Learning to Solve Task-Optimized Group Search for Social Internet of Things

With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 34; číslo 11; s. 5429 - 5445
Hlavní autori: Yang, Chen-Hsu, Shuai, Hong-Han, Shen, Chih-Ya, Chen, Ming-Syan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS) , to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS) , for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches.
AbstractList With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications and networking services for the IoT in more effective and efficient ways. Although there are many works for SIoT, they focus on designing the architectures and protocols for SIoT under the specific schemes. How to efficiently utilize the collaboration capability of SIoT to complete complex tasks remains unexplored. Therefore, we propose a new problem family, namely, Task-Optimized SIoT Selection (TOSS) , to find the best group of IoT objects for a given set of tasks in the task pool. TOSS aims to select the target SIoT group such that the target SIoT group is able to easily communicate with each other while maximizing the accuracy of performing the given tasks. We propose two problem formulations, named Bounded Communication-loss TOSS (BC-TOSS) and Robustness Guaranteed TOSS (RG-TOSS) , for different scenarios and prove that they are both NP-hard and inapproximable. We propose a polynomial-time algorithm with a performance guarantee for BC-TOSS, and an efficient polynomial-time algorithm to obtain good solutions for RG-TOSS. Moreover, as RG-TOSS is NP-hard and inapproximable within any factor, we further propose Structure-Aware Reinforcement Learning (SARL) to leverage the Graph Convolutional Networks (GCN) and Deep Reinforcement Learning (DRL) to effectively solve RG-TOSS. Further, since we use graph models to simulate the problem instance for DRL, which is different from the real ones, we propose Structure-Aware Meta Reinforcement Learning (SAMRL) for fast adapting to new domains. Experimental results on multiple real datasets indicate that our proposed algorithms outperform the other deterministic and learning-based baseline approaches.
Author Yang, Chen-Hsu
Chen, Ming-Syan
Shuai, Hong-Han
Shen, Chih-Ya
Author_xml – sequence: 1
  givenname: Chen-Hsu
  surname: Yang
  fullname: Yang, Chen-Hsu
  email: s107062525@m107.nthu.edu.tw
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Hong-Han
  orcidid: 0000-0003-2216-077X
  surname: Shuai
  fullname: Shuai, Hong-Han
  email: hhshuai@nctu.edu.tw
  organization: Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 3
  givenname: Chih-Ya
  orcidid: 0000-0002-0377-7945
  surname: Shen
  fullname: Shen, Chih-Ya
  email: chihya@cs.nthu.edu.tw
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Ming-Syan
  orcidid: 0000-0002-0711-8197
  surname: Chen
  fullname: Chen, Ming-Syan
  email: mschen@ntu.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNp9kLFOwzAQhi1UJNrCAyAWS8wpvjhO7BGVUqpW6tAwR05iU5c0Do6LBE-Pq1YMDEx3w__9d_pGaNDaViF0C2QCQMRDvnyaTWISw4QSltEULtAQGONRDAIGYScJRAlNsis06vsdIYRnHIZouVLStaZ9w97ijW0-Fc5l_x6tO2_25lvVeO7socObEKu2WFsXUpWRDV60XrlWeWw1zrehob9Gl1o2vbo5zzF6fZ7l05dotZ4vpo-rqIoF9RGUkgleQgaiVjWnVAJwUlUyTUHHJJNM07RUhEtWKq7Dq5rVFQDLSgFJTegY3Z96O2c_Dqr3xc4eXBtOFnEWxywRPCgYIzilKmf73ilddM7spfsqgBRHZ8XRWXF0VpydBSb7w1TGS29s6500zb_k3Yk0SqnfSyIITwWhP1FreiA
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TCSS_2022_3152179
crossref_primary_10_1109_TCSS_2023_3332091
crossref_primary_10_1109_JIOT_2025_3531985
crossref_primary_10_1109_TCSS_2024_3462934
crossref_primary_10_1016_j_iot_2024_101455
crossref_primary_10_3389_fdata_2023_1200382
crossref_primary_10_1109_TCSS_2023_3340230
crossref_primary_10_1109_JIOT_2022_3163514
crossref_primary_10_1109_TSC_2023_3248321
crossref_primary_10_1109_TCSS_2023_3344642
crossref_primary_10_1109_TCSS_2022_3224935
crossref_primary_10_1007_s10489_024_05862_8
Cites_doi 10.1109/TCSS.2019.2909137
10.1109/ICDE.2018.00069
10.1145/3292500.3330986
10.1145/3269206.3271767
10.1609/aaai.v32i1.11310
10.14778/3282495.3282497
10.1145/3219819.3220093
10.1145/3183713.3196929
10.1609/aaai.v34i04.5984
10.1109/ICTAI.2019.00125
10.1109/TAEECE.2015.7113633
10.1145/2063576.2063718
10.1145/2623330.2623732
10.1109/TDSC.2015.2420552
10.1103/RevModPhys.74.47
10.1609/aaai.v33i01.33011443
10.1109/CVPR.2018.00131
10.1109/ICDE.2018.00077
10.1145/2806416.2806423
10.1109/ICDE.2019.00014
10.1145/1557019.1557074
10.1038/nature14236
10.1145/3097983.3097995
10.1145/2736277.2741093
10.14778/3055540.3055547
10.1109/JIOT.2017.2775248
10.1038/30918
10.1109/BigData.2018.8622352
10.1109/ICDE.2019.00015
10.1145/2818714
10.1016/j.neucom.2019.06.111
10.1109/TKDE.2013.105
10.1145/3292500.3330832
10.1109/TKDE.2020.3025911
10.1609/aaai.v30i1.10080
10.1016/0378-8733(83)90028-x
10.1109/TKDE.2020.2980516
10.1109/PIMRC.2018.8580830
10.1109/TKDE.2018.2797962
10.1145/3340531.3411867
10.1109/TCSS.2018.2859580
10.1109/GLOCOM.2018.8648030
10.1109/ICDE.2019.00083
10.1109/TKDE.2017.2762678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3057361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5445
ExternalDocumentID 10_1109_TKDE_2021_3057361
9347690
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan; Ministry of Science and Technology of Taiwan
  grantid: MOST-108-2622-E-009-026-CC2; MOST-109-2218-E-009-016; MOST-109-2221-E-001-015; MOST-109-2636-E-007-019; MOST-110-2636-E-007-004; MOST-108-2221-E-002-022-MY3
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1ba598b1719ded833a1180cca661f207a5f36be08a5be8f000f5dc1157b914d03
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865093000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 30 05:06:41 EST 2025
Sat Nov 29 02:36:03 EST 2025
Tue Nov 18 21:43:03 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1ba598b1719ded833a1180cca661f207a5f36be08a5be8f000f5dc1157b914d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2216-077X
0000-0002-0711-8197
0000-0002-0377-7945
PQID 2722549857
PQPubID 85438
PageCount 17
ParticipantIDs crossref_primary_10_1109_TKDE_2021_3057361
ieee_primary_9347690
crossref_citationtrail_10_1109_TKDE_2021_3057361
proquest_journals_2722549857
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref14
ref53
ref11
Nazari (ref40)
ref10
Khalil (ref33)
Munkhdalai (ref58)
ref17
ref16
ref19
ref18
ref51
ref50
Finn (ref60)
Yosinski (ref66)
Selsam (ref39) 2019
Bahdanau (ref54)
ref45
ref48
ref44
ref49
Leskovec (ref63) 2014
ref8
ref7
ref9
ref4
He (ref35)
ref3
ref6
Erdos (ref52) 1960; 5
ref5
Santoro (ref59)
ref37
ref36
ref31
ref30
ref2
ref1
Snell (ref56)
ref38
Kool (ref43) 2019
Li (ref34)
ref24
ref23
ref26
Chen (ref41)
ref25
ref20
Khalil (ref46)
ref64
ref22
ref21
ref65
ref28
ref27
ref29
Vinyals (ref32)
Santoro (ref55) 2016
Finn (ref61)
ref62
Bello (ref42) 2017
Li (ref47)
References_xml – ident: ref27
  doi: 10.1109/TCSS.2019.2909137
– start-page: 9839
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Reinforcement learning for solving the vehicle routing problem
– start-page: 4080
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref56
  article-title: Prototypical networks for few-shot learning
– start-page: 6278
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Learning to perform local rewriting for combinatorial optimization
– ident: ref20
  doi: 10.1109/ICDE.2018.00069
– start-page: 2554
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref58
  article-title: Meta networks
– ident: ref9
  doi: 10.1145/3292500.3330986
– ident: ref18
  doi: 10.1145/3269206.3271767
– ident: ref22
  doi: 10.1609/aaai.v32i1.11310
– ident: ref21
  doi: 10.14778/3282495.3282497
– ident: ref7
  doi: 10.1145/3219819.3220093
– ident: ref25
  doi: 10.1145/3183713.3196929
– ident: ref48
  doi: 10.1609/aaai.v34i04.5984
– ident: ref31
  doi: 10.1109/ICTAI.2019.00125
– start-page: 9537
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref61
  article-title: Probabilistic model-agnostic meta-learning
– ident: ref3
  doi: 10.1109/TAEECE.2015.7113633
– ident: ref29
  doi: 10.1145/2063576.2063718
– start-page: 3293
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Learning to search in branch and bound algorithms
– ident: ref49
  doi: 10.1145/2623330.2623732
– ident: ref2
  doi: 10.1109/TDSC.2015.2420552
– ident: ref64
  doi: 10.1103/RevModPhys.74.47
– ident: ref44
  doi: 10.1609/aaai.v33i01.33011443
– start-page: 539
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Combinatorial optimization with graph convolutional networks and guided tree search
– ident: ref57
  doi: 10.1109/CVPR.2018.00131
– ident: ref17
  doi: 10.1109/ICDE.2018.00077
– ident: ref14
  doi: 10.1145/2806416.2806423
– ident: ref6
  doi: 10.1109/ICDE.2019.00014
– ident: ref28
  doi: 10.1145/1557019.1557074
– ident: ref51
  doi: 10.1038/nature14236
– start-page: 539
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref47
  article-title: Combinatorial optimization with graph convolutional networks and guided tree search
– start-page: 1842
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  ident: ref59
  article-title: Meta-learning with memory-augmented neural networks
– ident: ref13
  doi: 10.1145/3097983.3097995
– start-page: 6348
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Learning combinatorial optimization algorithms over graphs
– start-page: 1126
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref60
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref50
  doi: 10.1145/2736277.2741093
– ident: ref26
  doi: 10.14778/3055540.3055547
– ident: ref4
  doi: 10.1109/JIOT.2017.2775248
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  ident: ref54
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref65
  doi: 10.1038/30918
– ident: ref8
  doi: 10.1109/BigData.2018.8622352
– ident: ref10
  doi: 10.1109/ICDE.2019.00015
– ident: ref30
  doi: 10.1145/2818714
– ident: ref37
  doi: 10.1016/j.neucom.2019.06.111
– ident: ref1
  doi: 10.1109/TKDE.2013.105
– ident: ref38
  doi: 10.1145/3292500.3330832
– start-page: 6348
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Learning combinatorial optimization algorithms over graphs
– volume-title: Proc. 7th Int. Conf. Learn. Representations
  year: 2017
  ident: ref42
  article-title: Neural combinatorial optimization with reinforcement learning
– start-page: 2692
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Pointer networks
– ident: ref12
  doi: 10.1109/TKDE.2020.3025911
– ident: ref36
  doi: 10.1609/aaai.v30i1.10080
– ident: ref45
  doi: 10.1016/0378-8733(83)90028-x
– volume: 5
  start-page: 17
  year: 1960
  ident: ref52
  article-title: On the evolution of random graphs
  publication-title: Publication Math. Inst. Hungarian Acad. Sci.
– start-page: 3320
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  ident: ref66
  article-title: How transferable are features in deep neural networks?
– ident: ref19
  doi: 10.1109/TKDE.2020.2980516
– ident: ref53
  doi: 10.1038/nature14236
– ident: ref62
  doi: 10.1109/PIMRC.2018.8580830
– year: 2016
  ident: ref55
  article-title: One-shot learning with memory-augmented neural networks
  publication-title: CoRR
– ident: ref24
  doi: 10.1109/TKDE.2018.2797962
– year: 2014
  ident: ref63
  article-title: SNAP Datasets: Stanford large network dataset collection
– ident: ref11
  doi: 10.1145/3340531.3411867
– ident: ref15
  doi: 10.1109/TCSS.2018.2859580
– volume-title: Proc. 7th Int. Conf. Learn. Representations
  year: 2019
  ident: ref43
  article-title: Attention, learn to solve routing problems!
– ident: ref23
  doi: 10.1109/GLOCOM.2018.8648030
– ident: ref16
  doi: 10.1109/ICDE.2019.00083
– ident: ref5
  doi: 10.1109/TKDE.2017.2762678
– volume-title: Proc. 7th Int. Conf. Learn. Representations
  year: 2019
  ident: ref39
  article-title: Learning a sat solver from single-bit supervision
SSID ssj0008781
Score 2.4813678
Snippet With the maturity and popularity of Internet of Things (IoT), the notion of Social Internet of Things (SIoT) has been proposed to support novel applications...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5429
SubjectTerms Algorithms
Deep learning
Feature extraction
graph convolutional networks
graph optimization problems
Internet of Things
Machine learning
Machine learning algorithms
meta learning
Polynomials
Protocols
Reinforcement learning
Social Internet of Things
Social networking (online)
Task analysis
Task complexity
Title Learning to Solve Task-Optimized Group Search for Social Internet of Things
URI https://ieeexplore.ieee.org/document/9347690
https://www.proquest.com/docview/2722549857
Volume 34
WOSCitedRecordID wos000865093000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MenDrF6ZQcPInVtlmX5Ci6IUym4BRvJV-V4Vxl63bwrzdJs6EogrceXiC8X_O-kvd7ACcsoZyrjAY8ti05lCaBYBIHSkrCiFBCuHrH0y0ZDOjzM7uvwNmqF0Zr7R6f6XP76e7yVS7ntlR2wXCbmGyuClVCSNmrtbK6lLiBpCa7MDmRkfM3mFHILob9667JBOPoHFv6v070zQe5oSo_LLFzL736_za2BZs-jESXJe7bUNGTHagvRzQgf2J3YOML32AD-p5N9QUVOXrIxwuNhnz2GtwZu_E2-tAKuVIUKt8gIxPPorJ9F5WFQ12gPEPlqM9deOx1h1c3gZ-mEEjj0osgEjxhVEQkYkorijG37G8GQOOhszgkPMlwR-iQ8kRomhmVZomSlotHsKitQrwHtUk-0fuAQi6wlFEnpJJbG8AIV1ibYEGbeMPEA00Il_pNpacatxMvxqlLOUKWWkhSC0nqIWnC6WrJe8mz8Zdww2KwEvTqb0JrCWLqT-IsjUlsc2CakIPfVx3CemxbGlx_YQtqxXSuj2BNLorRbHrsfrJPqIrNSA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64gXpwF-uagydx7GTSaZKjuKC0VsEq3oZsI6J2xE578NebZNKiKIK3ObxAeN_kbcn7HsA-T5kQOmeRSFxLDmNpJLkikVaKciq1lL7ecd-mnQ57eOA3E3A47oUxxvjHZ-bIffq7fF2ogSuV1TlpUJvNTcJ02mgkuOrWGttdRv1IUptf2KzISoY7TBzzerd1emZzwQQfEUcA2MTfvJAfq_LDFnsHc774v60twUIIJNFxhfwyTJjeCiyOhjSgcGZXYP4L4-AqtAKf6iMqC3RbvAwN6or-c3RtLcfr04fRyBejUPUKGdmIFlUNvKgqHZoSFTmqhn2uwd35WffkIgrzFCJlnXoZYSlSziSmmGujGSHC8b9ZCK2PzpOYijQnTWliJlJpWG5VmqdaOTYeyXFDx2QdpnpFz2wAioUkSuFmzJRwVoBToYmx4YKxEYeNCGoQj_SbqUA27mZevGQ-6Yh55iDJHCRZgKQGB-MlbxXTxl_Cqw6DsWBQfw22RyBm4Sz2s4QmLgtmKd38fdUezF50r9pZ-7LT2oK5xDU4-G7DbZgq3wdmB2bUsHzqv-_6H-4TgpzQjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Solve+Task-Optimized+Group+Search+for+Social+Internet+of+Things&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yang%2C+Chen-Hsu&rft.au=Shuai%2C+Hong-Han&rft.au=Shen%2C+Chih-Ya&rft.au=Chen%2C+Ming-Syan&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=11&rft.spage=5429&rft.epage=5445&rft_id=info:doi/10.1109%2FTKDE.2021.3057361&rft.externalDocID=9347690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon