Multiconstrained Real-Time Entry Guidance Using Deep Neural Networks
In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control of entry flights by leveraging the deep neural network (DNN) and constraint management techniques. First, the entry trajectory planning proble...
Uloženo v:
| Vydáno v: | IEEE transactions on aerospace and electronic systems Ročník 57; číslo 1; s. 325 - 340 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9251, 1557-9603 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control of entry flights by leveraging the deep neural network (DNN) and constraint management techniques. First, the entry trajectory planning problem is formulated as a univariate root-finding problem based on a compound bank angle corridor, and two constraint management algorithms are presented to enforce the satisfaction of both path and terminal constraints. Second, a DNN is developed to learn the mapping relationship between the flight states and ranges, and experiments are conducted to verify its high approximation accuracy. Based on the DNN-based range predictor, an intelligent, multiconstrained predictor-corrector guidance algorithm is developed to achieve real-time trajectory correction and lateral heading control with a determined number of bank reversals. Simulations are conducted through comparing with the state-of-the-art predictor-corrector algorithms, and the results demonstrate that the proposed DNN-based entry guidance can achieve the trajectory correction with an update frequency of 20 Hz and is capable of providing high-precision, safe, and robust entry guidance for hypersonic vehicles. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9251 1557-9603 |
| DOI: | 10.1109/TAES.2020.3015321 |