Beyond the Limits of Predictability in Human Mobility Prediction: Context-Transition Predictability

Urban human mobility prediction is forecasting how people move in cities. It is crucial for many smart city applications including route optimization, preparing for dramatic shifts in modes of transportation, or mitigating the epidemic spread of viruses such as COVID-19. Previous research propose th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 5; s. 4514 - 4526
Hlavní autori: Zhang, Chao, Zhao, Kai, Chen, Meng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Urban human mobility prediction is forecasting how people move in cities. It is crucial for many smart city applications including route optimization, preparing for dramatic shifts in modes of transportation, or mitigating the epidemic spread of viruses such as COVID-19. Previous research propose the maximum predictability to derive the theoretical limits of accuracy that any predictive algorithm could achieve on predicting urban human mobility. However, existing maximum predictability only considers the sequential patterns of human movements and neglects the contextual information such as the time or the types of places that people visit, which plays an important role in predicting one's next location. In this paper, we propose new theoretical limits of predictability, namely Context-Transition Predictability, which not only captures the sequential patterns of human mobility, but also considers the contextual information of human behavior. We compare our Context-Transition Predictability with other kinds of predictability and find that it is larger than these existing ones. We also show that our proposed Context-Transition Predictability provides us a better guidance on which predictive algorithm to be used for forecasting the next location when considering the contextual information. Source code is at https://github.com/zcfinal/ContextTransitionPredictability .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2022.3148300