Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering
The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumpti...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems Jg. 51; H. 5; S. 3093 - 3102 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2216, 2168-2232 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumption. However, its performance may degrade dramatically when the noises are heavy tailed. To cope with this problem, this paper proposes two new nonlinear filters, namely the linear regression maximum correntropy EKF (LRMCEKF) and nonlinear regression maximum correntropy EKF (NRMCEKF), by applying the maximum correntropy criterion (MCC) rather than the MMSE criterion to EKF. In both filters, a regression model is formulated, and a fixed-point iterative algorithm is utilized to obtain the posterior estimates. The effectiveness and robustness of the proposed algorithms in target tracking are confirmed by an illustrative example. |
|---|---|
| AbstractList | The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly used in EKF is the celebrated minimum mean square error (MMSE) criterion, which exhibits excellent performance under Gaussian noise assumption. However, its performance may degrade dramatically when the noises are heavy tailed. To cope with this problem, this paper proposes two new nonlinear filters, namely the linear regression maximum correntropy EKF (LRMCEKF) and nonlinear regression maximum correntropy EKF (NRMCEKF), by applying the maximum correntropy criterion (MCC) rather than the MMSE criterion to EKF. In both filters, a regression model is formulated, and a fixed-point iterative algorithm is utilized to obtain the posterior estimates. The effectiveness and robustness of the proposed algorithms in target tracking are confirmed by an illustrative example. |
| Author | Lyu, Hongqiang Jiang, Zhihong Ren, Pengju Chen, Badong Liu, Xi Ren, Zhigang |
| Author_xml | – sequence: 1 givenname: Xi orcidid: 0000-0002-4659-8955 surname: Liu fullname: Liu, Xi email: lx1102@stu.xjtu.edu.cn organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Zhigang orcidid: 0000-0001-6862-3763 surname: Ren fullname: Ren, Zhigang email: renzg@mail.xjtu.edu.cn organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Hongqiang orcidid: 0000-0001-5061-4762 surname: Lyu fullname: Lyu, Hongqiang email: hongqianglv@mail.xjtu.edu.cn organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 4 givenname: Zhihong orcidid: 0000-0001-8133-6312 surname: Jiang fullname: Jiang, Zhihong email: jiangzhihong@bit.edu.cn organization: School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Pengju surname: Ren fullname: Ren, Pengju email: pengjuren@mail.xjtu.edu.cn organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China – sequence: 6 givenname: Badong orcidid: 0000-0003-1710-3818 surname: Chen fullname: Chen, Badong email: chenbd@mail.xjtu.edu.cn organization: School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China |
| BookMark | eNp9kE1Lw0AQhhdRsNb-APES8Jy6H8kme9TQqtgq2HpetsmkbEl26-4W2n9vSkoPHjzNDDPPvPDcoEtjDSB0R_CYECwel4t5MaaYiDEVJMsIvUADSngeU8ro5bkn_BqNvN9gjAnNOcN8gBYzbUC5SJkq-rCm6acvWDvwXlsTPysPVTRXe93u2qiwzoEJzm4P0WQfwFTd8l01rTLRVDcBnDbrW3RVq8bD6FSH6Hs6WRav8ezz5a14msUlFSzERPE0q1VZJ4BxXSU0AaVSUIKXkNapyCucJAwqiilJVwKXtEw5yVeizgWhVcaG6KH_u3X2Zwc-yI3dOdNFSpoSxkQiGO-uSH9VOuu9g1punW6VO0iC5VGfPOqTR33ypK9jsj9MqYMKnY_glG7-Je97UgPAOSnPGMcsZ79YsX74 |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1007_s10291_025_01884_y crossref_primary_10_1109_TSMC_2019_2957269 crossref_primary_10_1016_j_sigpro_2024_109838 crossref_primary_10_1109_JISPIN_2024_3355840 crossref_primary_10_1109_JSEN_2024_3461835 crossref_primary_10_3390_jmse10081070 crossref_primary_10_1109_TIM_2025_3551831 crossref_primary_10_1007_s11432_020_3223_6 crossref_primary_10_1049_elp2_70076 crossref_primary_10_1016_j_sigpro_2023_109271 crossref_primary_10_3390_e25030453 crossref_primary_10_1109_TIV_2024_3429331 crossref_primary_10_1016_j_asr_2023_05_036 crossref_primary_10_1016_j_energy_2025_135514 crossref_primary_10_1016_j_inffus_2025_103156 crossref_primary_10_1109_JAS_2023_123195 crossref_primary_10_1109_TSMC_2021_3052538 crossref_primary_10_1016_j_isatra_2022_02_047 crossref_primary_10_1002_acs_3891 crossref_primary_10_1109_TIM_2023_3268445 crossref_primary_10_1109_ACCESS_2025_3587939 crossref_primary_10_1016_j_sigpro_2024_109701 crossref_primary_10_1109_JSEN_2021_3127191 crossref_primary_10_1109_TASE_2024_3378391 crossref_primary_10_1049_ell2_13165 crossref_primary_10_1109_JAS_2023_123588 crossref_primary_10_1016_j_robot_2025_105007 crossref_primary_10_1016_j_ces_2024_121046 crossref_primary_10_1016_j_conengprac_2024_105973 crossref_primary_10_1109_TIM_2023_3322489 crossref_primary_10_1016_j_neucom_2024_127634 crossref_primary_10_1007_s12239_023_0031_8 crossref_primary_10_1016_j_sigpro_2025_110055 crossref_primary_10_1109_TIE_2024_3522479 crossref_primary_10_32604_cmes_2023_046743 crossref_primary_10_1109_LWC_2025_3546228 crossref_primary_10_1088_1361_6501_aca172 crossref_primary_10_1007_s12239_023_0125_3 crossref_primary_10_1016_j_energy_2023_128738 crossref_primary_10_3390_app14177657 crossref_primary_10_1109_TAC_2023_3321368 crossref_primary_10_1109_TSMC_2022_3161412 crossref_primary_10_3390_app13158762 crossref_primary_10_1109_TIM_2024_3395327 crossref_primary_10_1016_j_amc_2024_129113 crossref_primary_10_1016_j_measurement_2023_113339 crossref_primary_10_1109_TSMC_2022_3184073 crossref_primary_10_1109_TSMC_2023_3287406 crossref_primary_10_1016_j_measurement_2025_117939 crossref_primary_10_1088_1402_4896_acf68e crossref_primary_10_1016_j_jfranklin_2025_108010 crossref_primary_10_1109_TSMC_2022_3202656 crossref_primary_10_1109_TAES_2024_3447631 crossref_primary_10_3390_e24040516 crossref_primary_10_1109_TSMC_2023_3348290 crossref_primary_10_3390_electronics14122430 crossref_primary_10_1109_TCSII_2021_3129536 crossref_primary_10_1016_j_jfranklin_2024_107286 crossref_primary_10_1109_TIM_2023_3293566 crossref_primary_10_1088_1361_6501_ad50f2 crossref_primary_10_1109_JSTARS_2022_3210048 crossref_primary_10_1109_TNSE_2023_3343356 crossref_primary_10_1109_LCSYS_2021_3114137 crossref_primary_10_1177_01423312241287333 crossref_primary_10_1109_TIM_2024_3418076 crossref_primary_10_1109_TMECH_2024_3435128 crossref_primary_10_1109_TASE_2024_3500370 crossref_primary_10_3390_electronics14071439 crossref_primary_10_1016_j_jtherbio_2023_103571 crossref_primary_10_1002_asjc_3402 crossref_primary_10_3390_electronics13234727 crossref_primary_10_1109_TSP_2024_3479723 crossref_primary_10_1016_j_dsp_2022_103495 crossref_primary_10_1109_TFUZZ_2024_3496781 crossref_primary_10_1016_j_oceaneng_2022_112890 crossref_primary_10_1109_TCSII_2023_3235406 crossref_primary_10_1109_TIE_2023_3323737 crossref_primary_10_1016_j_sigpro_2024_109535 crossref_primary_10_3390_s22082924 crossref_primary_10_1016_j_fmre_2025_07_012 crossref_primary_10_1109_TIM_2022_3175025 crossref_primary_10_1109_JSEN_2022_3208013 crossref_primary_10_1109_TCSII_2024_3357588 crossref_primary_10_1109_TSMC_2020_3003645 crossref_primary_10_1016_j_sigpro_2022_108913 crossref_primary_10_1016_j_dsp_2025_105008 crossref_primary_10_1109_TSMC_2022_3212975 crossref_primary_10_1109_JSEN_2023_3281938 crossref_primary_10_1177_01423312241287954 crossref_primary_10_1016_j_dsp_2025_105000 crossref_primary_10_1049_cth2_70065 crossref_primary_10_1016_j_dsp_2024_104774 crossref_primary_10_1016_j_jpowsour_2023_233282 crossref_primary_10_3390_app14093952 crossref_primary_10_1109_TVT_2024_3399065 crossref_primary_10_3390_s23239386 crossref_primary_10_1109_LRA_2022_3176798 crossref_primary_10_1016_j_ymssp_2025_112457 crossref_primary_10_1007_s12555_021_0467_4 crossref_primary_10_1016_j_sysconle_2023_105515 crossref_primary_10_1088_1402_4896_ad963f crossref_primary_10_1109_TIM_2023_3328095 |
| Cites_doi | 10.1109/WCICA.2012.6359205 10.1109/TSP.2007.896065 10.1109/IJCNN.2009.5178823 10.1109/ICASSP.2010.5495055 10.3390/s16091530 10.1109/9.847726 10.1214/aos/1176325511 10.1080/00207721.2016.1277407 10.1109/TAES.2016.150722 10.1007/978-1-4419-1570-2 10.2514/1.G000799 10.1109/LSP.2014.2337899 10.1109/TCSII.2015.2407751 10.1016/j.sigpro.2018.05.029 10.1017/CBO9780511543005 10.3390/s18061724 10.1109/TIP.2010.2103949 10.1109/CCDC.2014.6852747 10.1007/978-3-319-07416-0 10.1016/j.epsr.2013.05.016 10.1016/j.sysconle.2017.07.016 10.1109/TSMC.2018.2795340 10.1109/TASL.2008.2002039 10.1109/CISS.2016.7460553 10.1016/j.sigpro.2015.04.024 10.1109/TSMC.2016.2598845 10.1109/TSMC.2016.2523914 10.1109/IJCNN.2016.7727408 10.1016/j.neucom.2012.05.004 10.1002/0470045345 10.1109/TFUZZ.2017.2719619 10.1109/TSMC.2018.2883706 10.1109/TAC.2009.2019800 10.1109/LSP.2015.2428713 10.1016/j.automatica.2016.10.004 10.23919/ACC.2018.8431551 10.1109/TVT.2008.928649 10.1115/1.3662552 10.1109/48.380248 10.1109/IJCNN.2011.6033473 10.1109/TPAMI.2010.220 10.1016/j.jfranklin.2017.10.023 10.1109/TAES.2004.1386869 10.1109/TPWRS.2009.2030291 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2019.2917712 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 3102 |
| ExternalDocumentID | 10_1109_TSMC_2019_2917712 8736038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China; 973 Program grantid: 2015CB351703 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China-Shenzhen Robotics Research Center Project; National Natural Science Foundation-Shenzhen Joint Research Program grantid: U1613219 funderid: 10.13039/100017440 – fundername: National Natural Science Foundation of China grantid: 61873199; 91648208 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-1a657facf4e00fd424eaa5ea96ce5f598d0443ed20215b90c2c5618b9f8912d73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 123 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640749000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sun Nov 30 04:18:04 EST 2025 Sat Nov 29 03:45:35 EST 2025 Tue Nov 18 22:27:42 EST 2025 Wed Aug 27 02:30:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-1a657facf4e00fd424eaa5ea96ce5f598d0443ed20215b90c2c5618b9f8912d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8133-6312 0000-0002-4659-8955 0000-0001-5061-4762 0000-0001-6862-3763 0000-0003-1710-3818 |
| PQID | 2513394936 |
| PQPubID | 75739 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8736038 crossref_primary_10_1109_TSMC_2019_2917712 proquest_journals_2513394936 crossref_citationtrail_10_1109_TSMC_2019_2917712 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref33 ma (ref30) 2018; 152 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 anderson (ref11) 1979 nahi (ref9) 1969 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 he (ref31) 2011; 33 ref41 ref22 ref44 ref21 ref43 ref28 ref29 roth (ref18) 2013 ref7 bryson (ref8) 1975 ref4 he (ref27) 2014 ref3 ref6 ref5 ref40 liu (ref42) 2016; 16 |
| References_xml | – ident: ref4 doi: 10.1109/WCICA.2012.6359205 – ident: ref21 doi: 10.1109/TSP.2007.896065 – ident: ref23 doi: 10.1109/IJCNN.2009.5178823 – ident: ref36 doi: 10.1109/ICASSP.2010.5495055 – volume: 16 start-page: 1530 year: 2016 ident: ref42 article-title: Maximum correntropy unscented Kalman filter for spacecraft relative state estimation publication-title: SENSORS doi: 10.3390/s16091530 – ident: ref12 doi: 10.1109/9.847726 – ident: ref15 doi: 10.1214/aos/1176325511 – ident: ref43 doi: 10.1080/00207721.2016.1277407 – ident: ref19 doi: 10.1109/TAES.2016.150722 – ident: ref20 doi: 10.1007/978-1-4419-1570-2 – ident: ref16 doi: 10.2514/1.G000799 – ident: ref24 doi: 10.1109/LSP.2014.2337899 – year: 1975 ident: ref8 publication-title: Applied Optimal Control Optimization Estimation and Control – ident: ref25 doi: 10.1109/TCSII.2015.2407751 – year: 1969 ident: ref9 publication-title: Estimation Theory and Applications – volume: 152 start-page: 160 year: 2018 ident: ref30 article-title: Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input publication-title: Signal Process doi: 10.1016/j.sigpro.2018.05.029 – ident: ref35 doi: 10.1017/CBO9780511543005 – ident: ref45 doi: 10.3390/s18061724 – ident: ref32 doi: 10.1109/TIP.2010.2103949 – ident: ref2 doi: 10.1109/CCDC.2014.6852747 – year: 2014 ident: ref27 publication-title: Robust Recognition via Information Theoretic Learning doi: 10.1007/978-3-319-07416-0 – ident: ref47 doi: 10.1016/j.epsr.2013.05.016 – ident: ref39 doi: 10.1016/j.sysconle.2017.07.016 – ident: ref13 doi: 10.1109/TSMC.2018.2795340 – ident: ref33 doi: 10.1109/TASL.2008.2002039 – ident: ref40 doi: 10.1109/CISS.2016.7460553 – ident: ref29 doi: 10.1016/j.sigpro.2015.04.024 – start-page: 5770 year: 2013 ident: ref18 article-title: A student's t filter for heavy tailed process and measurement noise publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP) – ident: ref10 doi: 10.1109/TSMC.2016.2598845 – ident: ref5 doi: 10.1109/TSMC.2016.2523914 – ident: ref46 doi: 10.1109/IJCNN.2016.7727408 – year: 1979 ident: ref11 publication-title: Optimal Filtering – ident: ref26 doi: 10.1016/j.neucom.2012.05.004 – ident: ref48 doi: 10.1002/0470045345 – ident: ref28 doi: 10.1109/TFUZZ.2017.2719619 – ident: ref6 doi: 10.1109/TSMC.2018.2883706 – ident: ref14 doi: 10.1109/TAC.2009.2019800 – ident: ref37 doi: 10.1109/LSP.2015.2428713 – ident: ref38 doi: 10.1016/j.automatica.2016.10.004 – ident: ref41 doi: 10.23919/ACC.2018.8431551 – ident: ref3 doi: 10.1109/TVT.2008.928649 – ident: ref7 doi: 10.1115/1.3662552 – ident: ref17 doi: 10.1109/48.380248 – ident: ref22 doi: 10.1109/IJCNN.2011.6033473 – volume: 33 start-page: 1561 year: 2011 ident: ref31 article-title: Maximum correntropy criterion for robust face recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.220 – ident: ref44 doi: 10.1016/j.jfranklin.2017.10.023 – ident: ref1 doi: 10.1109/TAES.2004.1386869 – ident: ref34 doi: 10.1109/TPWRS.2009.2030291 |
| SSID | ssj0001286306 |
| Score | 2.5227075 |
| Snippet | The extended Kalman filter (EKF) is a method extensively applied in many areas, particularly, in nonlinear target tracking. The optimization criterion commonly... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3093 |
| SubjectTerms | Covariance matrices Criteria Extended Kalman filter Extended Kalman filter (EKF) fixed-point algorithm Iterative algorithms Iterative methods Kalman filters Kernel Linear regression Mathematical model maximum correntropy criterion (MCC) Noise measurement Nonlinear filters Optimization Performance degradation Random noise Regression models Tracking |
| Title | Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering |
| URI | https://ieeexplore.ieee.org/document/8736038 https://www.proquest.com/docview/2513394936 |
| Volume | 51 |
| WOSCitedRecordID | wos000640749000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4B4mE8wBhDdHSTH3hCCziO4x-PULWaNFEhyqS-RY59mSrRFJUWwX8_20mroqFJe4kSyY6S-2zf-e58H8AZVSVVhskE04omHFOTmFKXiVYocsMrXuoqkk3I4VCNx_p2C76vz8IgYkw-w4twG2P5bmaXwVV2qWQmaKa2YVtK0ZzV2vCnKJFFKk2WCg--v7ZBzJTqy_vRTS_kcekL5vcnMmVv1FDkVflrMY4aZnDwf9_2EfZbS5JcNdAfwhbWn2Bvo77gEYz8TtOPZGJqR4ZNTQz_dIe_m-TXOrn2OsyRG_MymS6npDeLtZrms8dX0m-d4-SneZiamgwmIazu3_oZfg36970fScuikFivyhdJakQuK2MrjpRWjjOOxuRotLCYV7lWjnKeoWNB-5eaWma9TaU8RkqnzMnsGHbqWY0nQDK_dPoJbHPpQUQU2qWGlTw3rvRWhcs6QFdCLWxbYjwwXTwUcatBdRFwKAIORYtDB87XXR6b-hr_anwUBL9u2Mq8A90VckU7A58KFohrNNeZ-PJ-r1P4EH65SV7sws5ivsSvsGufF5On-bc4uP4AR3LMDA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB88Fc578OM8ufUzDz7JVdM0bZNHXVwU3UV0Bd9KmkyPBbcr6-5x_vcmaVwURfCltJCUdn5JZjIzmR_APhUlFYrlEcYVjTjGKlKlLCMpMEsVr3gpK082kfd64u5OXs3Bn9lZGET0yWd46G59LN-M9NS5yo5EnmQ0Ed9gwTFnhdNarzwqIks8mSaLMwu_vYYwZkzlUf-m23aZXPKQ2R1KHrM3isgzq7xbjr2O6ax87etWYTnYkuS4AX8N5rD-CT9eVRhchxu717RjmajakF5TFcM-XePfJv21jk6sFjOkq_4PhtMhaY98tabx6OGJnAb3OLlQ90NVk87ABdbtW3_Bbee03z6LAo9CpK0yn0SxytK8UrriSGllOOOoVIpKZhrTKpXCUM4TNMzp_1JSzbS1qoRFSciYmTzZgPl6VONvIIldPO0U1mluYUTMpIkVK3mqTGntCpO0gL4ItdChyLjjurgv_GaDysLhUDgcioBDCw5mXR6aChufNV53gp81DDJvwfYLckWYg48Fc9Q1kssk2_y41x58P-t3L4vL897FFiy5329SGbdhfjKe4g4s6n-TweN41w-0ZxRvz1U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+and+Nonlinear+Regression-Based+Maximum+Correntropy+Extended+Kalman+Filtering&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Xi&rft.au=Ren%2C+Zhigang&rft.au=Lyu%2C+Hongqiang&rft.au=Jiang%2C+Zhihong&rft.date=2021-05-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=5&rft.spage=3093&rft.epage=3102&rft_id=info:doi/10.1109%2FTSMC.2019.2917712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2019_2917712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |