RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint
In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First,...
Uloženo v:
| Vydáno v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 51; číslo 9; s. 5785 - 5799 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies. |
|---|---|
| AbstractList | In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for subway trains subject to the time-iteration-dependent actuator faults and speed constraint by using the multiple-point-mass dynamic model. First, the RBFNN is utilized to approximate the time-iteration-dependent unknown nonlinearity of the subway train system; then, the iterative learning mechanism is used to tackle the outstanding repetitive operational pattern of a subway train which runs from one station to the next strictly according to the operation timetable schedule every day within the finite time interval, and the adaptive mechanism is designed for dealing with the time and the iteration-varying factors of the subway train. Second, a barrier composite energy function technique is exploited to obtain the convergence property of the proposed RBFNN-AILFTC scheme for subway train system, which can guarantee that the tracking error is asymptotic convergence along the iteration axis, meanwhile keep the speed profile of the subway train system satisfies the constraint. Finally, a subway train simulation is shown to verify the effectiveness of the theoretical studies. |
| Author | Liu, Genfeng Hou, Zhongsheng |
| Author_xml | – sequence: 1 givenname: Genfeng orcidid: 0000-0002-7855-5909 surname: Liu fullname: Liu, Genfeng email: 16111050@bjtu.edu.cn organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Zhongsheng orcidid: 0000-0001-5278-3420 surname: Hou fullname: Hou, Zhongsheng email: zshou@qdu.edu.cn organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China |
| BookMark | eNp9kM9LwzAUx4NMcM79AeIl4LkzP9q0OW7F6WAquIrHkqWpdtS0Jqky_3rTbezgwdN78L6f93ifczDQjVYAXGI0wRjxm2z1kE4IwnxCeBQTzk_AkGCWBIRQMjj2mJ2BsbUbhBAmCaOIDcHP82z--BjMhFUFnBaiddWXggunjNh1SyWMrvQbnIuudkHW1H6iHUwb7UxTw7IxcNWtv8UWZkZU2sLXyr3DqXSdcH62wywUuoCrVvkbHrSuT7oLcFqK2qrxoY7Ay_w2S--D5dPdIp0uA0k4dQEukmiNkRSckUgRFieUxSEXybpgXEaFoBTRqES4jImUBYsjyUOWIIETohBTdASu93tb03x2yrp803RG-5M5iZg3hEIe-lS8T0nTWGtUmcvKeQf9n6Kqc4zy3nXeu8571_nBtSfxH7I11Ycw23-Zqz1TKaWO-YTTGOGY_gJiEYu1 |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1109_TTE_2024_3392765 crossref_primary_10_1109_TASE_2025_3577609 crossref_primary_10_1016_j_apm_2024_115711 crossref_primary_10_1080_00207721_2024_2335228 crossref_primary_10_1002_rnc_6447 crossref_primary_10_1007_s11071_025_11299_6 crossref_primary_10_1109_TAI_2024_3366877 crossref_primary_10_1109_TNNLS_2024_3452721 crossref_primary_10_1109_TSMC_2022_3228533 crossref_primary_10_1002_rnc_6152 crossref_primary_10_1109_TSMC_2024_3373588 crossref_primary_10_1109_TMECH_2023_3309888 crossref_primary_10_1109_TII_2024_3384623 crossref_primary_10_1109_TNNLS_2022_3185080 crossref_primary_10_12677_MOS_2023_122128 crossref_primary_10_1109_TASE_2022_3225288 crossref_primary_10_1109_TVT_2024_3370628 crossref_primary_10_1002_rnc_70134 crossref_primary_10_1080_00207721_2025_2461691 crossref_primary_10_1109_MITS_2023_3310668 crossref_primary_10_1002_rnc_70177 crossref_primary_10_3390_sym17050694 crossref_primary_10_1155_2022_1400658 crossref_primary_10_3390_en16124566 crossref_primary_10_1109_TASE_2024_3461780 crossref_primary_10_1109_TITS_2025_3549162 crossref_primary_10_3390_sym17030471 crossref_primary_10_1002_rnc_6588 crossref_primary_10_1016_j_cie_2025_111213 crossref_primary_10_1002_rnc_7996 crossref_primary_10_1109_TIV_2024_3379942 crossref_primary_10_1002_rnc_7995 crossref_primary_10_1109_TCYB_2022_3166566 crossref_primary_10_1109_TNNLS_2024_3403145 crossref_primary_10_1002_rnc_8002 crossref_primary_10_1016_j_eswa_2025_127069 crossref_primary_10_1109_TITS_2022_3202911 |
| Cites_doi | 10.1016/j.automatica.2013.04.039 10.1109/TASE.2014.2371816 10.1109/TCST.2017.2692730 10.1109/TAC.2010.2069372 10.1016/j.tra.2003.07.001 10.1109/9.867018 10.1109/TITS.2014.2320757 10.1080/00207179.2011.574236 10.1109/SOLI.2008.4682815 10.1109/TSMC.2018.2791513 10.1109/MITS.2017.2666580 10.1016/j.trc.2013.01.007 10.1109/TASE.2012.2216261 10.1111/j.1934-6093.2002.tb00329.x 10.1109/TSMC.2018.2866618 10.1109/TITS.2016.2598425 10.1109/TSMCC.2007.905759 10.1049/iet-cta.2016.0209 10.1109/TSMC.2018.2817616 10.1109/IIS.2009.24 10.1109/TSMC.2017.2675540 10.1016/j.trc.2015.04.016 10.1109/TAC.2006.883028 10.1109/ACC.2011.5991570 10.1109/TITS.2011.2143409 10.1080/00207179.2011.569030 10.1109/DDCLS.2018.8516119 10.1109/TSMC.2017.2693397 10.1080/00207170010038703 10.1016/j.automatica.2007.05.002 10.1109/ACC.2001.945894 10.1109/AIIA.1988.13336 10.1109/TSMC.2017.2734799 10.1049/iet-cta.2016.1275 10.1016/j.simpat.2016.12.008 10.1109/TNN.2011.2175451 10.1002/asjc.1093 10.1109/TCYB.2019.2893645 10.1109/MCAS.2010.936782 10.1109/TSMC.2017.2677959 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2019.2957299 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 5799 |
| ExternalDocumentID | 10_1109_TSMC_2019_2957299 8937017 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2019YJS024 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61833001; 61433002 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: L161007 funderid: 10.13039/501100004826 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-1d85b10ca9625e267836749a8bd69c5da33035f01f72ccd675c94680a182e06e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685890800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Mon Jun 30 05:29:12 EDT 2025 Tue Nov 18 21:32:40 EST 2025 Sat Nov 29 03:45:36 EST 2025 Wed Aug 27 02:25:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-1d85b10ca9625e267836749a8bd69c5da33035f01f72ccd675c94680a182e06e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7855-5909 0000-0001-5278-3420 |
| PQID | 2562320494 |
| PQPubID | 75739 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2562320494 crossref_citationtrail_10_1109_TSMC_2019_2957299 crossref_primary_10_1109_TSMC_2019_2957299 ieee_primary_8937017 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 wang (ref9) 2012; 34 ref31 ref30 ref33 ref11 tang (ref3) 2003; 25 ref2 rao (ref44) 2006 ref39 ref17 ref38 ref16 ref19 ref18 arimoto (ref45) 1985 wang (ref1) 2018; 21 han (ref4) 1999 tang (ref43) 2016; 40 ganesan (ref32) 2017; 11 ref46 ref24 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 lu (ref10) 2006; 27 ref6 ref5 ref40 |
| References_xml | – ident: ref19 doi: 10.1016/j.automatica.2013.04.039 – ident: ref27 doi: 10.1109/TASE.2014.2371816 – ident: ref28 doi: 10.1109/TCST.2017.2692730 – year: 2006 ident: ref44 publication-title: Train Traction Calculation – ident: ref17 doi: 10.1109/TAC.2010.2069372 – volume: 34 start-page: 59 year: 2012 ident: ref9 article-title: Study on ATO control algorithm with consideration of ATP speed limits publication-title: China J Railway Soc – ident: ref48 doi: 10.1016/j.tra.2003.07.001 – ident: ref47 doi: 10.1109/9.867018 – volume: 25 start-page: 98 year: 2003 ident: ref3 article-title: A survey of control algorithm for automatic train operation publication-title: China J Railway Soc – ident: ref5 doi: 10.1109/TITS.2014.2320757 – ident: ref18 doi: 10.1080/00207179.2011.574236 – ident: ref24 doi: 10.1109/SOLI.2008.4682815 – ident: ref13 doi: 10.1109/TSMC.2018.2791513 – ident: ref7 doi: 10.1109/MITS.2017.2666580 – volume: 21 start-page: 1 year: 2018 ident: ref1 article-title: Statistical analysis of urban rail transit lines in 2017 China-express delivery of annual report on urban rail transit V publication-title: Urban Mass Transit – ident: ref46 doi: 10.1016/j.trc.2013.01.007 – ident: ref26 doi: 10.1109/TASE.2012.2216261 – ident: ref39 doi: 10.1111/j.1934-6093.2002.tb00329.x – ident: ref37 doi: 10.1109/TSMC.2018.2866618 – ident: ref16 doi: 10.1109/TITS.2016.2598425 – ident: ref20 doi: 10.1109/TSMCC.2007.905759 – ident: ref38 doi: 10.1049/iet-cta.2016.0209 – ident: ref12 doi: 10.1109/TSMC.2018.2817616 – ident: ref6 doi: 10.1109/IIS.2009.24 – ident: ref41 doi: 10.1109/TSMC.2017.2675540 – ident: ref15 doi: 10.1016/j.trc.2015.04.016 – ident: ref42 doi: 10.1109/TAC.2006.883028 – ident: ref35 doi: 10.1109/ACC.2011.5991570 – ident: ref33 doi: 10.1109/TITS.2011.2143409 – ident: ref25 doi: 10.1080/00207179.2011.569030 – ident: ref29 doi: 10.1109/DDCLS.2018.8516119 – ident: ref21 doi: 10.1109/TSMC.2017.2693397 – ident: ref30 doi: 10.1080/00207170010038703 – volume: 40 start-page: 19 year: 2016 ident: ref43 article-title: Research on energy-efficient driving strategy in Beijing Yizhuang line publication-title: J Beijing Jiaotong Univ – ident: ref31 doi: 10.1016/j.automatica.2007.05.002 – ident: ref40 doi: 10.1109/ACC.2001.945894 – ident: ref8 doi: 10.1109/AIIA.1988.13336 – ident: ref23 doi: 10.1109/TSMC.2017.2734799 – volume: 11 start-page: 1222 year: 2017 ident: ref32 article-title: Hybrid model reference adaptive second order sliding mode controller for automatic train operation publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2016.1275 – ident: ref11 doi: 10.1016/j.simpat.2016.12.008 – ident: ref36 doi: 10.1109/TNN.2011.2175451 – ident: ref34 doi: 10.1002/asjc.1093 – ident: ref14 doi: 10.1109/TCYB.2019.2893645 – volume: 27 start-page: 106 year: 2006 ident: ref10 article-title: Event-based control technology and the application in subway train operation publication-title: China Railway Sci – start-page: 360 year: 1999 ident: ref4 article-title: An optimal automatic train operation (ATO) control using genetic algorithms (GA) publication-title: Proc IEEE Region 10 Conf (TENCON) – start-page: 379 year: 1985 ident: ref45 article-title: Mathematical theory of learning with applications to robot control publication-title: Proc 4th Workshop Adapt Syst Control Theory – ident: ref2 doi: 10.1109/MCAS.2010.936782 – ident: ref22 doi: 10.1109/TSMC.2017.2677959 |
| SSID | ssj0001286306 |
| Score | 2.3806694 |
| Snippet | In this article, a radial basis function neural network-based adaptive iterative learning fault-tolerant control (RBFNN-AILFTC) algorithm is developed for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5785 |
| SubjectTerms | Actuators Adaptation models Adaptive control Adaptive iterative learning control (AILC) Adaptive systems Algorithms Constraint modelling Convergence Dynamic models Fault tolerance fault-tolerant control Heuristic algorithms Iterative methods Machine learning multiple-point-mass dynamic model Neural networks Public transportation Radial basis function radial basis function neural network (RBFNN) Schedules speed constraint subway train Time dependence Timetables Tracking errors Trains Vehicle dynamics |
| Title | RBFNN-Based Adaptive Iterative Learning Fault-Tolerant Control for Subway Trains With Actuator Faults and Speed Constraint |
| URI | https://ieeexplore.ieee.org/document/8937017 https://www.proquest.com/docview/2562320494 |
| Volume | 51 |
| WOSCitedRecordID | wos000685890800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7a4oM-WLWKp63kwScxbTa5ZDeP16OHgh5iT-3bkp1ktXDsHd09Rf_6ZrLbo6IIviyBzUDYLzvfTDI_AF7maIsgg-bKouLRIkZeCW957Vyha6OtSMV0Pr_L5_Pi4sJ-2IHX21yYEEIKPgvHNEx3-X6FGzoqOyFujTtoF3bz3PS5WrfOUwqjUitNmZkIfnwOl5iZsCeL8_dTiuOyx9LqaE_a32go9VX5Qxknhpnt_9_aHsD9wZJkkx76h7ATmkdw71Z9wQP49fF0Np_z08hUnk28W5NuY29TIWUaDcVVv7KZ2yw7vlgt45umY9M-fp1Fg5ZFzfLD_WQLaiXRsi-X3Tc2oaST6Kv3Yi1zjWfn60iDJNimphPdY_g0O1tM3_Ch2QLHyPgdz3yhq0ygs9EjCtJQdkc-tq6ovLGovVOR7HQtsjqXiD76GWjHphAuOihBmKCewF6zasJTYLZWNZoCTbDjsZKukqixrjKvtEclxQjEzbcvcahETmtblskjEbYkuEqCqxzgGsGrrci6L8Pxr8kHhM924gDNCA5vAC6HH7UtJdl_korkPPu71HO4KymMJYWVHcJed7UJR3AHv3eX7dWLtAevAcaS2OA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ88LUhCgP8wBPCm2PXbvzYVVSb6CLEAuwtcmwHJlVptaSb4K_H53rVEAiJl8hSfJKVn3O_O_s-AN6MrM4995IKbQUNFrGlNXOaNsbkslFSs1hM58tsVBT52Zn-uAXvNrkw3vsYfOb3cRjv8t3CrvCo7AC5NeygW3AbO2elbK0bJyq5ErGZJs9UgD880zVmxvRBeXoywUguvc-1DBal_o2IYmeVP9Rx5Jjpw_9b3SN4kGxJMl6D_xi2fPsE7t-oMLgDPz8dTouCHgaucmTszBK1GzmOpZRxlMqrfiNTs5r3tFzMw5u2J5N1BDsJJi0JuuXK_CAlNpPoyNfz_jsZY9pJ8NbXYh0xrSOny0CEKNjFthP9Lnyevi8nRzS1W6A2cH5PM5fLOmPW6OATea4wv2M01CavndJWOiMC3cmGZc2IW-uCp2H1UOXMBBfFM-XFU9huF61_BkQ3orEqt8rr4VBwU3MrbVNnTkhnBWcDYNffvrKpFjmubV5Fn4TpCuGqEK4qwTWAtxuR5boQx78m7yA-m4kJmgHsXQNcpV-1qzhagBzL5Dz_u9RruHtUnsyq2XHx4QXc4xjUEoPM9mC7v1j5l3DHXvbn3cWruB9_ATrt3Ck |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RBFNN-Based+Adaptive+Iterative+Learning+Fault-Tolerant+Control+for+Subway+Trains+With+Actuator+Faults+and+Speed+Constraint&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Genfeng&rft.au=Hou%2C+Zhongsheng&rft.date=2021-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=9&rft.spage=5785&rft_id=info:doi/10.1109%2FTSMC.2019.2957299&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |