Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering

The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumpti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems Jg. 51; H. 5; S. 3093 - 3102
Hauptverfasser: Liu, Xi, Ren, Zhigang, Lyu, Hongqiang, Jiang, Zhihong, Ren, Pengju, Chen, Badong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2216, 2168-2232
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumption. However, its performance may degrade dramatically when the noises are heavy tailed. To cope with this problem, this paper proposes two new nonlinear filters, namely the linear regression maximum correntropy EKF (LRMCEKF) and nonlinear regression maximum correntropy EKF (NRMCEKF), by applying the maximum correntropy criterion (MCC) rather than the MMSE criterion to EKF. In both filters, a regression model is formulated, and a fixed-point iterative algorithm is utilized to obtain the posterior estimates. The effectiveness and robustness of the proposed algorithms in target tracking are confirmed by an illustrative example.
AbstractList The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumption. However, its performance may degrade dramatically when the noises are heavy tailed. To cope with this problem, this paper proposes two new nonlinear filters, namely the linear regression maximum correntropy EKF (LRMCEKF) and nonlinear regression maximum correntropy EKF (NRMCEKF), by applying the maximum correntropy criterion (MCC) rather than the MMSE criterion to EKF. In both filters, a regression model is formulated, and a fixed-point iterative algorithm is utilized to obtain the posterior estimates. The effectiveness and robustness of the proposed algorithms in target tracking are confirmed by an illustrative example.
Author Lyu, Hongqiang
Jiang, Zhihong
Ren, Pengju
Chen, Badong
Liu, Xi
Ren, Zhigang
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0002-4659-8955
  surname: Liu
  fullname: Liu, Xi
  email: lx1102@stu.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Zhigang
  orcidid: 0000-0001-6862-3763
  surname: Ren
  fullname: Ren, Zhigang
  email: renzg@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Hongqiang
  orcidid: 0000-0001-5061-4762
  surname: Lyu
  fullname: Lyu, Hongqiang
  email: hongqianglv@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Zhihong
  orcidid: 0000-0001-8133-6312
  surname: Jiang
  fullname: Jiang, Zhihong
  email: jiangzhihong@bit.edu.cn
  organization: School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Pengju
  surname: Ren
  fullname: Ren, Pengju
  email: pengjuren@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Badong
  orcidid: 0000-0003-1710-3818
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
BookMark eNp9kE1Lw0AQhhdRsNb-APES8Jy6H8kme9TQqtgq2HpetsmkbEl26-4W2n9vSkoPHjzNDDPPvPDcoEtjDSB0R_CYECwel4t5MaaYiDEVJMsIvUADSngeU8ro5bkn_BqNvN9gjAnNOcN8gBYzbUC5SJkq-rCm6acvWDvwXlsTPysPVTRXe93u2qiwzoEJzm4P0WQfwFTd8l01rTLRVDcBnDbrW3RVq8bD6FSH6Hs6WRav8ezz5a14msUlFSzERPE0q1VZJ4BxXSU0AaVSUIKXkNapyCucJAwqiilJVwKXtEw5yVeizgWhVcaG6KH_u3X2Zwc-yI3dOdNFSpoSxkQiGO-uSH9VOuu9g1punW6VO0iC5VGfPOqTR33ypK9jsj9MqYMKnY_glG7-Je97UgPAOSnPGMcsZ79YsX74
CODEN ITSMFE
CitedBy_id crossref_primary_10_1007_s10291_025_01884_y
crossref_primary_10_1109_TSMC_2019_2957269
crossref_primary_10_1016_j_sigpro_2024_109838
crossref_primary_10_1109_JISPIN_2024_3355840
crossref_primary_10_1109_JSEN_2024_3461835
crossref_primary_10_3390_jmse10081070
crossref_primary_10_1109_TIM_2025_3551831
crossref_primary_10_1007_s11432_020_3223_6
crossref_primary_10_1049_elp2_70076
crossref_primary_10_1016_j_sigpro_2023_109271
crossref_primary_10_3390_e25030453
crossref_primary_10_1109_TIV_2024_3429331
crossref_primary_10_1016_j_asr_2023_05_036
crossref_primary_10_1016_j_energy_2025_135514
crossref_primary_10_1016_j_inffus_2025_103156
crossref_primary_10_1109_JAS_2023_123195
crossref_primary_10_1109_TSMC_2021_3052538
crossref_primary_10_1016_j_isatra_2022_02_047
crossref_primary_10_1002_acs_3891
crossref_primary_10_1109_TIM_2023_3268445
crossref_primary_10_1109_ACCESS_2025_3587939
crossref_primary_10_1016_j_sigpro_2024_109701
crossref_primary_10_1109_JSEN_2021_3127191
crossref_primary_10_1109_TASE_2024_3378391
crossref_primary_10_1049_ell2_13165
crossref_primary_10_1109_JAS_2023_123588
crossref_primary_10_1016_j_robot_2025_105007
crossref_primary_10_1016_j_ces_2024_121046
crossref_primary_10_1016_j_conengprac_2024_105973
crossref_primary_10_1109_TIM_2023_3322489
crossref_primary_10_1016_j_neucom_2024_127634
crossref_primary_10_1007_s12239_023_0031_8
crossref_primary_10_1016_j_sigpro_2025_110055
crossref_primary_10_1109_TIE_2024_3522479
crossref_primary_10_32604_cmes_2023_046743
crossref_primary_10_1109_LWC_2025_3546228
crossref_primary_10_1088_1361_6501_aca172
crossref_primary_10_1007_s12239_023_0125_3
crossref_primary_10_1016_j_energy_2023_128738
crossref_primary_10_3390_app14177657
crossref_primary_10_1109_TAC_2023_3321368
crossref_primary_10_1109_TSMC_2022_3161412
crossref_primary_10_3390_app13158762
crossref_primary_10_1109_TIM_2024_3395327
crossref_primary_10_1016_j_amc_2024_129113
crossref_primary_10_1016_j_measurement_2023_113339
crossref_primary_10_1109_TSMC_2022_3184073
crossref_primary_10_1109_TSMC_2023_3287406
crossref_primary_10_1016_j_measurement_2025_117939
crossref_primary_10_1088_1402_4896_acf68e
crossref_primary_10_1016_j_jfranklin_2025_108010
crossref_primary_10_1109_TSMC_2022_3202656
crossref_primary_10_1109_TAES_2024_3447631
crossref_primary_10_3390_e24040516
crossref_primary_10_1109_TSMC_2023_3348290
crossref_primary_10_3390_electronics14122430
crossref_primary_10_1109_TCSII_2021_3129536
crossref_primary_10_1016_j_jfranklin_2024_107286
crossref_primary_10_1109_TIM_2023_3293566
crossref_primary_10_1088_1361_6501_ad50f2
crossref_primary_10_1109_JSTARS_2022_3210048
crossref_primary_10_1109_TNSE_2023_3343356
crossref_primary_10_1109_LCSYS_2021_3114137
crossref_primary_10_1177_01423312241287333
crossref_primary_10_1109_TIM_2024_3418076
crossref_primary_10_1109_TMECH_2024_3435128
crossref_primary_10_1109_TASE_2024_3500370
crossref_primary_10_3390_electronics14071439
crossref_primary_10_1016_j_jtherbio_2023_103571
crossref_primary_10_1002_asjc_3402
crossref_primary_10_3390_electronics13234727
crossref_primary_10_1109_TSP_2024_3479723
crossref_primary_10_1016_j_dsp_2022_103495
crossref_primary_10_1109_TFUZZ_2024_3496781
crossref_primary_10_1016_j_oceaneng_2022_112890
crossref_primary_10_1109_TCSII_2023_3235406
crossref_primary_10_1109_TIE_2023_3323737
crossref_primary_10_1016_j_sigpro_2024_109535
crossref_primary_10_3390_s22082924
crossref_primary_10_1016_j_fmre_2025_07_012
crossref_primary_10_1109_TIM_2022_3175025
crossref_primary_10_1109_JSEN_2022_3208013
crossref_primary_10_1109_TCSII_2024_3357588
crossref_primary_10_1109_TSMC_2020_3003645
crossref_primary_10_1016_j_sigpro_2022_108913
crossref_primary_10_1016_j_dsp_2025_105008
crossref_primary_10_1109_TSMC_2022_3212975
crossref_primary_10_1109_JSEN_2023_3281938
crossref_primary_10_1177_01423312241287954
crossref_primary_10_1016_j_dsp_2025_105000
crossref_primary_10_1049_cth2_70065
crossref_primary_10_1016_j_dsp_2024_104774
crossref_primary_10_1016_j_jpowsour_2023_233282
crossref_primary_10_3390_app14093952
crossref_primary_10_1109_TVT_2024_3399065
crossref_primary_10_3390_s23239386
crossref_primary_10_1109_LRA_2022_3176798
crossref_primary_10_1016_j_ymssp_2025_112457
crossref_primary_10_1007_s12555_021_0467_4
crossref_primary_10_1016_j_sysconle_2023_105515
crossref_primary_10_1088_1402_4896_ad963f
crossref_primary_10_1109_TIM_2023_3328095
Cites_doi 10.1109/WCICA.2012.6359205
10.1109/TSP.2007.896065
10.1109/IJCNN.2009.5178823
10.1109/ICASSP.2010.5495055
10.3390/s16091530
10.1109/9.847726
10.1214/aos/1176325511
10.1080/00207721.2016.1277407
10.1109/TAES.2016.150722
10.1007/978-1-4419-1570-2
10.2514/1.G000799
10.1109/LSP.2014.2337899
10.1109/TCSII.2015.2407751
10.1016/j.sigpro.2018.05.029
10.1017/CBO9780511543005
10.3390/s18061724
10.1109/TIP.2010.2103949
10.1109/CCDC.2014.6852747
10.1007/978-3-319-07416-0
10.1016/j.epsr.2013.05.016
10.1016/j.sysconle.2017.07.016
10.1109/TSMC.2018.2795340
10.1109/TASL.2008.2002039
10.1109/CISS.2016.7460553
10.1016/j.sigpro.2015.04.024
10.1109/TSMC.2016.2598845
10.1109/TSMC.2016.2523914
10.1109/IJCNN.2016.7727408
10.1016/j.neucom.2012.05.004
10.1002/0470045345
10.1109/TFUZZ.2017.2719619
10.1109/TSMC.2018.2883706
10.1109/TAC.2009.2019800
10.1109/LSP.2015.2428713
10.1016/j.automatica.2016.10.004
10.23919/ACC.2018.8431551
10.1109/TVT.2008.928649
10.1115/1.3662552
10.1109/48.380248
10.1109/IJCNN.2011.6033473
10.1109/TPAMI.2010.220
10.1016/j.jfranklin.2017.10.023
10.1109/TAES.2004.1386869
10.1109/TPWRS.2009.2030291
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2019.2917712
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 3102
ExternalDocumentID 10_1109_TSMC_2019_2917712
8736038
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China; 973 Program
  grantid: 2015CB351703
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China-Shenzhen Robotics Research Center Project; National Natural Science Foundation-Shenzhen Joint Research Program
  grantid: U1613219
  funderid: 10.13039/100017440
– fundername: National Natural Science Foundation of China
  grantid: 61873199; 91648208
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1a657facf4e00fd424eaa5ea96ce5f598d0443ed20215b90c2c5618b9f8912d73
IEDL.DBID RIE
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640749000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sun Nov 30 04:18:04 EST 2025
Sat Nov 29 03:45:35 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1a657facf4e00fd424eaa5ea96ce5f598d0443ed20215b90c2c5618b9f8912d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8133-6312
0000-0002-4659-8955
0000-0001-5061-4762
0000-0001-6862-3763
0000-0003-1710-3818
PQID 2513394936
PQPubID 75739
PageCount 10
ParticipantIDs ieee_primary_8736038
crossref_primary_10_1109_TSMC_2019_2917712
proquest_journals_2513394936
crossref_citationtrail_10_1109_TSMC_2019_2917712
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref33
ma (ref30) 2018; 152
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
anderson (ref11) 1979
nahi (ref9) 1969
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
he (ref31) 2011; 33
ref41
ref22
ref44
ref21
ref43
ref28
ref29
roth (ref18) 2013
ref7
bryson (ref8) 1975
ref4
he (ref27) 2014
ref3
ref6
ref5
ref40
liu (ref42) 2016; 16
References_xml – ident: ref4
  doi: 10.1109/WCICA.2012.6359205
– ident: ref21
  doi: 10.1109/TSP.2007.896065
– ident: ref23
  doi: 10.1109/IJCNN.2009.5178823
– ident: ref36
  doi: 10.1109/ICASSP.2010.5495055
– volume: 16
  start-page: 1530
  year: 2016
  ident: ref42
  article-title: Maximum correntropy unscented Kalman filter for spacecraft relative state estimation
  publication-title: SENSORS
  doi: 10.3390/s16091530
– ident: ref12
  doi: 10.1109/9.847726
– ident: ref15
  doi: 10.1214/aos/1176325511
– ident: ref43
  doi: 10.1080/00207721.2016.1277407
– ident: ref19
  doi: 10.1109/TAES.2016.150722
– ident: ref20
  doi: 10.1007/978-1-4419-1570-2
– ident: ref16
  doi: 10.2514/1.G000799
– ident: ref24
  doi: 10.1109/LSP.2014.2337899
– year: 1975
  ident: ref8
  publication-title: Applied Optimal Control Optimization Estimation and Control
– ident: ref25
  doi: 10.1109/TCSII.2015.2407751
– year: 1969
  ident: ref9
  publication-title: Estimation Theory and Applications
– volume: 152
  start-page: 160
  year: 2018
  ident: ref30
  article-title: Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.05.029
– ident: ref35
  doi: 10.1017/CBO9780511543005
– ident: ref45
  doi: 10.3390/s18061724
– ident: ref32
  doi: 10.1109/TIP.2010.2103949
– ident: ref2
  doi: 10.1109/CCDC.2014.6852747
– year: 2014
  ident: ref27
  publication-title: Robust Recognition via Information Theoretic Learning
  doi: 10.1007/978-3-319-07416-0
– ident: ref47
  doi: 10.1016/j.epsr.2013.05.016
– ident: ref39
  doi: 10.1016/j.sysconle.2017.07.016
– ident: ref13
  doi: 10.1109/TSMC.2018.2795340
– ident: ref33
  doi: 10.1109/TASL.2008.2002039
– ident: ref40
  doi: 10.1109/CISS.2016.7460553
– ident: ref29
  doi: 10.1016/j.sigpro.2015.04.024
– start-page: 5770
  year: 2013
  ident: ref18
  article-title: A student's t filter for heavy tailed process and measurement noise
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref10
  doi: 10.1109/TSMC.2016.2598845
– ident: ref5
  doi: 10.1109/TSMC.2016.2523914
– ident: ref46
  doi: 10.1109/IJCNN.2016.7727408
– year: 1979
  ident: ref11
  publication-title: Optimal Filtering
– ident: ref26
  doi: 10.1016/j.neucom.2012.05.004
– ident: ref48
  doi: 10.1002/0470045345
– ident: ref28
  doi: 10.1109/TFUZZ.2017.2719619
– ident: ref6
  doi: 10.1109/TSMC.2018.2883706
– ident: ref14
  doi: 10.1109/TAC.2009.2019800
– ident: ref37
  doi: 10.1109/LSP.2015.2428713
– ident: ref38
  doi: 10.1016/j.automatica.2016.10.004
– ident: ref41
  doi: 10.23919/ACC.2018.8431551
– ident: ref3
  doi: 10.1109/TVT.2008.928649
– ident: ref7
  doi: 10.1115/1.3662552
– ident: ref17
  doi: 10.1109/48.380248
– ident: ref22
  doi: 10.1109/IJCNN.2011.6033473
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref31
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– ident: ref44
  doi: 10.1016/j.jfranklin.2017.10.023
– ident: ref1
  doi: 10.1109/TAES.2004.1386869
– ident: ref34
  doi: 10.1109/TPWRS.2009.2030291
SSID ssj0001286306
Score 2.5227075
Snippet The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3093
SubjectTerms Covariance matrices
Criteria
Extended Kalman filter
Extended Kalman filter (EKF)
fixed-point algorithm
Iterative algorithms
Iterative methods
Kalman filters
Kernel
Linear regression
Mathematical model
maximum correntropy criterion (MCC)
Noise measurement
Nonlinear filters
Optimization
Performance degradation
Random noise
Regression models
Tracking
Title Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering
URI https://ieeexplore.ieee.org/document/8736038
https://www.proquest.com/docview/2513394936
Volume 51
WOSCitedRecordID wos000640749000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4B4mE8wBhDdHSTH3hCCziO4x-PULWaNFEhyqS-RY59mSrRFJUWwX8_20mroqFJe4kSyY6S-2zf-e58H8AZVSVVhskE04omHFOTmFKXiVYocsMrXuoqkk3I4VCNx_p2C76vz8IgYkw-w4twG2P5bmaXwVV2qWQmaKa2YVtK0ZzV2vCnKJFFKk2WCg--v7ZBzJTqy_vRTS_kcekL5vcnMmVv1FDkVflrMY4aZnDwf9_2EfZbS5JcNdAfwhbWn2Bvo77gEYz8TtOPZGJqR4ZNTQz_dIe_m-TXOrn2OsyRG_MymS6npDeLtZrms8dX0m-d4-SneZiamgwmIazu3_oZfg36970fScuikFivyhdJakQuK2MrjpRWjjOOxuRotLCYV7lWjnKeoWNB-5eaWma9TaU8RkqnzMnsGHbqWY0nQDK_dPoJbHPpQUQU2qWGlTw3rvRWhcs6QFdCLWxbYjwwXTwUcatBdRFwKAIORYtDB87XXR6b-hr_anwUBL9u2Mq8A90VckU7A58KFohrNNeZ-PJ-r1P4EH65SV7sws5ivsSvsGufF5On-bc4uP4AR3LMDA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88Fc578OM8ufUzDz7JVdM0bZNHXVwU3UV0Bd9KmkyPBbcr6-5x_vcmaVwURfCltJCUdn5JZjIzmR_APhUlFYrlEcYVjTjGKlKlLCMpMEsVr3gpK082kfd64u5OXs3Bn9lZGET0yWd46G59LN-M9NS5yo5EnmQ0Ed9gwTFnhdNarzwqIks8mSaLMwu_vYYwZkzlUf-m23aZXPKQ2R1KHrM3isgzq7xbjr2O6ax87etWYTnYkuS4AX8N5rD-CT9eVRhchxu717RjmajakF5TFcM-XePfJv21jk6sFjOkq_4PhtMhaY98tabx6OGJnAb3OLlQ90NVk87ABdbtW3_Bbee03z6LAo9CpK0yn0SxytK8UrriSGllOOOoVIpKZhrTKpXCUM4TNMzp_1JSzbS1qoRFSciYmTzZgPl6VONvIIldPO0U1mluYUTMpIkVK3mqTGntCpO0gL4ItdChyLjjurgv_GaDysLhUDgcioBDCw5mXR6aChufNV53gp81DDJvwfYLckWYg48Fc9Q1kssk2_y41x58P-t3L4vL897FFiy5329SGbdhfjKe4g4s6n-TweN41w-0ZxRvz1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+Nonlinear+Regression-Based+Maximum+Correntropy+Extended+Kalman+Filtering&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Xi&rft.au=Ren%2C+Zhigang&rft.au=Lyu%2C+Hongqiang&rft.au=Jiang%2C+Zhihong&rft.date=2021-05-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=5&rft.spage=3093&rft.epage=3102&rft_id=info:doi/10.1109%2FTSMC.2019.2917712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2019_2917712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon