Learning to Solve Task-Optimized Group Search for Social Internet of Things
With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the a...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 34; číslo 11; s. 5429 - 5445 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS) , to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS) , for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches. |
|---|---|
| AbstractList | With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS) , to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS) , for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches. |
| Author | Yang, Chen-Hsu Chen, Ming-Syan Shuai, Hong-Han Shen, Chih-Ya |
| Author_xml | – sequence: 1 givenname: Chen-Hsu surname: Yang fullname: Yang, Chen-Hsu email: s107062525@m107.nthu.edu.tw organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 2 givenname: Hong-Han orcidid: 0000-0003-2216-077X surname: Shuai fullname: Shuai, Hong-Han email: hhshuai@nctu.edu.tw organization: Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan – sequence: 3 givenname: Chih-Ya orcidid: 0000-0002-0377-7945 surname: Shen fullname: Shen, Chih-Ya email: chihya@cs.nthu.edu.tw organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Ming-Syan orcidid: 0000-0002-0711-8197 surname: Chen fullname: Chen, Ming-Syan email: mschen@ntu.edu.tw organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan |
| BookMark | eNp9kLFOwzAQhi1UJNrCAyAWS8wpvjhO7BGVUqpW6tAwR05iU5c0Do6LBE-Pq1YMDEx3w__9d_pGaNDaViF0C2QCQMRDvnyaTWISw4QSltEULtAQGONRDAIGYScJRAlNsis06vsdIYRnHIZouVLStaZ9w97ijW0-Fc5l_x6tO2_25lvVeO7socObEKu2WFsXUpWRDV60XrlWeWw1zrehob9Gl1o2vbo5zzF6fZ7l05dotZ4vpo-rqIoF9RGUkgleQgaiVjWnVAJwUlUyTUHHJJNM07RUhEtWKq7Dq5rVFQDLSgFJTegY3Z96O2c_Dqr3xc4eXBtOFnEWxywRPCgYIzilKmf73ilddM7spfsqgBRHZ8XRWXF0VpydBSb7w1TGS29s6500zb_k3Yk0SqnfSyIITwWhP1FreiA |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1109_TCSS_2022_3152179 crossref_primary_10_1109_TCSS_2023_3332091 crossref_primary_10_1109_JIOT_2025_3531985 crossref_primary_10_1109_TCSS_2024_3462934 crossref_primary_10_1016_j_iot_2024_101455 crossref_primary_10_3389_fdata_2023_1200382 crossref_primary_10_1109_TCSS_2023_3340230 crossref_primary_10_1109_JIOT_2022_3163514 crossref_primary_10_1109_TSC_2023_3248321 crossref_primary_10_1109_TCSS_2023_3344642 crossref_primary_10_1109_TCSS_2022_3224935 crossref_primary_10_1007_s10489_024_05862_8 |
| Cites_doi | 10.1109/TCSS.2019.2909137 10.1109/ICDE.2018.00069 10.1145/3292500.3330986 10.1145/3269206.3271767 10.1609/aaai.v32i1.11310 10.14778/3282495.3282497 10.1145/3219819.3220093 10.1145/3183713.3196929 10.1609/aaai.v34i04.5984 10.1109/ICTAI.2019.00125 10.1109/TAEECE.2015.7113633 10.1145/2063576.2063718 10.1145/2623330.2623732 10.1109/TDSC.2015.2420552 10.1103/RevModPhys.74.47 10.1609/aaai.v33i01.33011443 10.1109/CVPR.2018.00131 10.1109/ICDE.2018.00077 10.1145/2806416.2806423 10.1109/ICDE.2019.00014 10.1145/1557019.1557074 10.1038/nature14236 10.1145/3097983.3097995 10.1145/2736277.2741093 10.14778/3055540.3055547 10.1109/JIOT.2017.2775248 10.1038/30918 10.1109/BigData.2018.8622352 10.1109/ICDE.2019.00015 10.1145/2818714 10.1016/j.neucom.2019.06.111 10.1109/TKDE.2013.105 10.1145/3292500.3330832 10.1109/TKDE.2020.3025911 10.1609/aaai.v30i1.10080 10.1016/0378-8733(83)90028-x 10.1109/TKDE.2020.2980516 10.1109/PIMRC.2018.8580830 10.1109/TKDE.2018.2797962 10.1145/3340531.3411867 10.1109/TCSS.2018.2859580 10.1109/GLOCOM.2018.8648030 10.1109/ICDE.2019.00083 10.1109/TKDE.2017.2762678 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2021.3057361 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 5445 |
| ExternalDocumentID | 10_1109_TKDE_2021_3057361 9347690 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan; Ministry of Science and Technology of Taiwan grantid: MOST-108-2622-E-009-026-CC2; MOST-109-2218-E-009-016; MOST-109-2221-E-001-015; MOST-109-2636-E-007-019; MOST-110-2636-E-007-004; MOST-108-2221-E-002-022-MY3 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-1ba598b1719ded833a1180cca661f207a5f36be08a5be8f000f5dc1157b914d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865093000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 30 05:06:41 EST 2025 Sat Nov 29 02:36:03 EST 2025 Tue Nov 18 21:43:03 EST 2025 Wed Aug 27 02:29:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-1ba598b1719ded833a1180cca661f207a5f36be08a5be8f000f5dc1157b914d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2216-077X 0000-0002-0711-8197 0000-0002-0377-7945 |
| PQID | 2722549857 |
| PQPubID | 85438 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2021_3057361 ieee_primary_9347690 crossref_citationtrail_10_1109_TKDE_2021_3057361 proquest_journals_2722549857 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref14 ref53 ref11 Nazari (ref40) ref10 Khalil (ref33) Munkhdalai (ref58) ref17 ref16 ref19 ref18 ref51 ref50 Finn (ref60) Yosinski (ref66) Selsam (ref39) 2019 Bahdanau (ref54) ref45 ref48 ref44 ref49 Leskovec (ref63) 2014 ref8 ref7 ref9 ref4 He (ref35) ref3 ref6 Erdos (ref52) 1960; 5 ref5 Santoro (ref59) ref37 ref36 ref31 ref30 ref2 ref1 Snell (ref56) ref38 Kool (ref43) 2019 Li (ref34) ref24 ref23 ref26 Chen (ref41) ref25 ref20 Khalil (ref46) ref64 ref22 ref21 ref65 ref28 ref27 ref29 Vinyals (ref32) Santoro (ref55) 2016 Finn (ref61) ref62 Bello (ref42) 2017 Li (ref47) |
| References_xml | – ident: ref27 doi: 10.1109/TCSS.2019.2909137 – start-page: 9839 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref40 article-title: Reinforcement learning for solving the vehicle routing problem – start-page: 4080 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref56 article-title: Prototypical networks for few-shot learning – start-page: 6278 volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst. ident: ref41 article-title: Learning to perform local rewriting for combinatorial optimization – ident: ref20 doi: 10.1109/ICDE.2018.00069 – start-page: 2554 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref58 article-title: Meta networks – ident: ref9 doi: 10.1145/3292500.3330986 – ident: ref18 doi: 10.1145/3269206.3271767 – ident: ref22 doi: 10.1609/aaai.v32i1.11310 – ident: ref21 doi: 10.14778/3282495.3282497 – ident: ref7 doi: 10.1145/3219819.3220093 – ident: ref25 doi: 10.1145/3183713.3196929 – ident: ref48 doi: 10.1609/aaai.v34i04.5984 – ident: ref31 doi: 10.1109/ICTAI.2019.00125 – start-page: 9537 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref61 article-title: Probabilistic model-agnostic meta-learning – ident: ref3 doi: 10.1109/TAEECE.2015.7113633 – ident: ref29 doi: 10.1145/2063576.2063718 – start-page: 3293 volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst. ident: ref35 article-title: Learning to search in branch and bound algorithms – ident: ref49 doi: 10.1145/2623330.2623732 – ident: ref2 doi: 10.1109/TDSC.2015.2420552 – ident: ref64 doi: 10.1103/RevModPhys.74.47 – ident: ref44 doi: 10.1609/aaai.v33i01.33011443 – start-page: 539 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref34 article-title: Combinatorial optimization with graph convolutional networks and guided tree search – ident: ref57 doi: 10.1109/CVPR.2018.00131 – ident: ref17 doi: 10.1109/ICDE.2018.00077 – ident: ref14 doi: 10.1145/2806416.2806423 – ident: ref6 doi: 10.1109/ICDE.2019.00014 – ident: ref28 doi: 10.1145/1557019.1557074 – ident: ref51 doi: 10.1038/nature14236 – start-page: 539 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref47 article-title: Combinatorial optimization with graph convolutional networks and guided tree search – start-page: 1842 volume-title: Proc. 33rd Int. Conf. Mach. Learn. ident: ref59 article-title: Meta-learning with memory-augmented neural networks – ident: ref13 doi: 10.1145/3097983.3097995 – start-page: 6348 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref33 article-title: Learning combinatorial optimization algorithms over graphs – start-page: 1126 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref60 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref50 doi: 10.1145/2736277.2741093 – ident: ref26 doi: 10.14778/3055540.3055547 – ident: ref4 doi: 10.1109/JIOT.2017.2775248 – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref54 article-title: Neural machine translation by jointly learning to align and translate – ident: ref65 doi: 10.1038/30918 – ident: ref8 doi: 10.1109/BigData.2018.8622352 – ident: ref10 doi: 10.1109/ICDE.2019.00015 – ident: ref30 doi: 10.1145/2818714 – ident: ref37 doi: 10.1016/j.neucom.2019.06.111 – ident: ref1 doi: 10.1109/TKDE.2013.105 – ident: ref38 doi: 10.1145/3292500.3330832 – start-page: 6348 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref46 article-title: Learning combinatorial optimization algorithms over graphs – volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2017 ident: ref42 article-title: Neural combinatorial optimization with reinforcement learning – start-page: 2692 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref32 article-title: Pointer networks – ident: ref12 doi: 10.1109/TKDE.2020.3025911 – ident: ref36 doi: 10.1609/aaai.v30i1.10080 – ident: ref45 doi: 10.1016/0378-8733(83)90028-x – volume: 5 start-page: 17 year: 1960 ident: ref52 article-title: On the evolution of random graphs publication-title: Publication Math. Inst. Hungarian Acad. Sci. – start-page: 3320 volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst. ident: ref66 article-title: How transferable are features in deep neural networks? – ident: ref19 doi: 10.1109/TKDE.2020.2980516 – ident: ref53 doi: 10.1038/nature14236 – ident: ref62 doi: 10.1109/PIMRC.2018.8580830 – year: 2016 ident: ref55 article-title: One-shot learning with memory-augmented neural networks publication-title: CoRR – ident: ref24 doi: 10.1109/TKDE.2018.2797962 – year: 2014 ident: ref63 article-title: SNAP Datasets: Stanford large network dataset collection – ident: ref11 doi: 10.1145/3340531.3411867 – ident: ref15 doi: 10.1109/TCSS.2018.2859580 – volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2019 ident: ref43 article-title: Attention, learn to solve routing problems! – ident: ref23 doi: 10.1109/GLOCOM.2018.8648030 – ident: ref16 doi: 10.1109/ICDE.2019.00083 – ident: ref5 doi: 10.1109/TKDE.2017.2762678 – volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2019 ident: ref39 article-title: Learning a sat solver from single-bit supervision |
| SSID | ssj0008781 |
| Score | 2.4813678 |
| Snippet | With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5429 |
| SubjectTerms | Algorithms Deep learning Feature extraction graph convolutional networks graph optimization problems Internet of Things Machine learning Machine learning algorithms meta learning Polynomials Protocols Reinforcement learning Social Internet of Things Social networking (online) Task analysis Task complexity |
| Title | Learning to Solve Task-Optimized Group Search for Social Internet of Things |
| URI | https://ieeexplore.ieee.org/document/9347690 https://www.proquest.com/docview/2722549857 |
| Volume | 34 |
| WOSCitedRecordID | wos000865093000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenDrF6ZQcPInVtlmX5Ci6IUym4BRvJV-V4Vxl63bwrzdJs6EogrceXiC8X_O-kvd7ACcsoZyrjAY8ti05lCaBYBIHSkrCiFBCuHrH0y0ZDOjzM7uvwNmqF0Zr7R6f6XP76e7yVS7ntlR2wXCbmGyuClVCSNmrtbK6lLiBpCa7MDmRkfM3mFHILob9667JBOPoHFv6v070zQe5oSo_LLFzL736_za2BZs-jESXJe7bUNGTHagvRzQgf2J3YOML32AD-p5N9QUVOXrIxwuNhnz2GtwZu_E2-tAKuVIUKt8gIxPPorJ9F5WFQ12gPEPlqM9deOx1h1c3gZ-mEEjj0osgEjxhVEQkYkorijG37G8GQOOhszgkPMlwR-iQ8kRomhmVZomSlotHsKitQrwHtUk-0fuAQi6wlFEnpJJbG8AIV1ibYEGbeMPEA00Il_pNpacatxMvxqlLOUKWWkhSC0nqIWnC6WrJe8mz8Zdww2KwEvTqb0JrCWLqT-IsjUlsc2CakIPfVx3CemxbGlx_YQtqxXSuj2BNLorRbHrsfrJPqIrNSA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64gXpwF-uagydx7GTSaZKjuKC0VsEq3oZsI6J2xE578NebZNKiKIK3ObxAeN_kbcn7HsA-T5kQOmeRSFxLDmNpJLkikVaKciq1lL7ecd-mnQ57eOA3E3A47oUxxvjHZ-bIffq7fF2ogSuV1TlpUJvNTcJ02mgkuOrWGttdRv1IUptf2KzISoY7TBzzerd1emZzwQQfEUcA2MTfvJAfq_LDFnsHc774v60twUIIJNFxhfwyTJjeCiyOhjSgcGZXYP4L4-AqtAKf6iMqC3RbvAwN6or-c3RtLcfr04fRyBejUPUKGdmIFlUNvKgqHZoSFTmqhn2uwd35WffkIgrzFCJlnXoZYSlSziSmmGujGSHC8b9ZCK2PzpOYijQnTWliJlJpWG5VmqdaOTYeyXFDx2QdpnpFz2wAioUkSuFmzJRwVoBToYmx4YKxEYeNCGoQj_SbqUA27mZevGQ-6Yh55iDJHCRZgKQGB-MlbxXTxl_Cqw6DsWBQfw22RyBm4Sz2s4QmLgtmKd38fdUezF50r9pZ-7LT2oK5xDU4-G7DbZgq3wdmB2bUsHzqv-_6H-4TgpzQjw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Solve+Task-Optimized+Group+Search+for+Social+Internet+of+Things&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yang%2C+Chen-Hsu&rft.au=Shuai%2C+Hong-Han&rft.au=Shen%2C+Chih-Ya&rft.au=Chen%2C+Ming-Syan&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=11&rft.spage=5429&rft.epage=5445&rft_id=info:doi/10.1109%2FTKDE.2021.3057361&rft.externalDocID=9347690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |