Vehicular Trajectory Classification and Traffic Anomaly Detection in Videos Using a Hybrid CNN-VAE Architecture

Visual surveillance has become indispensable in the evolution of Intelligent Transportation Systems (ITS). Video object trajectories are key to many of the visual surveillance applications. Classifying varying length time series data such as video object trajectories using conventional neural networ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 23; číslo 8; s. 11891 - 11902
Hlavní autoři: Kumaran Santhosh, Kelathodi, Dogra, Debi Prosad, Roy, Partha Pratim, Mitra, Adway
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Visual surveillance has become indispensable in the evolution of Intelligent Transportation Systems (ITS). Video object trajectories are key to many of the visual surveillance applications. Classifying varying length time series data such as video object trajectories using conventional neural networks, can be challenging. In this paper, we propose trajectory classification and anomaly detection using a hybrid Convolutional Neural Network (CNN) and Variational Autoencoder (VAE) architecture. First, we introduce a high level features for varying length object trajectories using color gradient representation. In the next stage, a semi-supervised way to annotate moving object trajectories extracted using Temporally Incremental Gravitational Model (TIGM) is used for class labeling. For training, anomalous trajectories are identified using t-Distributed Stochastic Neighbor Embedding (t-SNE). Finally, a hybrid CNN-VAE architecture has been proposed for trajectory classification and anomaly detection. The results obtained using publicly available surveillance video datasets reveal that the proposed method can successfully identify traffic anomalies such as violations in lane driving, sudden speed variations, abrupt termination of vehicle during movement, and vehicles moving in wrong directions. The accuracy of trajectory classification improves by a margin of 1-6% against popular neural networks-based classifiers across various datasets using the proposed high-level features. The gradient representation also improves the anomaly detection accuracy significantly (30-35%). Code and dataset can be found at https://github.com/santhoshkelathodi/CNN-VAE .
AbstractList Visual surveillance has become indispensable in the evolution of Intelligent Transportation Systems (ITS). Video object trajectories are key to many of the visual surveillance applications. Classifying varying length time series data such as video object trajectories using conventional neural networks, can be challenging. In this paper, we propose trajectory classification and anomaly detection using a hybrid Convolutional Neural Network (CNN) and Variational Autoencoder (VAE) architecture. First, we introduce a high level features for varying length object trajectories using color gradient representation. In the next stage, a semi-supervised way to annotate moving object trajectories extracted using Temporally Incremental Gravitational Model (TIGM) is used for class labeling. For training, anomalous trajectories are identified using t-Distributed Stochastic Neighbor Embedding (t-SNE). Finally, a hybrid CNN-VAE architecture has been proposed for trajectory classification and anomaly detection. The results obtained using publicly available surveillance video datasets reveal that the proposed method can successfully identify traffic anomalies such as violations in lane driving, sudden speed variations, abrupt termination of vehicle during movement, and vehicles moving in wrong directions. The accuracy of trajectory classification improves by a margin of 1-6% against popular neural networks-based classifiers across various datasets using the proposed high-level features. The gradient representation also improves the anomaly detection accuracy significantly (30-35%). Code and dataset can be found at https://github.com/santhoshkelathodi/CNN-VAE .
Author Kumaran Santhosh, Kelathodi
Dogra, Debi Prosad
Mitra, Adway
Roy, Partha Pratim
Author_xml – sequence: 1
  givenname: Kelathodi
  orcidid: 0000-0002-8100-8244
  surname: Kumaran Santhosh
  fullname: Kumaran Santhosh, Kelathodi
  email: sk47@iitbbs.ac.in
  organization: School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
– sequence: 2
  givenname: Debi Prosad
  orcidid: 0000-0002-3904-732X
  surname: Dogra
  fullname: Dogra, Debi Prosad
  email: dpdogra@iitbbs.ac.in, adway@iitbbs.ac.in
  organization: School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
– sequence: 3
  givenname: Partha Pratim
  orcidid: 0000-0002-5735-5254
  surname: Roy
  fullname: Roy, Partha Pratim
  email: proy.fcs@iitr.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee, India
– sequence: 4
  givenname: Adway
  surname: Mitra
  fullname: Mitra, Adway
  email: adway@cai.iitkgp.ac.in
  organization: Centre of Excellence in Artificial Intelligence (AI), Indian Institute of Technology Kharagpur, Kharagpur, India
BookMark eNp9kD9PwzAQxS1UJNrCB0AslphTfLGdP2NVCq2EykDbNXKcC3WVxsVOh3x7EloxMDDd6d7v3eneiAxqWyMh98AmACx9Wi_XH5OQhTDhwBLJxBUZgpRJwBhEg74PRZAyyW7IyPt9NxUSYEjsFndGnyrl6NqpPerGupbOKuW9KY1WjbE1VXXRq2U3oNPaHlTV0mdsOrhXTU23pkDr6cab-pMqumhzZwo6W62C7XROp07vTE-fHN6S61JVHu8udUw2L_P1bBG8vb8uZ9O3QIcpbwLQWhe84CJPQEHOsVTASpGnotRCQByLImEMUy6hSBlijmHUfSe0TPIkVJKPyeN579HZrxP6Jtvbk6u7k1kYMyYgkhF0VHymtLPeOywzbZqfnxunTJUBy_p0sz7drE83u6TbOeGP8-jMQbn2X8_D2WMQ8ZdPJQcZxfwbI-yHjg
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_vehicles7030063
crossref_primary_10_3390_ijgi11090487
crossref_primary_10_1038_s41598_025_90118_9
crossref_primary_10_1007_s42979_024_02945_8
crossref_primary_10_1016_j_cose_2024_104130
crossref_primary_10_1109_TITS_2024_3421623
crossref_primary_10_1109_TITS_2024_3438263
crossref_primary_10_1007_s11760_025_04798_x
crossref_primary_10_1145_3760525
crossref_primary_10_1016_j_iot_2024_101268
crossref_primary_10_7717_peerj_cs_1799
crossref_primary_10_1016_j_iot_2025_101561
crossref_primary_10_1109_TCE_2024_3523565
crossref_primary_10_3390_math11132910
crossref_primary_10_3390_machines12050309
crossref_primary_10_1016_j_jmsy_2024_10_016
crossref_primary_10_1016_j_knosys_2023_111313
crossref_primary_10_1016_j_neucom_2025_130516
crossref_primary_10_1016_j_array_2025_100471
crossref_primary_10_1016_j_autcon_2024_105332
crossref_primary_10_1016_j_rineng_2023_101026
crossref_primary_10_1109_ACCESS_2024_3422098
crossref_primary_10_1109_TITS_2023_3341457
crossref_primary_10_1109_JIOT_2024_3360294
crossref_primary_10_1049_itr2_12591
crossref_primary_10_1007_s11760_025_04002_0
crossref_primary_10_1109_TITS_2023_3290827
crossref_primary_10_1016_j_engappai_2024_108684
crossref_primary_10_1145_3719290
crossref_primary_10_1016_j_cja_2022_10_010
crossref_primary_10_1109_TCSVT_2023_3307655
crossref_primary_10_1016_j_trc_2025_105145
crossref_primary_10_1109_TITS_2024_3457569
crossref_primary_10_1016_j_knosys_2024_111387
crossref_primary_10_32604_cmes_2023_047065
crossref_primary_10_1109_TITS_2022_3209903
Cites_doi 10.3390/s16010115
10.1109/TMM.2017.2666540
10.1109/ITSC.2016.7795922
10.1109/CVPR.2015.7298878
10.1109/TCYB.2019.2931139
10.1109/TCYB.2018.2838668
10.1145/2499621
10.1145/2733373.2806222
10.1007/s41060-016-0014-1
10.1109/ICC.2018.8422402
10.1109/ICMLA.2018.00207
10.1109/TITS.2014.2340701
10.1109/TPAMI.2012.59
10.1109/CISP-BMEI.2016.7852681
10.1109/TITS.2018.2835308
10.1145/3417989
10.1109/ICASSP.2013.6639345
10.1007/978-3-319-10590-1_53
10.1109/ITSC.2017.8317618
10.1109/CVPR.2015.7299178
10.1145/1390156.1390290
10.1109/TPAMI.2017.2691769
10.1109/ACPR.2015.7486592
10.1109/CVPR.2011.5995407
10.1145/3097983.3098052
10.1109/ICCV.2013.338
10.1109/CVPR.2019.00895
10.1145/882082.882086
10.1109/CVPR.2015.7299101
10.1109/CVPR.2011.5995733
10.1109/ICCV.2015.492
10.1109/TITS.2018.2834958
10.1007/978-3-319-59081-3_23
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2013.392
10.1007/s10479-011-0841-3
10.1609/aaai.v33i01.33019428
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3108504
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 11902
ExternalDocumentID 10_1109_TITS_2021_3108504
9531567
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1cccd3d34b81a1b3efa10f4b94fc441774d800e9351d90eebe269054c58b82a53
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732310700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 04:16:48 EDT 2025
Tue Nov 18 22:11:51 EST 2025
Sat Nov 29 06:34:58 EST 2025
Wed Aug 27 02:23:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1cccd3d34b81a1b3efa10f4b94fc441774d800e9351d90eebe269054c58b82a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8100-8244
0000-0002-5735-5254
0000-0002-3904-732X
PQID 2700416561
PQPubID 75735
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TITS_2021_3108504
ieee_primary_9531567
proquest_journals_2700416561
crossref_primary_10_1109_TITS_2021_3108504
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Loy (ref7)
ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref33
ref10
ref32
ref2
Kingma (ref39)
ref1
Hammerla (ref5) 2016
Goodfellow (ref38) 2016; 1
ref17
ref16
ref19
Plötz (ref11)
ref18
Zimmerer (ref30) 2018
ref24
ref46
ref23
ref45
ref26
ref25
ref20
Kingma (ref40)
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref9
ref4
Yang (ref3)
ref6
Krizhevsky (ref12)
References_xml – ident: ref43
  doi: 10.3390/s16010115
– ident: ref21
  doi: 10.1109/TMM.2017.2666540
– ident: ref4
  doi: 10.1109/ITSC.2016.7795922
– ident: ref19
  doi: 10.1109/CVPR.2015.7298878
– ident: ref35
  doi: 10.1109/TCYB.2019.2931139
– ident: ref32
  doi: 10.1109/TCYB.2018.2838668
– start-page: 2672
  volume-title: Proc. ICLR
  ident: ref40
  article-title: Auto-encoding variational Bayes
– ident: ref8
  doi: 10.1145/2499621
– ident: ref20
  doi: 10.1145/2733373.2806222
– ident: ref22
  doi: 10.1007/s41060-016-0014-1
– ident: ref29
  doi: 10.1109/ICC.2018.8422402
– ident: ref31
  doi: 10.1109/ICMLA.2018.00207
– ident: ref1
  doi: 10.1109/TITS.2014.2340701
– year: 2016
  ident: ref5
  article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables
  publication-title: arXiv:1604.08880
– ident: ref14
  doi: 10.1109/TPAMI.2012.59
– ident: ref36
  doi: 10.1109/CISP-BMEI.2016.7852681
– ident: ref2
  doi: 10.1109/TITS.2018.2835308
– ident: ref6
  doi: 10.1145/3417989
– ident: ref15
  doi: 10.1109/ICASSP.2013.6639345
– ident: ref13
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref16
  doi: 10.1109/ITSC.2017.8317618
– ident: ref25
  doi: 10.1109/CVPR.2015.7299178
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref12
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref10
  doi: 10.1145/1390156.1390290
– ident: ref26
  doi: 10.1109/TPAMI.2017.2691769
– ident: ref33
  doi: 10.1109/ACPR.2015.7486592
– ident: ref23
  doi: 10.1109/CVPR.2011.5995407
– ident: ref28
  doi: 10.1145/3097983.3098052
– volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: ref38
– year: 2018
  ident: ref30
  article-title: Context-encoding variational autoencoder for unsupervised anomaly detection
  publication-title: arXiv:1812.05941
– ident: ref44
  doi: 10.1109/ICCV.2013.338
– ident: ref24
  doi: 10.1109/CVPR.2019.00895
– start-page: 600
  volume-title: Proc. ICLR
  ident: ref39
  article-title: Adam: A method for stochastic optimization
– ident: ref9
  doi: 10.1145/882082.882086
– volume-title: Proc. ECCV
  ident: ref7
  article-title: From local temporal correlation to global anomaly detection
– start-page: 3995
  volume-title: Proc. IJCAI
  ident: ref3
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition
– ident: ref18
  doi: 10.1109/CVPR.2015.7299101
– ident: ref42
  doi: 10.1109/CVPR.2011.5995733
– ident: ref41
  doi: 10.1109/ICCV.2015.492
– ident: ref34
  doi: 10.1109/TITS.2018.2834958
– start-page: 1729
  volume-title: Proc. IJCAI
  ident: ref11
  article-title: Feature learning for activity recognition in ubiquitous computing
– ident: ref45
  doi: 10.1007/978-3-319-59081-3_23
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref46
  doi: 10.1109/CVPR.2013.392
– ident: ref37
  doi: 10.1007/s10479-011-0841-3
– ident: ref27
  doi: 10.1609/aaai.v33i01.33019428
SSID ssj0014511
Score 2.5713592
Snippet Visual surveillance has become indispensable in the evolution of Intelligent Transportation Systems (ITS). Video object trajectories are key to many of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11891
SubjectTerms Anomalies
Anomaly detection
Artificial neural networks
Classification
Convolutional neural network
Convolutional neural networks
Datasets
deep learning
Dirichlet process mixture model
Feature extraction
Image color analysis
Intelligent transportation systems
Movement
Moving object recognition
Neural networks
Representations
Surveillance
traffic anomaly detection
Traffic speed
Training data
Trajectories
Trajectory
trajectory classification
Transportation networks
variational autoencoder
Videos
visual surveillance
Title Vehicular Trajectory Classification and Traffic Anomaly Detection in Videos Using a Hybrid CNN-VAE Architecture
URI https://ieeexplore.ieee.org/document/9531567
https://www.proquest.com/docview/2700416561
Volume 23
WOSCitedRecordID wos000732310700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS-QwFL2o-LA--Lni-EUefFo2a9Ik0-Zx8AMFGYQdB99KmtyyI9qKMwrz7-3NdAaXlQXfCk2g9KS9uTnnngtwktggilI4HrwSXGe2y63OFM-8djrRoXA-WubfpP1-dn9vb5fg56IWBhGj-Ax_0WXk8kPtX-mo7NQ2C8Z002VYTtPurFZrwRiQz1b0Rk00t8LMGUwp7OngevC7yQQT2SSo5NCm_4pBsanKP3_iGF4uN772YJuw3m4jWW-G-xYsYbUNax_MBXegHuKfUVSZsiYgPcTT-SmLTTBJHhQRYa4KdJd8JFivqp_c45Sd4yTqsyo2qthwFLAes6gsYI5dTanCi531-3zYu2C9DzTEd7i7vBicXfG2vQL3TYyfcOm9DyooXWTSyUJh6aQodWF16akxWapDs5tEq4wMVmCDdtKk0kZ7kxVZ4ozahZWqrnAPGHpTlNRANCReZ4bISyzRK5Vqh6mRHRDzF5771nucWmA85jEHETYnjHLCKG8x6sCPxZTnmfHG_wbvECiLgS0eHTico5q3n-Y4J6Zdk-eQ3P981gF8S6jGIar8DmFl8vKKR7Dq3yaj8ctxXHXvPhPUfA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9RAFL3UKlgf_KrF1arz4JM4dj6bzOPSD7a4BsF16VuYzNzgSk2kuxX235s7m10qlULfApmBkDPJnTvn3HMB3isXRVULz2PQgpvcHXJncs3zYLxRJlY-JMv8cVYU-fm5-7oFHze1MIiYxGf4iS4Tlx_bcEVHZQeuWzD2MLsH960xSqyqtTacATltJXdUZbgTds1hSuEOJmeTb10uqGSXopJHm_knCqW2Kjf-xSnAnD6526M9hcf9RpINV8g_gy1snsOja_aCu9BO8ccs6UxZF5J-pvP5JUttMEkglDBhvol0l5wk2LBpf_mLJTvGRVJoNWzWsOksYjtnSVvAPBstqcaLHRUFnw5P2PAaEfECvp-eTI5GvG-wwEMX5RdchhCijtpUufSy0lh7KWpTOVMHak2WmdjtJ9FpK6MT2OGtumTammDzKlfe6j3YbtoGXwLDYKuaWohGFUxuib7EGoPWmfGYWTkAsX7hZejdx6kJxkWZshDhSsKoJIzKHqMBfNhM-b2y3rht8C6BshnY4zGA_TWqZf9xzkvi2g25DslX_5_1Dh6OJl_G5fis-PwadhRVPCTN3z5sLy6v8A08CH8Ws_nl27QC_wJzjNfD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicular+Trajectory+Classification+and+Traffic+Anomaly+Detection+in+Videos+Using+a+Hybrid+CNN-VAE+Architecture&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Kumaran+Santhosh%2C+Kelathodi&rft.au=Dogra%2C+Debi+Prosad&rft.au=Roy%2C+Partha+Pratim&rft.au=Mitra%2C+Adway&rft.date=2022-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=8&rft.spage=11891&rft.epage=11902&rft_id=info:doi/10.1109%2FTITS.2021.3108504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2021_3108504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon