) 2009; 215
xin (ref14) 2017
References_xml – ident: ref12
  doi: 10.1145/2530540
– ident: ref7
  doi: 10.1016/j.ejor.2011.10.053
– ident: ref46
  doi: 10.1109/TEVC.2013.2260548
– ident: ref53
  doi: 10.1016/j.ins.2018.07.035
– ident: ref5
  doi: 10.1057/palgrave.jors.2600952
– ident: ref37
  doi: 10.1109/4235.930316
– volume: 23
  start-page: 35
  year: 2008
  ident: ref41
  article-title: Histogram-based estimation of distribution algorithm: A competent method for continuous optimization
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-008-9108-0
– ident: ref48
  doi: 10.1109/TEVC.2014.2387433
– ident: ref9
  doi: 10.1057/palgrave.jors.2600955
– ident: ref39
  doi: 10.1080/03052150802582175
– ident: ref31
  doi: 10.1016/j.swevo.2014.07.002
– ident: ref34
  doi: 10.1016/j.compstruc.2011.08.002
– ident: ref8
  doi: 10.1016/j.ejor.2005.11.002
– ident: ref51
  doi: 10.1016/j.ijpe.2003.09.004
– ident: ref43
  doi: 10.1109/TEVC.2009.2015574
– ident: ref13
  doi: 10.1016/j.ejor.2018.02.019
– ident: ref16
  doi: 10.1109/TEVC.2010.2058121
– ident: ref18
  doi: 10.1016/j.cor.2004.02.002
– ident: ref22
  doi: 10.1109/TCYB.2016.2632159
– ident: ref6
  doi: 10.1007/s11846-007-0005-7
– ident: ref33
  doi: 10.1080/03052150410001704854
– ident: ref20
  doi: 10.1007/s11590-017-1215-9
– ident: ref26
  doi: 10.1145/2739480.2754740
– ident: ref17
  doi: 10.1109/TEVC.2018.2840056
– start-page: 2274
  year: 2017
  ident: ref36
  article-title: Three L-SHADE based algorithms on mixed-variables optimization problems
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref19
  doi: 10.1016/j.ejor.2017.08.055
– ident: ref47
  doi: 10.1109/TEVC.2014.2382135
– ident: ref44
  doi: 10.1109/TEVC.2013.2238240
– ident: ref50
  doi: 10.1109/TEVC.2017.2765682
– ident: ref38
  doi: 10.1109/TEVC.2017.2782571
– ident: ref1
  doi: 10.1016/j.eswa.2009.01.058
– ident: ref25
  doi: 10.1162/EVCO_a_00059
– ident: ref45
  doi: 10.1109/TEVC.2017.2657787
– volume: 215
  start-page: 973
  year: 2009
  ident: ref42
  article-title: $HPBILc$ : A histogram-based EDA for continuous optimization
  publication-title: Appl Math Comput
– ident: ref21
  doi: 10.1016/j.ejor.2010.06.024
– ident: ref24
  doi: 10.1016/j.ijpe.2008.10.003
– ident: ref40
  doi: 10.1016/j.cie.2018.04.040
– volume: 56
  start-page: 6201
  year: 2018
  ident: ref52
  article-title: Coordination of pricing, inventory, and production reliability decisions in deteriorating product supply chains
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2018.1480070
– ident: ref49
  doi: 10.1109/TEVC.2017.2672689
– ident: ref30
  doi: 10.1109/TEVC.2013.2281531
– ident: ref23
  doi: 10.1080/00207543.2013.835497
– ident: ref3
  doi: 10.1016/j.ejor.2013.01.033
– ident: ref4
  doi: 10.1109/TEVC.2017.2742502
– ident: ref29
  doi: 10.1007/978-3-642-02568-6_21
– ident: ref35
  doi: 10.1109/TEVC.2011.2150753
– ident: ref28
  doi: 10.1016/j.compstruc.2009.01.004
– ident: ref32
  doi: 10.1016/j.asoc.2010.11.013
– ident: ref15
  doi: 10.1109/TEVC.2005.860766
– volume: 478
  start-page: 595
  year: 2019
  ident: ref10
  article-title: Multiple criteria risk averse model for multi-product newsvendor problem using conditional value at risk constraints
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.11.049
– ident: ref11
  doi: 10.1016/j.ejor.2015.10.033
– ident: ref2
  doi: 10.1287/msom.1120.0379
– year: 2017
  ident: ref14
  publication-title: On the Performance of Tailored Base-Surge Policies Theory and Application at Walmart com
– ident: ref27
  doi: 10.1109/CEC.2016.7744347
SSID ssj0014519
Score 2.5981069
Snippet As one of the classical problems in the economic market, the newsvendor problem aims to make maximal profit by determining the optimal order quantity of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 479
SubjectTerms Adaptation models
Biological system modeling
Computational modeling
Continuity (mathematics)
Design of experiments
Economics
Estimation of distribution algorithm (EDA)
Evolutionary algorithms
histogram model
Histograms
Integer programming
Investment
Linear programming
Mathematical model
mixed-variable optimization problem
newsvendor problem
Nonlinear programming
Order quantity
orthogonal experiment design
Variables
Title An Estimation of Distribution Algorithm for Mixed-Variable Newsvendor Problems
URI https://ieeexplore.ieee.org/document/8784385
https://www.proquest.com/docview/2408657394
Volume 24
WOSCitedRecordID wos000542951100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB2FqFLLAUpo1VCofOCEurD-to8RJOJClEOKclvtemchUppU-UD8fOxdJypqhcRtpbWlld_O-I09Mw_gnKO2hcQiUZraRBikiSmFTHLOnKooMomN2IQeDs1kYkct-LmrhUHEOvkML8NjfZdfLtwmHJVdGW0EN3IP9rRWTa3W7sYgtElpkumtZ4xmEm8waWqvxv3765DEZS9ZYCtMvNqDalGVfzxxvb0MDt_3YZ_hINJI0mtwP4IWzjtwuJVoINFiO_BxW3i86sD-X70Hj2HYm5O-t--mdJEsKnITeuhG-SvSmz0sltP142_iWS25mz5jmdz7uDpUWpHgGb2TLP2bUSNIs_oCvwb98fVtEsUVEudXYZ1QdFoXOnW6MLKg0nlew5CaMi8l5rLgIq8kK5xiziLVFc91KGBWWKnKCl7xr9CeL-b4DQimmHueg36M538GjSqp9UwEBau4U6IL6Xa5Mxc7jwcBjFlWRyCpzQJCWUAoiwh14WI35U_TduOtwccBkt3AiEYXTreYZtEwV1no6Kak5lac_H_Wd_jEQkhdH7ScQnu93OAZfHBP6-lq-aP-514AqrDTqw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0BiwR7WKCA6C4LPnBChMZfsX2soAgEVBwK6i1KnAlUgha1BfHz107cihUIiVuk2FLklxm_sWfmARxwVCaXmEeJoiYSGmmkCyGjjDOblBSZxFpsQnW7ut83NwtwNK-FQcQq-QyP_WN1l1-M7Is_KmtppQXXchF-SCFYXFdrze8MfKOUOp3eOM6o--EOk8am1evcnfg0LnPMPF9h4r9dqJJV-eCLqw3mbO17n7YOvwKRJO0a-Q1YwGED1mYiDSTYbANWZqXHkwb8fNd9cBO67SHpOAuvixfJqCSnvotuEMAi7cf70XgwfXgijteS68EbFtGdi6x9rRXxvtG5ycK9uaklaSZbcHvW6Z2cR0FeIbJuFaYRRatUrmKrci1zKq1jNgypLrJCYiZzLrJSstwmzBqkquSZ8iXMCZZJaQQv-TYsDUdD3AGCMWaO6aAb4xigRp0U1DgugoKV3CaiCfFsuVMbeo97CYzHtIpBYpN6hFKPUBoQasLhfMpz3Xjjq8GbHpL5wIBGE3ZnmKbBNCep7-mWSMWN-P35rH1YOe9dX6VXF93LP7DKfIBdHbvswtJ0_IJ_Ydm-TgeT8V71__0D1aHW8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Estimation+of+Distribution+Algorithm+for+Mixed-variable+Newsvendor+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Feng&rft.au=Li%2C+Yixuan&rft.au=Zhou%2C+Aimin&rft.au=Tang%2C+Ke&rft.date=2020-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTEVC.2019.2932624&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2019_2932624
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon