Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images

Synthetic aperture radar (SAR) ship detection is an important part of marine monitoring. With the development in computer vision, deep learning has been used for ship detection in SAR images such as the faster region-based convolutional neural network (R-CNN), single-shot multibox detector, and dens...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE geoscience and remote sensing letters Ročník 16; číslo 5; s. 751 - 755
Hlavní autori: Lin, Zhao, Ji, Kefeng, Leng, Xiangguang, Kuang, Gangyao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-598X, 1558-0571
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Synthetic aperture radar (SAR) ship detection is an important part of marine monitoring. With the development in computer vision, deep learning has been used for ship detection in SAR images such as the faster region-based convolutional neural network (R-CNN), single-shot multibox detector, and densely connected network. In SAR ship detection field, deep learning has much better detection performance than traditional methods on nearshore areas. This is because traditional methods need sea-land segmentation before detection, and inaccurate sea-land mask decreases its detection performance. Though current deep learning SAR ship detection methods still have many false detections in land areas, and some ships are missed in sea areas. In this letter, a new network architecture based on the faster R-CNN is proposed to further improve the detection performance by using squeeze and excitation mechanism. In order to improve performance, first, the feature maps are extracted and concatenated to obtain multiscale feature maps with ImageNet pretrained VGG network. After region of interest pooling, an encoding scale vector which has values between 0 and 1 is generated from subfeature maps. The scale vector is ranked, and only top <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> values will be preserved. Other values will be set to 0. Then, the subfeature maps are recalibrated by this scale vector. The redundant subfeature maps will be suppressed by this operation, and the detection performance of detector can be improved. The experimental results based on Sentinel-1 images show that the detection performance of the proposed method achieves 0.836 which is 9.7% better than the state-of-the-art method when using F1 as matric and executes 14% faster.
AbstractList Synthetic aperture radar (SAR) ship detection is an important part of marine monitoring. With the development in computer vision, deep learning has been used for ship detection in SAR images such as the faster region-based convolutional neural network (R-CNN), single-shot multibox detector, and densely connected network. In SAR ship detection field, deep learning has much better detection performance than traditional methods on nearshore areas. This is because traditional methods need se–land segmentation before detection, and inaccurate se–land mask decreases its detection performance. Though current deep learning SAR ship detection methods still have many false detections in land areas, and some ships are missed in sea areas. In this letter, a new network architecture based on the faster R-CNN is proposed to further improve the detection performance by using squeeze and excitation mechanism. In order to improve performance, first, the feature maps are extracted and concatenated to obtain multiscale feature maps with ImageNet pretrained VGG network. After region of interest pooling, an encoding scale vector which has values between 0 and 1 is generated from subfeature maps. The scale vector is ranked, and only top [Formula Omitted] values will be preserved. Other values will be set to 0. Then, the subfeature maps are recalibrated by this scale vector. The redundant subfeature maps will be suppressed by this operation, and the detection performance of detector can be improved. The experimental results based on Sentinel-1 images show that the detection performance of the proposed method achieves 0.836 which is 9.7% better than the state-of-the-art method when using F1 as matric and executes 14% faster.
Synthetic aperture radar (SAR) ship detection is an important part of marine monitoring. With the development in computer vision, deep learning has been used for ship detection in SAR images such as the faster region-based convolutional neural network (R-CNN), single-shot multibox detector, and densely connected network. In SAR ship detection field, deep learning has much better detection performance than traditional methods on nearshore areas. This is because traditional methods need sea-land segmentation before detection, and inaccurate sea-land mask decreases its detection performance. Though current deep learning SAR ship detection methods still have many false detections in land areas, and some ships are missed in sea areas. In this letter, a new network architecture based on the faster R-CNN is proposed to further improve the detection performance by using squeeze and excitation mechanism. In order to improve performance, first, the feature maps are extracted and concatenated to obtain multiscale feature maps with ImageNet pretrained VGG network. After region of interest pooling, an encoding scale vector which has values between 0 and 1 is generated from subfeature maps. The scale vector is ranked, and only top <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> values will be preserved. Other values will be set to 0. Then, the subfeature maps are recalibrated by this scale vector. The redundant subfeature maps will be suppressed by this operation, and the detection performance of detector can be improved. The experimental results based on Sentinel-1 images show that the detection performance of the proposed method achieves 0.836 which is 9.7% better than the state-of-the-art method when using F1 as matric and executes 14% faster.
Author Ji, Kefeng
Kuang, Gangyao
Lin, Zhao
Leng, Xiangguang
Author_xml – sequence: 1
  givenname: Zhao
  orcidid: 0000-0002-6697-089X
  surname: Lin
  fullname: Lin, Zhao
  email: lzkmylz@163.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Kefeng
  surname: Ji
  fullname: Ji, Kefeng
  email: jikefeng@nudt.edu.cn
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Xiangguang
  orcidid: 0000-0002-9372-8118
  surname: Leng
  fullname: Leng, Xiangguang
  email: luckight@163.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Gangyao
  surname: Kuang
  fullname: Kuang, Gangyao
  email: kuangyeats@hotmail.com
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China
BookMark eNp9kE1PwkAQhjcGEwH9AcbLJp6LO9tuOz0SBCQhmLQcvG227a4WocXdkqi_3lbQgwdPM4fnmY93QHpVXWlCroGNAFh8t5wn6YgzwBFH5ELAGemDEOgxEUGv6wPhiRifLsjAuQ1jPECM-mSRvh20_tRUVQWdvudlo5qyrmiiqlc6U67RlibeZLWiprY0fSn39F43Ov-Gyoqm44QudupZu0tybtTW6atTHZL1bLqePHjLx_liMl56OY_9xgNlfFHkGBQIBWKcZzxC37RnZkFsoDAGBBR-ruLAzxTDGMLQV2GYCdBZwfwhuT2O3du6Pd01clMfbNVulJy3ahgij1oqOlK5rZ2z2sifzxqryq0EJrvYZBeb7GKTp9haE_6Ye1vulP3417k5OqXW-pdHETEU6H8BGFV4lQ
CODEN IGRSBY
CitedBy_id crossref_primary_10_4018_IJACI_2020010102
crossref_primary_10_1109_JSTARS_2024_3419786
crossref_primary_10_1155_2021_7018035
crossref_primary_10_1109_JSTARS_2022_3199118
crossref_primary_10_3390_rs13193932
crossref_primary_10_3390_rs16224128
crossref_primary_10_1109_LGRS_2020_2999506
crossref_primary_10_3390_rs13245104
crossref_primary_10_1007_s11227_024_06136_3
crossref_primary_10_1109_JSTARS_2024_3481368
crossref_primary_10_1109_ACCESS_2024_3358684
crossref_primary_10_3390_rs14122832
crossref_primary_10_1109_LGRS_2020_3038901
crossref_primary_10_1109_LGRS_2021_3115498
crossref_primary_10_1109_LGRS_2025_3602092
crossref_primary_10_1109_JSTARS_2025_3582808
crossref_primary_10_1109_JSTARS_2024_3358058
crossref_primary_10_3390_rs14236058
crossref_primary_10_32604_cmes_2021_013568
crossref_primary_10_1109_JSTARS_2024_3419770
crossref_primary_10_3390_rs15082035
crossref_primary_10_1109_TGRS_2021_3063216
crossref_primary_10_1109_TGRS_2024_3419893
crossref_primary_10_3390_rs11091068
crossref_primary_10_3390_s19112479
crossref_primary_10_1109_TGRS_2021_3128060
crossref_primary_10_3390_rs17101721
crossref_primary_10_1109_JSTARS_2020_2997081
crossref_primary_10_3390_rs14236053
crossref_primary_10_1109_JIOT_2022_3185084
crossref_primary_10_3390_app9173619
crossref_primary_10_3390_rs11232862
crossref_primary_10_1109_LGRS_2021_3100572
crossref_primary_10_1109_JSEN_2024_3361084
crossref_primary_10_1109_TGRS_2021_3062038
crossref_primary_10_1109_JSTARS_2025_3585896
crossref_primary_10_3390_s20092547
crossref_primary_10_1109_JSTARS_2022_3230859
crossref_primary_10_3390_rs14246312
crossref_primary_10_3390_rs13040660
crossref_primary_10_3390_rs15133242
crossref_primary_10_1080_01431161_2025_2529005
crossref_primary_10_1109_ACCESS_2019_2940102
crossref_primary_10_3390_s23167027
crossref_primary_10_1109_JSTARS_2021_3049851
crossref_primary_10_1109_JSTARS_2024_3370722
crossref_primary_10_3390_app10217751
crossref_primary_10_1016_j_rineng_2025_106172
crossref_primary_10_1109_TGRS_2019_2942103
crossref_primary_10_3390_rs16040622
crossref_primary_10_1109_TGRS_2024_3375069
crossref_primary_10_1109_JSTARS_2025_3532898
crossref_primary_10_1109_TGRS_2022_3146027
crossref_primary_10_3390_jmse9121408
crossref_primary_10_1109_JSTARS_2024_3399021
crossref_primary_10_1109_MGRS_2023_3300974
crossref_primary_10_1109_ACCESS_2020_2964540
crossref_primary_10_1109_LGRS_2020_2993899
crossref_primary_10_3390_rs15184517
crossref_primary_10_1007_s11277_021_08635_5
crossref_primary_10_1109_TGRS_2021_3096011
crossref_primary_10_3390_jmse9070753
crossref_primary_10_1007_s12145_023_00982_0
crossref_primary_10_1109_JSTARS_2021_3099483
crossref_primary_10_1109_JSEN_2024_3359702
crossref_primary_10_1109_ACCESS_2022_3222364
crossref_primary_10_1016_j_engappai_2023_106686
crossref_primary_10_1007_s11804_023_00367_1
crossref_primary_10_3390_rs14040973
crossref_primary_10_1109_TGRS_2024_3449894
crossref_primary_10_1016_j_asr_2023_06_055
crossref_primary_10_1109_LGRS_2022_3183832
crossref_primary_10_3390_rs15184373
crossref_primary_10_1109_JSTARS_2021_3138781
crossref_primary_10_1109_JSTARS_2024_3426288
crossref_primary_10_1117_1_JRS_17_016511
crossref_primary_10_3390_s20102896
crossref_primary_10_3390_rs14112712
crossref_primary_10_1109_JSTARS_2023_3327344
crossref_primary_10_1109_ACCESS_2022_3193669
crossref_primary_10_1016_j_neucom_2025_131100
crossref_primary_10_1109_TGRS_2022_3162235
crossref_primary_10_3390_rs14041018
crossref_primary_10_1109_LGRS_2020_3005197
crossref_primary_10_1117_1_JEI_32_4_043013
crossref_primary_10_1109_TGRS_2020_2997200
crossref_primary_10_1186_s13634_021_00831_6
crossref_primary_10_1109_LGRS_2022_3161931
crossref_primary_10_1109_TGRS_2023_3336300
crossref_primary_10_1109_JSEN_2023_3317060
crossref_primary_10_3390_electronics12234816
crossref_primary_10_3390_jmse12101774
crossref_primary_10_1109_TGRS_2021_3095386
crossref_primary_10_1109_TGRS_2024_3451399
crossref_primary_10_1007_s11227_024_06237_z
crossref_primary_10_1109_JSTARS_2023_3316309
crossref_primary_10_1016_j_jvcir_2024_104170
crossref_primary_10_1016_j_engappai_2023_106305
crossref_primary_10_1109_TGRS_2023_3264231
crossref_primary_10_1109_LGRS_2024_3354314
crossref_primary_10_3390_rs15020350
crossref_primary_10_1109_JSTARS_2024_3392433
crossref_primary_10_3390_app13052941
crossref_primary_10_1007_s11227_024_06527_6
crossref_primary_10_3390_rs12203316
crossref_primary_10_3390_rs15123159
crossref_primary_10_1109_LGRS_2022_3180793
crossref_primary_10_1007_s10708_024_11279_0
crossref_primary_10_1109_JSTARS_2021_3116979
crossref_primary_10_3390_rs17152586
crossref_primary_10_1109_ACCESS_2019_2951030
crossref_primary_10_3390_rs12193115
crossref_primary_10_3390_rs15112825
crossref_primary_10_1117_1_JEI_34_2_023035
crossref_primary_10_1049_ipr2_12787
crossref_primary_10_1109_JSTARS_2025_3540902
crossref_primary_10_3390_rs15102589
crossref_primary_10_1016_j_dsp_2024_104810
crossref_primary_10_1109_TGRS_2022_3227938
crossref_primary_10_1109_LGRS_2024_3366749
crossref_primary_10_3390_rs13132558
crossref_primary_10_1080_01431161_2024_2343433
crossref_primary_10_1155_2022_3063965
crossref_primary_10_3390_rs15143656
crossref_primary_10_1016_j_cja_2023_11_017
crossref_primary_10_3390_rs17091487
crossref_primary_10_1109_LGRS_2020_3033988
crossref_primary_10_3390_a18030133
crossref_primary_10_1007_s42979_022_01218_6
crossref_primary_10_1109_TGRS_2023_3289878
crossref_primary_10_1109_ACCESS_2021_3110947
crossref_primary_10_1109_TIP_2022_3231126
crossref_primary_10_3390_rs14102389
crossref_primary_10_1109_TGRS_2023_3268330
crossref_primary_10_3390_rs16010106
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_1109_TGRS_2022_3159035
crossref_primary_10_1109_TGRS_2024_3350712
crossref_primary_10_1109_TGRS_2023_3251694
crossref_primary_10_3390_rs11212525
crossref_primary_10_3390_rs13214209
crossref_primary_10_1080_2150704X_2019_1681599
crossref_primary_10_1109_JSTARS_2022_3216623
crossref_primary_10_3390_app13042488
crossref_primary_10_3390_app11125569
crossref_primary_10_3390_s20247263
crossref_primary_10_3390_rs15133304
crossref_primary_10_1080_22797254_2025_2469863
crossref_primary_10_1109_ACCESS_2019_2943241
crossref_primary_10_1109_TGRS_2023_3267495
crossref_primary_10_1109_JSTARS_2024_3401723
crossref_primary_10_3390_s23041768
crossref_primary_10_1109_ACCESS_2023_3323575
crossref_primary_10_1109_LGRS_2023_3310206
crossref_primary_10_1109_JSTARS_2022_3206247
crossref_primary_10_1016_j_future_2022_01_016
crossref_primary_10_3390_rs14040913
crossref_primary_10_1109_JSTARS_2022_3221784
crossref_primary_10_1109_JSTARS_2022_3187516
crossref_primary_10_1109_LGRS_2020_2981255
crossref_primary_10_3390_rs14246245
crossref_primary_10_1016_j_compag_2023_108297
crossref_primary_10_7780_kjrs_2024_40_6_3_9
crossref_primary_10_1109_LGRS_2020_3003659
crossref_primary_10_3390_rs13234840
crossref_primary_10_1002_cpe_6767
crossref_primary_10_3390_math12071072
crossref_primary_10_1007_s11276_021_02670_7
crossref_primary_10_3390_rs14030442
crossref_primary_10_1109_TGRS_2024_3367959
crossref_primary_10_3390_rs15153823
crossref_primary_10_1109_TGRS_2023_3346171
crossref_primary_10_3390_e23101293
crossref_primary_10_1109_ACCESS_2020_2985637
crossref_primary_10_1109_JSTARS_2020_3017676
crossref_primary_10_1109_LGRS_2023_3292243
crossref_primary_10_3390_jmse11101916
crossref_primary_10_1007_s12145_022_00929_x
crossref_primary_10_1016_j_apor_2023_103702
crossref_primary_10_1016_j_isprsjprs_2025_08_020
crossref_primary_10_3390_rs14235936
crossref_primary_10_3390_rs16122076
crossref_primary_10_1109_TGRS_2022_3181417
crossref_primary_10_1109_TGRS_2024_3419025
crossref_primary_10_3390_rs12091443
crossref_primary_10_3390_rs13142771
crossref_primary_10_3390_rs14194857
crossref_primary_10_3390_s20082340
crossref_primary_10_1007_s00521_020_05307_6
crossref_primary_10_1109_TGRS_2024_3489212
crossref_primary_10_1007_s10772_021_09842_y
crossref_primary_10_1109_JSTARS_2025_3593313
crossref_primary_10_1177_1550147720912959
crossref_primary_10_3390_rs14153829
crossref_primary_10_1109_JSEN_2024_3393750
crossref_primary_10_1109_JSTARS_2022_3150910
crossref_primary_10_1109_JSTARS_2025_3577766
crossref_primary_10_1109_LSP_2024_3396657
crossref_primary_10_3390_rs15071874
crossref_primary_10_1109_TGRS_2022_3200957
crossref_primary_10_3390_math12111728
crossref_primary_10_1109_JSTARS_2025_3544248
crossref_primary_10_3390_rs13050871
crossref_primary_10_3390_rs13020200
crossref_primary_10_3390_s21134538
crossref_primary_10_1109_JSTARS_2022_3213583
crossref_primary_10_1109_JSTARS_2021_3112469
crossref_primary_10_1371_journal_pone_0258880
crossref_primary_10_1109_JSTARS_2024_3478390
crossref_primary_10_1109_TGRS_2023_3303507
crossref_primary_10_3390_rs12152353
crossref_primary_10_1109_TGRS_2022_3188151
crossref_primary_10_3390_electronics13153076
crossref_primary_10_1063_5_0276398
crossref_primary_10_3390_rs15184480
crossref_primary_10_3390_rs14153530
crossref_primary_10_1109_JSEN_2023_3284959
crossref_primary_10_1109_JSEN_2023_3331877
crossref_primary_10_3390_rs12182997
crossref_primary_10_1109_ACCESS_2022_3154474
crossref_primary_10_3390_electronics12183804
crossref_primary_10_1109_TGRS_2022_3208333
crossref_primary_10_1109_JSEN_2023_3323322
crossref_primary_10_3390_rs12020303
crossref_primary_10_3390_jmse11112081
crossref_primary_10_1109_TGRS_2021_3095899
crossref_primary_10_3390_rs13122268
crossref_primary_10_1007_s11760_023_02793_8
crossref_primary_10_1080_01431161_2021_2008544
crossref_primary_10_1109_JSTARS_2023_3298483
crossref_primary_10_1109_TGRS_2023_3249349
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_JSTARS_2023_3317489
crossref_primary_10_3390_rs15051303
crossref_primary_10_3390_rs15030629
crossref_primary_10_1080_01431161_2024_2329528
crossref_primary_10_1007_s11042_022_12243_1
crossref_primary_10_1080_01431161_2022_2042617
crossref_primary_10_1007_s10462_023_10455_x
crossref_primary_10_1016_j_cageo_2021_104799
crossref_primary_10_1109_JSTARS_2021_3109002
crossref_primary_10_3390_rs15030626
crossref_primary_10_1109_TGRS_2022_3231340
crossref_primary_10_1109_TGRS_2020_3010055
crossref_primary_10_1109_TGRS_2023_3266373
crossref_primary_10_1109_TIM_2024_3480276
crossref_primary_10_1109_TGRS_2022_3142017
crossref_primary_10_1109_ACCESS_2022_3169501
crossref_primary_10_1109_TGRS_2024_3394157
crossref_primary_10_1007_s00500_022_07522_w
crossref_primary_10_1007_s11265_022_01799_8
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_3390_app14156403
crossref_primary_10_1016_j_asoc_2024_111704
crossref_primary_10_1080_09540091_2024_2313854
crossref_primary_10_3390_s19132873
crossref_primary_10_1109_TGRS_2022_3202495
crossref_primary_10_1109_TGRS_2023_3287863
crossref_primary_10_3390_rs15153718
crossref_primary_10_1109_LGRS_2022_3161509
crossref_primary_10_3390_rs14010143
crossref_primary_10_1016_j_compag_2020_105559
crossref_primary_10_1109_LGRS_2020_3016692
crossref_primary_10_1016_j_isprsjprs_2020_05_016
crossref_primary_10_1049_sil2_12104
crossref_primary_10_3390_s21051643
crossref_primary_10_3390_rs17101739
crossref_primary_10_1109_TGRS_2022_3198940
crossref_primary_10_3390_jmse10060809
crossref_primary_10_1080_15481603_2023_2196159
crossref_primary_10_1109_ACCESS_2024_3365777
crossref_primary_10_3390_s20226673
crossref_primary_10_1109_JSTARS_2025_3556893
crossref_primary_10_1016_j_eswa_2024_125442
crossref_primary_10_1049_cmu2_12837
crossref_primary_10_3390_rs14010031
crossref_primary_10_3390_rs13142743
Cites_doi 10.1109/RSIP.2017.7958815
10.1109/ICCV.2017.444
10.1109/CVPR.2014.81
10.1109/TPAMI.2016.2601099
10.1007/978-3-319-61657-5_3
10.1109/JSTARS.2017.2692820
10.1109/RADAR.2013.6652006
10.1109/CVPR.2016.98
10.1109/CVPR.2018.00352
10.1016/j.rse.2011.05.028
10.1109/TGRS.2010.2071879
10.3390/rs9080860
10.1109/ACCESS.2018.2825376
10.1109/TGRS.2016.2551720
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2018.2882551
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 755
ExternalDocumentID 10_1109_LGRS_2018_2882551
8570858
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61372163; 61331015
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-1af35dc84d81d889cb2783f057b49f1dff151d3ca943ba0891663a66b51ebd03
IEDL.DBID RIE
ISICitedReferencesCount 332
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466228400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:42:57 EDT 2025
Tue Nov 18 22:12:09 EST 2025
Sat Nov 29 05:53:57 EST 2025
Wed Aug 27 02:47:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1af35dc84d81d889cb2783f057b49f1dff151d3ca943ba0891663a66b51ebd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6697-089X
0000-0002-9372-8118
PQID 2215166827
PQPubID 75725
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2018_2882551
ieee_primary_8570858
crossref_primary_10_1109_LGRS_2018_2882551
proquest_journals_2215166827
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref21
(ref23) 2017
ref2
ref1
ref17
ren (ref8) 2015
liu (ref22) 2015
zhu (ref9) 2017
ref18
ref7
simonyan (ref19) 2014
crisp (ref4) 2004
ref3
ref6
cai (ref14) 2016
cai (ref16) 2017
ref5
hu (ref20) 2017
References_xml – year: 2017
  ident: ref20
  publication-title: Squeeze-and-Excitation Networks
– year: 2017
  ident: ref23
  publication-title: OpenSAR
– year: 2014
  ident: ref19
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– ident: ref10
  doi: 10.1109/RSIP.2017.7958815
– start-page: 354
  year: 2016
  ident: ref14
  article-title: A unified multi-scale deep convolutional neural network for fast object detection
  publication-title: Proc Eur Conf Comput Vis
– year: 2015
  ident: ref22
  publication-title: Parsenet Looking wider to see better
– ident: ref17
  doi: 10.1109/ICCV.2017.444
– ident: ref7
  doi: 10.1109/CVPR.2014.81
– ident: ref18
  doi: 10.1109/TPAMI.2016.2601099
– ident: ref21
  doi: 10.1007/978-3-319-61657-5_3
– year: 2017
  ident: ref16
  publication-title: Cascade R-CNN Delving into high quality object detection
– year: 2004
  ident: ref4
  article-title: The state-of-the-art in ship detection in synthetic aperture radar imagery
– ident: ref5
  doi: 10.1109/JSTARS.2017.2692820
– ident: ref3
  doi: 10.1109/RADAR.2013.6652006
– start-page: 91
  year: 2015
  ident: ref8
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/CVPR.2016.98
– ident: ref15
  doi: 10.1109/CVPR.2018.00352
– ident: ref1
  doi: 10.1016/j.rse.2011.05.028
– ident: ref2
  doi: 10.1109/TGRS.2010.2071879
– ident: ref12
  doi: 10.3390/rs9080860
– ident: ref11
  doi: 10.1109/ACCESS.2018.2825376
– ident: ref6
  doi: 10.1109/TGRS.2016.2551720
– year: 2017
  ident: ref9
  publication-title: Deep learning in remote sensing A review
SSID ssj0024887
Score 2.654759
Snippet Synthetic aperture radar (SAR) ship detection is an important part of marine monitoring. With the development in computer vision, deep learning has been used...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 751
SubjectTerms Artificial neural networks
Computer vision
Data mining
Deep learning
Detection
Excitation
faster region-based convolutional neural network (R-CNN)
Feature extraction
Feature maps
Image detection
Image processing
Image segmentation
Machine learning
Marine vehicles
Methods
Neural networks
Performance enhancement
Proposals
Radar
Radar detection
Radar imaging
SAR (radar)
ship detection
Ships
Synthetic aperture radar
synthetic aperture radar (SAR)
Training
Title Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images
URI https://ieeexplore.ieee.org/document/8570858
https://www.proquest.com/docview/2215166827
Volume 16
WOSCitedRecordID wos000466228400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4g0ejFB2hE0ezBk7HY0sfuHgmKkhhigAO3Zru7jUQthIcRf707S8EYjYm3HmabdmY7823n8QFcSGZAvJbUoVjaiCO7nUSG3HEFTQLmy7rgypJN0E6HDQb8sQBX614YrbUtPtM1vLS5fDWSc_xVdo3D2FnINmCDUrrs1fqaq8csGR4iAifkbJBnMD2XXz_cdXtYxMVqdYMnw9D7FoMsqcoPT2zDS2vvfw-2D7s5jCSNpd0PoKCzEmznjOZPixJs3VnK3kUZ2j08rH5oIjJFbt9lPpSbdEX2TFoCByWQrtPsdIjBr6T3NByTGz2zFVoZGWak1-iS9qtxO9ND6Ldu-817JydQcKSJ4jPHE6kfKskCZVCpMYpMkFcjNRAtCXjqqTQ18V75UvDAT4TLDFSMfBFFSejpRLn-ERSzUaaPgaA_5TZlmcogVUaIRVSm2IHJg0jSCrgrjcar90COi5fYHjJcHqMRYjRCnBuhApfrJePlZI2_hMuo9bVgrvAKVFdmi_NvbxrXEcVEEavTk99XncKOuTdfli1WoTibzPUZbMq32XA6Obfb6hMXWca6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7xVFl4IwoFPDAhAnnHHhG0UFEi1HboFjm2IyogrdqCgF-Pz0mLEAiJLcNZSe6cu8-5xwdwLKgG8UpEVoSljTiy20pFwCybR6lPPeFyJg3ZRBTHtNdj93NwOuuFUUqZ4jN1hpcmly8H4gV_lZ3jMHYa0HlYDHzfdYpura_JetTQ4SEmsAJGe2UO07HZeeu63cEyLnrmakQZBM63KGRoVX74YhNgGmv_e7R1WC2BJLkoLL8BcyrfhErJaf7wvgnL14a0930Lmh08rn4ownNJ6m-iHMtN2jx_JA2OoxJI27qMY6IRLOk89IfkSk1MjVZO-jnpXLRJ81k7nvE2dBv17uWNVVIoWELH8Ynl8MwLpKC-1LhUm0WkyKyRaZCW-ixzZJbpiC89wZnvpdymGiyGHg_DNHBUKm1vBxbyQa52gaBHZSZpmQk_k1qIhpHIsAeT-aGIqmBPNZpM3wNZLp4Sc8ywWYJGSNAISWmEKpzMlgyL2Rp_CW-h1meCpcKrUJuaLSm_vnHiIo4JQ-pGe7-vOoLKTfeulbSa8e0-rOj7sKKIsQYLk9GLOoAl8Trpj0eHZot9ApvMygE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squeeze+and+Excitation+Rank+Faster+R-CNN+for+Ship+Detection+in+SAR+Images&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Lin%2C+Zhao&rft.au=Ji%2C+Kefeng&rft.au=Leng%2C+Xiangguang&rft.au=Kuang%2C+Gangyao&rft.date=2019-05-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=16&rft.issue=5&rft.spage=751&rft.epage=755&rft_id=info:doi/10.1109%2FLGRS.2018.2882551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2882551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon