RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint

In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 51; číslo 9; s. 5785 - 5799
Hlavní autoři: Liu, Genfeng, Hou, Zhongsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies.
AbstractList In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies.
Author Liu, Genfeng
Hou, Zhongsheng
Author_xml – sequence: 1
  givenname: Genfeng
  orcidid: 0000-0002-7855-5909
  surname: Liu
  fullname: Liu, Genfeng
  email: 16111050@bjtu.edu.cn
  organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Zhongsheng
  orcidid: 0000-0001-5278-3420
  surname: Hou
  fullname: Hou, Zhongsheng
  email: zshou@qdu.edu.cn
  organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
BookMark eNp9kM9LwzAUx4NMcM79AeIl4LkzP9q0OW7F6WAquIrHkqWpdtS0Jqky_3rTbezgwdN78L6f93ifczDQjVYAXGI0wRjxm2z1kE4IwnxCeBQTzk_AkGCWBIRQMjj2mJ2BsbUbhBAmCaOIDcHP82z--BjMhFUFnBaiddWXggunjNh1SyWMrvQbnIuudkHW1H6iHUwb7UxTw7IxcNWtv8UWZkZU2sLXyr3DqXSdcH62wywUuoCrVvkbHrSuT7oLcFqK2qrxoY7Ay_w2S--D5dPdIp0uA0k4dQEukmiNkRSckUgRFieUxSEXybpgXEaFoBTRqES4jImUBYsjyUOWIIETohBTdASu93tb03x2yrp803RG-5M5iZg3hEIe-lS8T0nTWGtUmcvKeQf9n6Kqc4zy3nXeu8571_nBtSfxH7I11Ycw23-Zqz1TKaWO-YTTGOGY_gJiEYu1
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TTE_2024_3392765
crossref_primary_10_1109_TASE_2025_3577609
crossref_primary_10_1016_j_apm_2024_115711
crossref_primary_10_1080_00207721_2024_2335228
crossref_primary_10_1002_rnc_6447
crossref_primary_10_1007_s11071_025_11299_6
crossref_primary_10_1109_TAI_2024_3366877
crossref_primary_10_1109_TNNLS_2024_3452721
crossref_primary_10_1109_TSMC_2022_3228533
crossref_primary_10_1002_rnc_6152
crossref_primary_10_1109_TSMC_2024_3373588
crossref_primary_10_1109_TMECH_2023_3309888
crossref_primary_10_1109_TII_2024_3384623
crossref_primary_10_1109_TNNLS_2022_3185080
crossref_primary_10_12677_MOS_2023_122128
crossref_primary_10_1109_TASE_2022_3225288
crossref_primary_10_1109_TVT_2024_3370628
crossref_primary_10_1002_rnc_70134
crossref_primary_10_1080_00207721_2025_2461691
crossref_primary_10_1109_MITS_2023_3310668
crossref_primary_10_1002_rnc_70177
crossref_primary_10_3390_sym17050694
crossref_primary_10_1155_2022_1400658
crossref_primary_10_3390_en16124566
crossref_primary_10_1109_TASE_2024_3461780
crossref_primary_10_1109_TITS_2025_3549162
crossref_primary_10_3390_sym17030471
crossref_primary_10_1002_rnc_6588
crossref_primary_10_1016_j_cie_2025_111213
crossref_primary_10_1002_rnc_7996
crossref_primary_10_1109_TIV_2024_3379942
crossref_primary_10_1002_rnc_7995
crossref_primary_10_1109_TCYB_2022_3166566
crossref_primary_10_1109_TNNLS_2024_3403145
crossref_primary_10_1002_rnc_8002
crossref_primary_10_1016_j_eswa_2025_127069
crossref_primary_10_1109_TITS_2022_3202911
Cites_doi 10.1016/j.automatica.2013.04.039
10.1109/TASE.2014.2371816
10.1109/TCST.2017.2692730
10.1109/TAC.2010.2069372
10.1016/j.tra.2003.07.001
10.1109/9.867018
10.1109/TITS.2014.2320757
10.1080/00207179.2011.574236
10.1109/SOLI.2008.4682815
10.1109/TSMC.2018.2791513
10.1109/MITS.2017.2666580
10.1016/j.trc.2013.01.007
10.1109/TASE.2012.2216261
10.1111/j.1934-6093.2002.tb00329.x
10.1109/TSMC.2018.2866618
10.1109/TITS.2016.2598425
10.1109/TSMCC.2007.905759
10.1049/iet-cta.2016.0209
10.1109/TSMC.2018.2817616
10.1109/IIS.2009.24
10.1109/TSMC.2017.2675540
10.1016/j.trc.2015.04.016
10.1109/TAC.2006.883028
10.1109/ACC.2011.5991570
10.1109/TITS.2011.2143409
10.1080/00207179.2011.569030
10.1109/DDCLS.2018.8516119
10.1109/TSMC.2017.2693397
10.1080/00207170010038703
10.1016/j.automatica.2007.05.002
10.1109/ACC.2001.945894
10.1109/AIIA.1988.13336
10.1109/TSMC.2017.2734799
10.1049/iet-cta.2016.1275
10.1016/j.simpat.2016.12.008
10.1109/TNN.2011.2175451
10.1002/asjc.1093
10.1109/TCYB.2019.2893645
10.1109/MCAS.2010.936782
10.1109/TSMC.2017.2677959
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2019.2957299
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 5799
ExternalDocumentID 10_1109_TSMC_2019_2957299
8937017
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019YJS024
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61833001; 61433002
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: L161007
  funderid: 10.13039/501100004826
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1d85b10ca9625e267836749a8bd69c5da33035f01f72ccd675c94680a182e06e3
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685890800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Mon Jun 30 05:29:12 EDT 2025
Tue Nov 18 21:32:40 EST 2025
Sat Nov 29 03:45:36 EST 2025
Wed Aug 27 02:25:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1d85b10ca9625e267836749a8bd69c5da33035f01f72ccd675c94680a182e06e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7855-5909
0000-0001-5278-3420
PQID 2562320494
PQPubID 75739
PageCount 15
ParticipantIDs proquest_journals_2562320494
crossref_citationtrail_10_1109_TSMC_2019_2957299
crossref_primary_10_1109_TSMC_2019_2957299
ieee_primary_8937017
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
wang (ref9) 2012; 34
ref31
ref30
ref33
ref11
tang (ref3) 2003; 25
ref2
rao (ref44) 2006
ref39
ref17
ref38
ref16
ref19
ref18
arimoto (ref45) 1985
wang (ref1) 2018; 21
han (ref4) 1999
tang (ref43) 2016; 40
ganesan (ref32) 2017; 11
ref46
ref24
ref23
ref48
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
lu (ref10) 2006; 27
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.1016/j.automatica.2013.04.039
– ident: ref27
  doi: 10.1109/TASE.2014.2371816
– ident: ref28
  doi: 10.1109/TCST.2017.2692730
– year: 2006
  ident: ref44
  publication-title: Train Traction Calculation
– ident: ref17
  doi: 10.1109/TAC.2010.2069372
– volume: 34
  start-page: 59
  year: 2012
  ident: ref9
  article-title: Study on ATO control algorithm with consideration of ATP speed limits
  publication-title: China J Railway Soc
– ident: ref48
  doi: 10.1016/j.tra.2003.07.001
– ident: ref47
  doi: 10.1109/9.867018
– volume: 25
  start-page: 98
  year: 2003
  ident: ref3
  article-title: A survey of control algorithm for automatic train operation
  publication-title: China J Railway Soc
– ident: ref5
  doi: 10.1109/TITS.2014.2320757
– ident: ref18
  doi: 10.1080/00207179.2011.574236
– ident: ref24
  doi: 10.1109/SOLI.2008.4682815
– ident: ref13
  doi: 10.1109/TSMC.2018.2791513
– ident: ref7
  doi: 10.1109/MITS.2017.2666580
– volume: 21
  start-page: 1
  year: 2018
  ident: ref1
  article-title: Statistical analysis of urban rail transit lines in 2017 China-express delivery of annual report on urban rail transit V
  publication-title: Urban Mass Transit
– ident: ref46
  doi: 10.1016/j.trc.2013.01.007
– ident: ref26
  doi: 10.1109/TASE.2012.2216261
– ident: ref39
  doi: 10.1111/j.1934-6093.2002.tb00329.x
– ident: ref37
  doi: 10.1109/TSMC.2018.2866618
– ident: ref16
  doi: 10.1109/TITS.2016.2598425
– ident: ref20
  doi: 10.1109/TSMCC.2007.905759
– ident: ref38
  doi: 10.1049/iet-cta.2016.0209
– ident: ref12
  doi: 10.1109/TSMC.2018.2817616
– ident: ref6
  doi: 10.1109/IIS.2009.24
– ident: ref41
  doi: 10.1109/TSMC.2017.2675540
– ident: ref15
  doi: 10.1016/j.trc.2015.04.016
– ident: ref42
  doi: 10.1109/TAC.2006.883028
– ident: ref35
  doi: 10.1109/ACC.2011.5991570
– ident: ref33
  doi: 10.1109/TITS.2011.2143409
– ident: ref25
  doi: 10.1080/00207179.2011.569030
– ident: ref29
  doi: 10.1109/DDCLS.2018.8516119
– ident: ref21
  doi: 10.1109/TSMC.2017.2693397
– ident: ref30
  doi: 10.1080/00207170010038703
– volume: 40
  start-page: 19
  year: 2016
  ident: ref43
  article-title: Research on energy-efficient driving strategy in Beijing Yizhuang line
  publication-title: J Beijing Jiaotong Univ
– ident: ref31
  doi: 10.1016/j.automatica.2007.05.002
– ident: ref40
  doi: 10.1109/ACC.2001.945894
– ident: ref8
  doi: 10.1109/AIIA.1988.13336
– ident: ref23
  doi: 10.1109/TSMC.2017.2734799
– volume: 11
  start-page: 1222
  year: 2017
  ident: ref32
  article-title: Hybrid model reference adaptive second order sliding mode controller for automatic train operation
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2016.1275
– ident: ref11
  doi: 10.1016/j.simpat.2016.12.008
– ident: ref36
  doi: 10.1109/TNN.2011.2175451
– ident: ref34
  doi: 10.1002/asjc.1093
– ident: ref14
  doi: 10.1109/TCYB.2019.2893645
– volume: 27
  start-page: 106
  year: 2006
  ident: ref10
  article-title: Event-based control technology and the application in subway train operation
  publication-title: China Railway Sci
– start-page: 360
  year: 1999
  ident: ref4
  article-title: An optimal automatic train operation (ATO) control using genetic algorithms (GA)
  publication-title: Proc IEEE Region 10 Conf (TENCON)
– start-page: 379
  year: 1985
  ident: ref45
  article-title: Mathematical theory of learning with applications to robot control
  publication-title: Proc 4th Workshop Adapt Syst Control Theory
– ident: ref2
  doi: 10.1109/MCAS.2010.936782
– ident: ref22
  doi: 10.1109/TSMC.2017.2677959
SSID ssj0001286306
Score 2.3806694
Snippet In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5785
SubjectTerms Actuators
Adaptation models
Adaptive control
Adaptive iterative learning control (AILC)
Adaptive systems
Algorithms
Constraint modelling
Convergence
Dynamic models
Fault tolerance
fault-tolerant control
Heuristic algorithms
Iterative methods
Machine learning
multiple-point-mass dynamic model
Neural networks
Public transportation
Radial basis function
radial basis function neural network (RBFNN)
Schedules
speed constraint
subway train
Time dependence
Timetables
Tracking errors
Trains
Vehicle dynamics
Title RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
URI https://ieeexplore.ieee.org/document/8937017
https://www.proquest.com/docview/2562320494
Volume 51
WOSCitedRecordID wos000685890800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7a4oM-WLWKp63kwScxbTa5ZDeP16OHgh5iT-3bkp1ktXDsHd09Rf_6ZrLbo6IIviyBzUDYLzvfTDI_AF7maIsgg-bKouLRIkZeCW957Vyha6OtSMV0Pr_L5_Pi4sJ-2IHX21yYEEIKPgvHNEx3-X6FGzoqOyFujTtoF3bz3PS5WrfOUwqjUitNmZkIfnwOl5iZsCeL8_dTiuOyx9LqaE_a32go9VX5Qxknhpnt_9_aHsD9wZJkkx76h7ATmkdw71Z9wQP49fF0Np_z08hUnk28W5NuY29TIWUaDcVVv7KZ2yw7vlgt45umY9M-fp1Fg5ZFzfLD_WQLaiXRsi-X3Tc2oaST6Kv3Yi1zjWfn60iDJNimphPdY_g0O1tM3_Ch2QLHyPgdz3yhq0ygs9EjCtJQdkc-tq6ovLGovVOR7HQtsjqXiD76GWjHphAuOihBmKCewF6zasJTYLZWNZoCTbDjsZKukqixrjKvtEclxQjEzbcvcahETmtblskjEbYkuEqCqxzgGsGrrci6L8Pxr8kHhM924gDNCA5vAC6HH7UtJdl_korkPPu71HO4KymMJYWVHcJed7UJR3AHv3eX7dWLtAevAcaS2OA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ88LUhCgP8wBPCm2PXbvzYVVSb6CLEAuwtcmwHJlVptaSb4K_H53rVEAiJl8hSfJKVn3O_O_s-AN6MrM4995IKbQUNFrGlNXOaNsbkslFSs1hM58tsVBT52Zn-uAXvNrkw3vsYfOb3cRjv8t3CrvCo7AC5NeygW3AbO2elbK0bJyq5ErGZJs9UgD880zVmxvRBeXoywUguvc-1DBal_o2IYmeVP9Rx5Jjpw_9b3SN4kGxJMl6D_xi2fPsE7t-oMLgDPz8dTouCHgaucmTszBK1GzmOpZRxlMqrfiNTs5r3tFzMw5u2J5N1BDsJJi0JuuXK_CAlNpPoyNfz_jsZY9pJ8NbXYh0xrSOny0CEKNjFthP9Lnyevi8nRzS1W6A2cH5PM5fLOmPW6OATea4wv2M01CavndJWOiMC3cmGZc2IW-uCp2H1UOXMBBfFM-XFU9huF61_BkQ3orEqt8rr4VBwU3MrbVNnTkhnBWcDYNffvrKpFjmubV5Fn4TpCuGqEK4qwTWAtxuR5boQx78m7yA-m4kJmgHsXQNcpV-1qzhagBzL5Dz_u9RruHtUnsyq2XHx4QXc4xjUEoPM9mC7v1j5l3DHXvbn3cWruB9_ATrt3Ck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RBFNN-Based+Adaptive+Iterative+Learning+Fault-Tolerant+Control+for+Subway+Trains+With+Actuator+Faults+and+Speed+Constraint&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Genfeng&rft.au=Hou%2C+Zhongsheng&rft.date=2021-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=9&rft.spage=5785&rft_id=info:doi/10.1109%2FTSMC.2019.2957299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon