Multiconstrained Real-Time Entry Guidance Using Deep Neural Networks

In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control of entry flights by leveraging the deep neural network (DNN) and constraint management techniques. First, the entry trajectory planning proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 57; H. 1; S. 325 - 340
Hauptverfasser: Cheng, Lin, Jiang, Fanghua, Wang, Zhenbo, Li, Junfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control of entry flights by leveraging the deep neural network (DNN) and constraint management techniques. First, the entry trajectory planning problem is formulated as a univariate root-finding problem based on a compound bank angle corridor, and two constraint management algorithms are presented to enforce the satisfaction of both path and terminal constraints. Second, a DNN is developed to learn the mapping relationship between the flight states and ranges, and experiments are conducted to verify its high approximation accuracy. Based on the DNN-based range predictor, an intelligent, multiconstrained predictor-corrector guidance algorithm is developed to achieve real-time trajectory correction and lateral heading control with a determined number of bank reversals. Simulations are conducted through comparing with the state-of-the-art predictor-corrector algorithms, and the results demonstrate that the proposed DNN-based entry guidance can achieve the trajectory correction with an update frequency of 20 Hz and is capable of providing high-precision, safe, and robust entry guidance for hypersonic vehicles.
AbstractList In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control of entry flights by leveraging the deep neural network (DNN) and constraint management techniques. First, the entry trajectory planning problem is formulated as a univariate root-finding problem based on a compound bank angle corridor, and two constraint management algorithms are presented to enforce the satisfaction of both path and terminal constraints. Second, a DNN is developed to learn the mapping relationship between the flight states and ranges, and experiments are conducted to verify its high approximation accuracy. Based on the DNN-based range predictor, an intelligent, multiconstrained predictor-corrector guidance algorithm is developed to achieve real-time trajectory correction and lateral heading control with a determined number of bank reversals. Simulations are conducted through comparing with the state-of-the-art predictor-corrector algorithms, and the results demonstrate that the proposed DNN-based entry guidance can achieve the trajectory correction with an update frequency of 20 Hz and is capable of providing high-precision, safe, and robust entry guidance for hypersonic vehicles.
Author Cheng, Lin
Li, Junfeng
Jiang, Fanghua
Wang, Zhenbo
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0001-8090-2562
  surname: Cheng
  fullname: Cheng, Lin
  email: chenglin5580@tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
– sequence: 2
  givenname: Fanghua
  orcidid: 0000-0001-8411-5603
  surname: Jiang
  fullname: Jiang, Fanghua
  email: jiangfh@tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
– sequence: 3
  givenname: Zhenbo
  orcidid: 0000-0002-8979-9765
  surname: Wang
  fullname: Wang, Zhenbo
  email: zwang124@utk.edu
  organization: University of Tennessee, Knoxville, TN, USA
– sequence: 4
  givenname: Junfeng
  surname: Li
  fullname: Li, Junfeng
  email: lijunf@mail.tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
BookMark eNp9kM9LwzAUx4NMcE7_APFS8Nz5krRpexzbnMJU0O1csvRFMrt0Jimy_96WDQ8ePD0efD_vx-eSDGxjkZAbCmNKobhfTebvYwYMxhxoyhk9I0OapllcCOADMgSgeVywlF6QS--3XZvkCR-S2XNbB6Ma64OTxmIVvaGs45XZYTS3wR2iRWsqaRVGa2_sRzRD3Ecv2DpZdyV8N-7TX5FzLWuP16c6IuuH-Wr6GC9fF0_TyTJWrOAhpkJkWoBirJIJ744RMtNaU9AcpOYVSpULAMhFAgqrnIOWXFUiqTJNN7jhI3J3nLt3zVeLPpTbpnW2W1myJM-zRIiUdqnsmFKu8d6hLpUJMpjG9i_WJYWyV1b2yspeWXlS1pH0D7l3Zifd4V_m9sgYRPzNF1Rwxgv-A24CeHk
CODEN IEARAX
CitedBy_id crossref_primary_10_1155_2021_8827377
crossref_primary_10_1016_j_conengprac_2022_105392
crossref_primary_10_1016_j_actaastro_2022_02_007
crossref_primary_10_1061_JAEEEZ_ASENG_5653
crossref_primary_10_1061_JAEEEZ_ASENG_6021
crossref_primary_10_3390_drones7100639
crossref_primary_10_1155_2021_2734230
crossref_primary_10_1016_j_ast_2024_109636
crossref_primary_10_1155_2023_5883080
crossref_primary_10_1016_j_actaastro_2024_11_047
crossref_primary_10_1177_09544100251350405
crossref_primary_10_1177_09544100231153261
crossref_primary_10_1109_TAES_2024_3419073
crossref_primary_10_3390_aerospace10110931
crossref_primary_10_1016_j_ast_2024_109545
crossref_primary_10_1016_j_ast_2022_107363
crossref_primary_10_1016_j_ast_2022_108053
crossref_primary_10_1016_j_ast_2023_108594
crossref_primary_10_1177_09544100221149237
crossref_primary_10_1016_j_ast_2023_108710
crossref_primary_10_1016_j_ast_2025_109960
crossref_primary_10_1109_TAES_2022_3223333
crossref_primary_10_1177_09544100241278023
crossref_primary_10_1177_09544100251338758
crossref_primary_10_1016_j_ast_2023_108119
crossref_primary_10_1016_j_iswa_2022_200092
crossref_primary_10_1016_j_ast_2022_107842
crossref_primary_10_1109_TAES_2025_3548555
crossref_primary_10_1016_j_actaastro_2021_12_043
crossref_primary_10_1016_j_actaastro_2023_08_003
crossref_primary_10_1109_ACCESS_2024_3383322
crossref_primary_10_3390_aerospace9080427
crossref_primary_10_1360_SSPMA_2024_0325
crossref_primary_10_1155_2023_9973653
crossref_primary_10_3390_math11010185
crossref_primary_10_1088_1742_6596_2764_1_012068
crossref_primary_10_1109_TIM_2024_3457971
crossref_primary_10_1109_TAES_2024_3466125
crossref_primary_10_1002_rnc_6722
crossref_primary_10_1109_TCSII_2024_3358914
crossref_primary_10_1016_j_isatra_2023_04_004
crossref_primary_10_3390_aerospace10121008
crossref_primary_10_1016_j_actaastro_2022_07_002
crossref_primary_10_1016_j_engappai_2024_109018
crossref_primary_10_1061_JAEEEZ_ASENG_6129
crossref_primary_10_1109_TAES_2024_3449272
crossref_primary_10_1177_09544100241236995
crossref_primary_10_1109_TAES_2024_3454028
crossref_primary_10_1016_j_paerosci_2025_101129
crossref_primary_10_1109_TAES_2024_3403078
crossref_primary_10_3390_aerospace11050376
crossref_primary_10_3390_aerospace11070540
crossref_primary_10_1016_j_cja_2025_103578
crossref_primary_10_1142_S2737480725500177
crossref_primary_10_1016_j_asr_2023_09_034
crossref_primary_10_1007_s11071_023_08721_2
crossref_primary_10_1109_TAES_2022_3153595
crossref_primary_10_1007_s11063_022_11005_2
crossref_primary_10_1016_j_ast_2025_110049
crossref_primary_10_1109_TAES_2024_3443776
crossref_primary_10_1061_JAEEEZ_ASENG_5300
crossref_primary_10_1109_TAES_2023_3341906
crossref_primary_10_1016_j_ast_2023_108259
crossref_primary_10_1109_TAES_2025_3529674
crossref_primary_10_1155_2022_2886312
crossref_primary_10_1007_s00521_022_08024_4
crossref_primary_10_2514_1_G006659
crossref_primary_10_1016_j_asr_2022_04_006
crossref_primary_10_1109_TAES_2022_3221697
crossref_primary_10_2514_1_G006977
crossref_primary_10_1109_TAES_2023_3322977
crossref_primary_10_3390_aerospace11050361
Cites_doi 10.1177/0954410017724185
10.1007/s42064-018-0053-6
10.2514/1.10886
10.1007/s42064-018-0052-2
10.2514/1.62605
10.1109/JSEE.2014.00073
10.1109/TCYB.2015.2411285
10.1016/j.actaastro.2019.09.023
10.1109/TAES.2019.2952700
10.1016/j.actaastro.2019.11.001
10.1007/s11433-019-1481-2
10.1016/j.ast.2017.03.010
10.1109/TAES.2019.2921213
10.2514/2.5021
10.2514/1.G000327
10.1016/j.actaastro.2019.11.039
10.1016/j.ast.2019.03.002
10.2514/1.11015
10.1016/j.ast.2018.06.031
10.1016/j.ast.2018.10.035
10.2514/3.1987
10.1109/TAES.2018.2889571
10.2514/1.G004682
10.1016/j.ast.2018.09.004
10.2514/1.G002357
10.1016/j.neucom.2019.10.038
10.2514/1.G001817
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2020.3015321
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 340
ExternalDocumentID 10_1109_TAES_2020_3015321
9163239
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation; Postdoctoral Science Foundation of China
  grantid: 2019M650644
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 11902174; 11872223
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-1667f60c22da439256a7fff10f30af3deac860008640ced830fa3cd64d7f1beb3
IEDL.DBID RIE
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617426500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Mon Jun 30 10:22:50 EDT 2025
Sat Nov 29 01:51:30 EST 2025
Tue Nov 18 21:59:14 EST 2025
Wed Aug 27 02:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1667f60c22da439256a7fff10f30af3deac860008640ced830fa3cd64d7f1beb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8411-5603
0000-0001-8090-2562
0000-0002-8979-9765
PQID 2488746651
PQPubID 85477
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TAES_2020_3015321
crossref_primary_10_1109_TAES_2020_3015321
ieee_primary_9163239
proquest_journals_2488746651
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref30
ref33
ref11
ref10
ref2
ref1
ref17
pedregosa (ref32) 2011; 12
yeager (ref34) 0
ref16
ref19
phillips (ref35) 2003
ref18
atmosphere (ref29) 1976
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref3
ref6
ref5
pinson (ref12) 0
smith (ref4) 0
slotine (ref31) 1991
References_xml – volume: 12
  start-page: 2825
  year: 2011
  ident: ref32
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1177/0954410017724185
– ident: ref22
  doi: 10.1007/s42064-018-0053-6
– ident: ref7
  doi: 10.2514/1.10886
– ident: ref23
  doi: 10.1007/s42064-018-0052-2
– ident: ref2
  doi: 10.2514/1.62605
– ident: ref15
  doi: 10.1109/JSEE.2014.00073
– ident: ref25
  doi: 10.1109/TCYB.2015.2411285
– ident: ref28
  doi: 10.1016/j.actaastro.2019.09.023
– ident: ref19
  doi: 10.1109/TAES.2019.2952700
– start-page: 2655
  year: 0
  ident: ref12
  article-title: Rapid generation of optimal asteroid powered descent trajectories via convex optimization
  publication-title: Proc AAS/AIAA Astrodynamics Spec Conf
– ident: ref20
  doi: 10.1016/j.actaastro.2019.11.001
– ident: ref24
  doi: 10.1007/s11433-019-1481-2
– ident: ref5
  doi: 10.1016/j.ast.2017.03.010
– ident: ref1
  doi: 10.1109/TAES.2019.2921213
– ident: ref14
  doi: 10.2514/2.5021
– ident: ref8
  doi: 10.2514/1.G000327
– ident: ref33
  doi: 10.1016/j.actaastro.2019.11.039
– ident: ref13
  doi: 10.1016/j.ast.2019.03.002
– ident: ref6
  doi: 10.2514/1.11015
– ident: ref10
  doi: 10.1016/j.ast.2018.06.031
– ident: ref16
  doi: 10.1016/j.ast.2018.10.035
– year: 1976
  ident: ref29
  article-title: National oceanic and atmospheric administration
– year: 0
  ident: ref34
  article-title: LibGuides: SPSS tutorials: Pearson correlation
– ident: ref17
  doi: 10.2514/3.1987
– ident: ref21
  doi: 10.1109/TAES.2018.2889571
– ident: ref9
  doi: 10.2514/1.G004682
– year: 2003
  ident: ref35
  article-title: A common aero vehicle (CAV) model, description, and employment guide
– ident: ref18
  doi: 10.1016/j.ast.2018.09.004
– ident: ref27
  doi: 10.2514/1.G002357
– ident: ref26
  doi: 10.1016/j.neucom.2019.10.038
– year: 1991
  ident: ref31
  publication-title: Applied nonlinear control
– ident: ref30
  doi: 10.1016/j.ast.2018.10.035
– ident: ref11
  doi: 10.2514/1.G001817
– start-page: 1771
  year: 0
  ident: ref4
  article-title: Predictive lateral logic for numerical entry guidance algorithms
  publication-title: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting
SSID ssj0014843
Score 2.6124022
Snippet In this article, an intelligent predictor-corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control...
In this article, an intelligent predictor–corrector entry guidance approach for lifting hypersonic vehicles is proposed to achieve real-time and safe control...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Aerodynamics
Algorithms
Approximation algorithms
Artificial neural networks
Constraint management
deep neural networks (DNNs)
Earth
entry guidance
Hypersonic vehicles
lateral heading control
Neural networks
numerical predictor–corrector guidance (NPCG)
Prediction algorithms
Predictor-corrector methods
Real time
Real-time systems
Terminal constraints
Trajectory
Trajectory planning
Vehicle dynamics
Title Multiconstrained Real-Time Entry Guidance Using Deep Neural Networks
URI https://ieeexplore.ieee.org/document/9163239
https://www.proquest.com/docview/2488746651
Volume 57
WOSCitedRecordID wos000617426500023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH60xYMe3KpYN3LwJMbOks5MjsW2eiqiFXoLySxQkLZ08ff7ZpIWRRG85TAzJO_NW768DeAmKZzSVLlYOI4ARUsSK-VYrCkheYEiIlMXhk3I4VCNx-lzDe62tTDW2pB8Zu_9Y4jlm5le-19lbXRlOONpHepSyrJWaxsxSFSVIUdRgNFoVxFMStL2qNt_RSTIEKCi8eOMfrNBYajKD00czMvg4H8vdgj7lRsZdUu-H0HNTo9h70tzwSb0Qm2t9v6fHwNhTfSCTmHsaz6ivh8nEj2uJ8YzPQp5A1HP2nnkm3XgwcMyO3x5Am-D_ujhKa5mJsQaDfcqpkJIJ4hmzOToa6BDk0vnHCWOk9xxg3pWiQBkEqKtUZy4nGsjEiMdLRBZn0JjOpvaM4hSaos0MVx3CpboRBUcYbRw1nW00HhMC8iGipmuGor7D3rPArAgaeYJn3nCZxXhW3C73TIvu2n8tbjpKb1dWBG5BZcbVmWVvC0zhnpIJkJ06Pnvuy5gl_lslJBvfQmN1WJtr2BHf6wmy8V1uEqfbN3Fgg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oFdSDWxXrmoMnMXa2TiZH0bqgFtEKvYVkFhCkli7-ft9M0qIogrccZobkvXnLl7cBHIvCKU2Vi6XjCFB0QmKlHIs1JSQvUESS1IVhE0mno3q99HEOTme1MNbakHxmz_xjiOWbdz3xv8qa6MpwxtN5WGgJwWhZrTWLGQhV5chRFGE021UMk5K02T1vPyMWZAhR0fxxRr9ZoTBW5YcuDgbmau1_r7YOq5UjGZ2XnN-AOdvfhJUv7QXrcBmqa7X3AP0gCGuiJ3QLY1_1EbX9QJHoevJqPNujkDkQXVo7iHy7Djy4U-aHj7bg5ardvbiJq6kJsUbTPY6plImTRDNmcvQ20KXJE-ccJY6T3HGDmlbJAGUE0dYoTlzOtZHCJI4WiK23odZ_79sdiFJqi1QYrlsFE1qogiOQls66lpYaj2kAmVIx01VLcf9Bb1mAFiTNPOEzT_isInwDTmZbBmU_jb8W1z2lZwsrIjdgf8qqrJK4UcZQEyVCyhbd_X3XESzddB_us_vbzt0eLDOfmxKyr_ehNh5O7AEs6o_x62h4GK7VJ97wyMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiconstrained+Real-Time+Entry+Guidance+Using+Deep+Neural+Networks&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Cheng%2C+Lin&rft.au=Jiang%2C+Fanghua&rft.au=Wang%2C+Zhenbo&rft.au=Li%2C+Junfeng&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=57&rft.issue=1&rft.spage=325&rft_id=info:doi/10.1109%2FTAES.2020.3015321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon