Deep Filter Banks for Land-Use Scene Classification

Land-use (LU) scene classification is one of the most challenging tasks in the field of remote sensing (RS) image processing due to its high intraclass variability and low interclass distance. Motivated by the challenge posed by this problem, we propose a novel hybrid architecture, deep filter banks...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 13; číslo 12; s. 1895 - 1899
Hlavní autoři: Wu, Hang, Liu, Baozhen, Su, Weihua, Zhang, Wenchang, Sun, Jinggong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Land-use (LU) scene classification is one of the most challenging tasks in the field of remote sensing (RS) image processing due to its high intraclass variability and low interclass distance. Motivated by the challenge posed by this problem, we propose a novel hybrid architecture, deep filter banks, combining multicolumn stacked denoising sparse autoencoder (SDSAE) and Fisher vector (FV) to automatically learn the representative and discriminative features in a hierarchical manner for LU scene classification. SDSAE kernels describe local patches and a robust global feature of the RS image is built through the FV pooling layer. Unlike previous handcrafted features, we use machine-learning mechanisms to optimize our proposed feature extractor so that it can learn more suitable internal features from the RS data, boosting the final performance. Our approach achieves superior performance compared with the state-of-the-art methods, obtaining average classification accuracies of 92.7% and 90.4%, respectively, on the UC Merced and RSSCN7 data sets.
AbstractList Land-use (LU) scene classification is one of the most challenging tasks in the field of remote sensing (RS) image processing due to its high intraclass variability and low interclass distance. Motivated by the challenge posed by this problem, we propose a novel hybrid architecture, deep filter banks, combining multicolumn stacked denoising sparse autoencoder (SDSAE) and Fisher vector (FV) to automatically learn the representative and discriminative features in a hierarchical manner for LU scene classification. SDSAE kernels describe local patches and a robust global feature of the RS image is built through the FV pooling layer. Unlike previous handcrafted features, we use machine-learning mechanisms to optimize our proposed feature extractor so that it can learn more suitable internal features from the RS data, boosting the final performance. Our approach achieves superior performance compared with the state-of-the-art methods, obtaining average classification accuracies of 92.7% and 90.4%, respectively, on the UC Merced and RSSCN7 data sets.
Author Hang Wu
Baozhen Liu
Weihua Su
Jinggong Sun
Wenchang Zhang
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-6000-8026
  surname: Wu
  fullname: Wu, Hang
– sequence: 2
  givenname: Baozhen
  surname: Liu
  fullname: Liu, Baozhen
– sequence: 3
  givenname: Weihua
  surname: Su
  fullname: Su, Weihua
– sequence: 4
  givenname: Wenchang
  surname: Zhang
  fullname: Zhang, Wenchang
– sequence: 5
  givenname: Jinggong
  surname: Sun
  fullname: Sun, Jinggong
BookMark eNp9kD1PwzAQhi1UJErhByCWSMwpvsRfGaHQghQJiVKJzTL2WXIpSbHTgX9PQisGBm65G97n7vScklHTNkjIBdApAK2u68XzclpQENNCgGCMHpExcK5yyiWMhpnxnFfq9YScprSmtGBKyTEp7xC32TxsOozZrWneU-bbmNWmcfkqYba02GA225iUgg_WdKFtzsixN5uE54c-Iav5_cvsIa-fFo-zmzq3RVV2OTgBwIRAlE7iG2NVoYwrnOXMUUuZdxWi4tQzzytqrPDUOqCyQECA0pQTcrXfu43t5w5Tp9ftLjb9SQ2KqZIC5axPyX3KxjaliF7b0P382UUTNhqoHgzpwZAeDOmDoZ6EP-Q2hg8Tv_5lLvdMQMTfvBRSlH19A4iucb0
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs14051128
crossref_primary_10_3390_rs12030405
crossref_primary_10_1080_2150704X_2017_1302104
crossref_primary_10_1080_10095020_2025_2514822
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1007_s11042_024_20546_8
crossref_primary_10_1109_LGRS_2018_2864216
crossref_primary_10_3390_rs10020351
crossref_primary_10_3390_rs11242908
crossref_primary_10_3390_app112411659
crossref_primary_10_1109_LGRS_2017_2779469
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1109_TNNLS_2020_3042276
crossref_primary_10_3390_rs10050734
crossref_primary_10_1002_ett_3988
crossref_primary_10_3390_rs15205044
crossref_primary_10_1007_s11042_021_10567_y
crossref_primary_10_1109_ACCESS_2021_3051085
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_1109_TASLP_2021_3138713
crossref_primary_10_1016_j_dsp_2025_104979
crossref_primary_10_1109_JSTARS_2019_2934165
crossref_primary_10_1109_LGRS_2019_2952660
crossref_primary_10_1109_JSTARS_2017_2761800
crossref_primary_10_3390_app10186151
crossref_primary_10_1016_j_rse_2020_111716
crossref_primary_10_3390_jimaging11050156
crossref_primary_10_1109_JSTARS_2021_3114404
crossref_primary_10_1080_2150704X_2017_1415477
crossref_primary_10_1371_journal_pone_0203339
crossref_primary_10_1155_2017_8513949
crossref_primary_10_3390_rs14010053
crossref_primary_10_1016_j_asoc_2020_106310
Cites_doi 10.1080/01431161.2014.890762
10.3390/rs8050436
10.1145/1869790.1869829
10.1109/TGRS.2014.2351395
10.1109/LGRS.2015.2475299
10.1038/nature14539
10.1109/TGRS.2013.2241444
10.1109/TGRS.2014.2357078
10.1007/978-3-642-33709-3_52
10.1007/s11760-015-0804-2
10.1117/1.JRS.10.025006
10.1109/ICCV.2011.6126403
10.1007/978-3-642-39402-7_33
10.1109/LGRS.2010.2055033
10.1109/CVPR.2015.7298998
10.1109/TGRS.2015.2480866
10.1109/JSTARS.2015.2444405
10.1109/MGRS.2016.2540798
10.1016/j.isprsjprs.2016.03.004
10.1109/TNNLS.2015.2477537
10.1126/science.1127647
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2016.2616440
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1899
ExternalDocumentID 10_1109_LGRS_2016_2616440
7676333
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Pillar Program, Tianjin, China
  grantid: 16YFZCSF00590
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
ESBDL
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-1d611466ee7d7eb44928ad2dc54d0c04fd9ee850f4f590ac6f0cd1072e1e113a3
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391298500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 13:23:33 EDT 2025
Sat Nov 29 05:53:50 EST 2025
Tue Nov 18 21:58:10 EST 2025
Tue Aug 26 16:43:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1d611466ee7d7eb44928ad2dc54d0c04fd9ee850f4f590ac6f0cd1072e1e113a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6000-8026
OpenAccessLink https://ieeexplore.ieee.org/document/7676333
PQID 1848301054
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_1848301054
ieee_primary_7676333
crossref_citationtrail_10_1109_LGRS_2016_2616440
crossref_primary_10_1109_LGRS_2016_2616440
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref23
ref15
ref20
ref11
ref22
ref10
ref21
krizhevsky (ref14) 2012
ref2
ref1
ref17
zhao (ref4) 2014; 35
ref16
ref19
vincent (ref13) 2010; 11
ref18
ref8
ref7
ref9
ref3
ref6
ref5
hinton (ref12) 2006; 313
References_xml – volume: 35
  start-page: 2296
  year: 2014
  ident: ref4
  article-title: A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2014.890762
– ident: ref8
  doi: 10.3390/rs8050436
– ident: ref3
  doi: 10.1145/1869790.1869829
– ident: ref7
  doi: 10.1109/TGRS.2014.2351395
– ident: ref23
  doi: 10.1109/LGRS.2015.2475299
– ident: ref17
  doi: 10.1038/nature14539
– ident: ref18
  doi: 10.1109/TGRS.2013.2241444
– ident: ref19
  doi: 10.1109/TGRS.2014.2357078
– ident: ref5
  doi: 10.1007/978-3-642-33709-3_52
– ident: ref10
  doi: 10.1007/s11760-015-0804-2
– ident: ref21
  doi: 10.1117/1.JRS.10.025006
– ident: ref6
  doi: 10.1109/ICCV.2011.6126403
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref20
  doi: 10.1007/978-3-642-39402-7_33
– start-page: 1097
  year: 2012
  ident: ref14
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– ident: ref9
  doi: 10.1109/LGRS.2010.2055033
– ident: ref11
  doi: 10.1109/CVPR.2015.7298998
– ident: ref16
  doi: 10.1109/TGRS.2015.2480866
– ident: ref22
  doi: 10.1109/JSTARS.2015.2444405
– ident: ref1
  doi: 10.1109/MGRS.2016.2540798
– ident: ref2
  doi: 10.1016/j.isprsjprs.2016.03.004
– ident: ref15
  doi: 10.1109/TNNLS.2015.2477537
– volume: 313
  start-page: 504
  year: 2006
  ident: ref12
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
SSID ssj0024887
Score 2.3758626
Snippet Land-use (LU) scene classification is one of the most challenging tasks in the field of remote sensing (RS) image processing due to its high intraclass...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1895
SubjectTerms Classification
Data acquisition
Data models
Deep filter banks
Encoding
Feature extraction
Filter banks
Filters
Fisher vector (FV)
Image processing
Kernel
Land use
land-use (LU) scene classification
Learning algorithms
Machine learning
Noise reduction
Remote sensing
Robustness
Semantics
stacked denoising sparse autoencoder (SDSAE)
Title Deep Filter Banks for Land-Use Scene Classification
URI https://ieeexplore.ieee.org/document/7676333
https://www.proquest.com/docview/1848301054
Volume 13
WOSCitedRecordID wos000391298500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFL34FldX6cGTWE3aNGmOvlYPi4i6sreSJhMUpS77EPbfm2TriiiCl5BDUsI3TWYmM5kP4KA0VFu0ZUyVa3ydyViVuY0TrpLMcEpNoAN6bIubm7zblbczcDR9C4OIIfkMj303xPLNmx75q7ITwd1uSNNZmBWCT95qfdXVywMZnrcI4kzm3TqCSYk8aV_d3fskLn7s3AWn_8k3HRRIVX6cxEG9tFb-t7BVWK7NyOh0Ivc1mMFqHRZrRvOn8TosXAXK3vEGpBeIvaj17MPi0ZmqXgaRM1SjtqpM3BlgdK_dcRcFckyfNhQktQmd1uXD-XVcUyXE2unrYUw9rIxzRGEElozJJFcmMTpjhmjCrJGIeUYss5kkSnNLtHGeX4IUKU1VugVz1VuF2xBpLTOpLS9T66wNqkuhmMypQMENM8I0gHyCV-i6jrins3gtgj9BZOHxLjzeRY13Aw6nU3qTIhp_Dd7wAE8H1tg2oPkpoaLeZoPCuad56jk-2c7vs3ZhyX97kn_ShLlhf4R7MK_fh8-D_n74gz4AJ7nBvw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58ohff4vrswZNYTdo0bY6-VsW6iC_2VtJkgqJ0F3cV_Pcm2boiiuCl9JDQ8k2T-aYzmQ9gu9RUGTRlSKW9uD6ToSwzE0ZcRonmlGovB3Sfp61W1m6LqxHYHZ6FQURffIZ77tbn8nVHvbpfZfspt6shjkdh3ClnkcFpra_OepmXw3OcIExE1q5zmJSI_fz0-saVcfE9GzBYBkC-eSEvq_JjL_YOpjn7v1ebg5maSAYHA8vPwwhWCzBVa5o_vC_A5KkX7X1fhPgYsRs0H11iPDiU1VMvsFQ1yGWlw7seBjfKbniBl8d0hUPeVktw1zy5PToLa7GEUFmP3Q-pA5ZxjpjqFEvGRJRJHWmVME0UYUYLxCwhhplEEKm4IUrb2C9CipTGMl6GsapT4QoESolEKMPL2Fi-QVWZSiYymmLKNdOpbgD5BK9QdSdxJ2jxXPiIgojC4V04vIsa7wbsDKd0B200_hq86AAeDqyxbcD6p4WKeqH1ChugZrFT-WSrv8_agqmz28u8yM9bF2sw7Z4zqEZZh7H-yytuwIR66z_2Xjb91_QBaJ_FBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Filter+Banks+for+Land-Use+Scene+Classification&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wu%2C+Hang&rft.au=Liu%2C+Baozhen&rft.au=Su%2C+Weihua&rft.au=Zhang%2C+Wenchang&rft.date=2016-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=13&rft.issue=12&rft.spage=1895&rft_id=info:doi/10.1109%2FLGRS.2016.2616440&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon