PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening

Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 16
Hlavní autor: Yin, Haitao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.
AbstractList Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.
Author Yin, Haitao
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0003-2975-2188
  surname: Yin
  fullname: Yin, Haitao
  email: haitaoyin@njupt.edu.cn
  organization: College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNp9kMFOwzAMhiM0JLbBAyAulTh3xEmbJtymAgMJsYntXqWZCx2lKUkL4u1ptYkDB06W7O-37G9CRrWtkZBzoDMAqq42i-f1jFEGM06l5MCPyBjiWIZURNGIjCkoETKp2AmZeL-jFKIYkjFZrtbpOg2fsL0O5sENYhOktmsq3Pa1_rRV15a21lWwbrTz2De3Zf0S9PyXdW9BYV2w0rV_1a7Bup-ckuNCVx7PDnVKNne3m_Q-fFwuHtL5Y2iY4m0IQiZyKwRSExkuERVnWsVFYoROVKRzjCNgmuaGKgQuihxMlEDOCsGVyfmUXO7XNs5-dOjbbGc719_pMyZAUZAxiJ5K9pRx1nuHRWbKVg8PtU6XVQY0G-Rlg7xskJcd5PVJ-JNsXPmu3fe_mYt9pkTEX15FgiUq4T_bmXtd
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3460105
crossref_primary_10_1109_TGRS_2023_3281829
crossref_primary_10_1109_TGRS_2023_3329736
crossref_primary_10_1109_MGRS_2022_3187652
crossref_primary_10_3390_rs17010013
crossref_primary_10_1109_MGRS_2022_3171836
crossref_primary_10_1109_ACCESS_2022_3143847
crossref_primary_10_1109_TGRS_2022_3154435
crossref_primary_10_1016_j_inffus_2022_12_026
crossref_primary_10_3390_s24051410
crossref_primary_10_1109_JSTARS_2024_3408806
crossref_primary_10_1109_TGRS_2023_3261386
crossref_primary_10_1109_TGRS_2021_3139190
Cites_doi 10.14358/pers.74.2.193
10.1109/LGRS.2017.2761021
10.1109/LGRS.2017.2736020
10.1109/TIP.2020.3007824
10.1109/TIP.2014.2333661
10.1109/JSTARS.2018.2794888
10.1109/36.763274
10.1109/ICCV.2017.193
10.1109/TGRS.2007.907604
10.1109/LGRS.2004.834804
10.1109/TSP.2017.2733447
10.1109/MGRS.2016.2561021
10.1109/TGRS.2017.2675961
10.1109/JSTARS.2020.3021074
10.1109/ICCV.2015.212
10.1109/LGRS.2019.2904526
10.1109/TPAMI.2020.3027563
10.1109/CVPR.2016.90
10.1109/TGRS.2009.2029094
10.1109/TGRS.2002.803623
10.1109/TIP.2018.2819501
10.1109/JSTARS.2017.2697445
10.1109/LGRS.2004.836784
10.1109/TSMCB.2012.2198810
10.1109/ICCV.2019.00259
10.1109/TGRS.2020.2974806
10.1109/ACCESS.2019.2959238
10.1109/TGRS.2019.2906073
10.1109/TIP.2019.2944270
10.1109/TGRS.2007.901007
10.1137/13094829X
10.1109/TGRS.2019.2928715
10.1109/TGRS.2018.2817393
10.3390/rs8070594
10.1109/MGRS.2018.2890023
10.1109/JSTARS.2016.2546061
10.1109/TIP.2015.2495260
10.1109/LGRS.2014.2376034
10.1016/j.inffus.2018.11.014
10.1109/TGRS.2014.2361734
10.1109/TGRS.2010.2067219
10.1109/TPAMI.2019.2904255
10.1109/TGRS.2005.856106
10.1109/TGRS.2016.2614367
10.1109/JSTARS.2019.2898574
10.14358/PERS.72.5.591
10.1137/130928625
10.1109/MGRS.2020.2976696
10.1109/TGRS.2015.2504261
10.1109/TGRS.2012.2230332
10.1109/JSTARS.2013.2283236
10.1109/TGRS.2014.2354471
10.1080/014311698215973
10.1109/TGRS.2020.3007884
10.1785/0220190028
10.1109/JSTARS.2019.2953140
10.1109/LGRS.2014.2331291
10.3390/rs11192315
10.3390/rs8100797
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3088313
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2021_3088313
9462797
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61971237; 61501255
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732803400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 14:40:25 EDT 2025
Sat Nov 29 02:50:13 EST 2025
Tue Nov 18 21:25:31 EST 2025
Wed Aug 27 03:03:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2975-2188
PQID 2619018516
PQPubID 85465
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3088313
crossref_primary_10_1109_TGRS_2021_3088313
ieee_primary_9462797
proquest_journals_2619018516
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref53
Papyan (ref52) 2017; 18
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Simon (ref46)
ref51
ref48
ref47
ref42
ref41
ref44
ref43
Yuhas (ref57)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Wald (ref50) 1997; 63
ref35
Gregor (ref45)
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
Wald (ref58)
References_xml – ident: ref61
  doi: 10.14358/pers.74.2.193
– ident: ref19
  doi: 10.1109/LGRS.2017.2761021
– ident: ref38
  doi: 10.1109/LGRS.2017.2736020
– ident: ref9
  doi: 10.1109/TIP.2020.3007824
– ident: ref23
  doi: 10.1109/TIP.2014.2333661
– ident: ref40
  doi: 10.1109/JSTARS.2018.2794888
– ident: ref5
  doi: 10.1109/36.763274
– ident: ref41
  doi: 10.1109/ICCV.2017.193
– start-page: 399
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref45
  article-title: Learning fast approximations of sparse coding
– ident: ref13
  doi: 10.1109/TGRS.2007.907604
– ident: ref11
  doi: 10.1109/LGRS.2004.834804
– ident: ref51
  doi: 10.1109/TSP.2017.2733447
– ident: ref2
  doi: 10.1109/MGRS.2016.2561021
– ident: ref33
  doi: 10.1109/TGRS.2017.2675961
– ident: ref43
  doi: 10.1109/JSTARS.2020.3021074
– ident: ref53
  doi: 10.1109/ICCV.2015.212
– ident: ref34
  doi: 10.1109/LGRS.2019.2904526
– ident: ref62
  doi: 10.1109/TPAMI.2020.3027563
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref60
  doi: 10.1109/TGRS.2009.2029094
– ident: ref7
  doi: 10.1109/TGRS.2002.803623
– ident: ref10
  doi: 10.1109/TIP.2018.2819501
– ident: ref15
  doi: 10.1109/JSTARS.2017.2697445
– ident: ref56
  doi: 10.1109/LGRS.2004.836784
– ident: ref24
  doi: 10.1109/TSMCB.2012.2198810
– ident: ref47
  doi: 10.1109/ICCV.2019.00259
– ident: ref16
  doi: 10.1109/TGRS.2020.2974806
– ident: ref63
  doi: 10.1109/ACCESS.2019.2959238
– ident: ref21
  doi: 10.1109/TGRS.2019.2906073
– ident: ref48
  doi: 10.1109/TIP.2019.2944270
– ident: ref12
  doi: 10.1109/TGRS.2007.901007
– ident: ref55
  doi: 10.1137/13094829X
– ident: ref64
  doi: 10.1109/TGRS.2019.2928715
– ident: ref42
  doi: 10.1109/TGRS.2018.2817393
– volume: 63
  start-page: 691
  issue: 6
  year: 1997
  ident: ref50
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref36
  doi: 10.3390/rs8070594
– start-page: 99
  volume-title: Proc. 3rd Conf. Fusion Earth Data Merging Point Meas. Raster Maps Remotely Sensed Images
  ident: ref58
  article-title: Quality of high resolution synthesized images: Is there a simple criterion?
– ident: ref3
  doi: 10.1109/MGRS.2018.2890023
– ident: ref18
  doi: 10.1109/JSTARS.2016.2546061
– start-page: 2274
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Rethinking the CSC model for natural images
– ident: ref54
  doi: 10.1109/TIP.2015.2495260
– ident: ref35
  doi: 10.1109/LGRS.2014.2376034
– ident: ref26
  doi: 10.1016/j.inffus.2018.11.014
– ident: ref1
  doi: 10.1109/TGRS.2014.2361734
– ident: ref28
  doi: 10.1109/TGRS.2010.2067219
– ident: ref49
  doi: 10.1109/TPAMI.2019.2904255
– ident: ref6
  doi: 10.1109/TGRS.2005.856106
– volume: 18
  start-page: 2887
  issue: 1
  year: 2017
  ident: ref52
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J. Mach. Learn. Res.
– start-page: 147
  volume-title: Proc. Summ. 3rd Annu. JPL Airborne Geosci. Workshop
  ident: ref57
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– ident: ref17
  doi: 10.1109/TGRS.2016.2614367
– ident: ref39
  doi: 10.1109/JSTARS.2019.2898574
– ident: ref8
  doi: 10.14358/PERS.72.5.591
– ident: ref25
  doi: 10.1137/130928625
– ident: ref4
  doi: 10.1109/MGRS.2020.2976696
– ident: ref30
  doi: 10.1109/TGRS.2015.2504261
– ident: ref29
  doi: 10.1109/TGRS.2012.2230332
– ident: ref31
  doi: 10.1109/JSTARS.2013.2283236
– ident: ref14
  doi: 10.1109/TGRS.2014.2354471
– ident: ref59
  doi: 10.1080/014311698215973
– ident: ref44
  doi: 10.1109/TGRS.2020.3007884
– ident: ref65
  doi: 10.1785/0220190028
– ident: ref27
  doi: 10.1109/JSTARS.2019.2953140
– ident: ref32
  doi: 10.1109/LGRS.2014.2331291
– ident: ref20
  doi: 10.3390/rs11192315
– ident: ref22
  doi: 10.3390/rs8100797
SSID ssj0014517
Score 2.4705274
Snippet Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Coding
Convolutional sparse coding (CSC)
Deep learning
deep neural network
deep unfolding
High resolution
Image resolution
Iterative algorithms
Iterative methods
Machine learning
Neural networks
Optimization
Pansharpening
Resolution
Satellites
Signal resolution
Spatial resolution
Training
Title PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening
URI https://ieeexplore.ieee.org/document/9462797
https://www.proquest.com/docview/2619018516
Volume 60
WOSCitedRecordID wos000732803400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KOjBt1hf5OBJjGY3ySbrTerrVIvtwVvITiYolLbY1t_v7HZbFEXwlBB2Q5jZyXzzBjjLdMU4GkVYIpJ13aRhbrQJMRYCa5kaJOOGTWTtdv7yojtLcLGohSEil3xGl_bWxfKrIU6tq-xKJ0pmOluG5SxTs1qtRcQgSYUvjVYhGxHSRzBFpK96D89dtgSluIxZpmIRf9NBbqjKjz-xUy_3m__7sC3Y8DAyuJnxfRuWaLAD61-aC-7AqkvuxPEuPHW6rW4rbNPkOrgJbolGQWs4HfWp4uvgwx8-fl13xGYu8UOr0IL2LEM8YFgbdFijvdpQjXWj7EHv_q7Xegz9IIUQWZtPQqHyLK-UoggTjHMiBm2lTusMVcnyWBpKEyHLyGCkScSqNgJZaRlZM35BE-9DYzAc0AEEKA3bQFgntSwZaOUmMqIWjqdYqUo1IZpTtkDfZNzOuugXztiIdGGZUVhmFJ4ZTThfbBnNOmz8tXjXUn-x0BO-Ccdz9hVeBseFtQ0jhiNCHf6-6wjWpC1mcA6VY2hM3qd0Aiv4MXkbv5-64_UJTInMZw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xsmnsgW0wRAfb8sDTtIDtJE7MGypjTGOhon3gLYovF20Saqt-8Pdzdk01xITEU6LIjqI7X-533wAHuWkYR6OMa0RyrpssLqyxMSZSYqsyi2T9sIm8LIvra9Nfg2-rWhgi8slndOhufSy_GePCucqOTKpVbvIXsJ6lqRLLaq1VzCDNZCiO1jGbESrEMKUwR8MfVwO2BZU8TFiqEpk80EJ-rMqjf7FXMGdvn_dp72AzAMnoZMn597BGoy148097wS145dM7cbYNl_1Bb9CLS5ofRyfRKdEk6o0Xkxtq-Dq6DcePXzeYsKFL_NCptKhc5ohHDGyjPuu0Py5Y4xwpH2B49n3YO4_DKIUYWZ_PY6mLvGi0JoEpJgURw7baZG2OumaJrC1lqVS1sCgMyUS3ViKrLataRjBokx3ojMYj2oUIlWUrCNu0VTVDrcIKK1vpuYqNbnQXxD1lKwxtxt20i5vKmxvCVI4ZlWNGFZjRha-rLZNlj42nFm876q8WBsJ3Yf-efVWQwlnlrEPBgETqj__f9QVenw9_X1QXP8tfe7ChXGmDd6_sQ2c-XdAneIm387-z6Wd_1O4AGk_Prg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSCSC-Net%3A+A+Deep+Coupled+Convolutional+Sparse+Coding+Network+for+Pansharpening&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Yin%2C+Haitao&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2021.3088313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3088313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon