An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods
In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and ex...
Saved in:
| Published in: | IEEE transactions on evolutionary computation Vol. 19; no. 6; pp. 807 - 822 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and expensive local search (LS) methods for making use of both global statistical information and individual location information. In our approach, part of a new solution is sampled from a modified univariate histogram probabilistic model and the rest is generated by refining a parent solution through a cheap LS method that does not need any function evaluation. When the population has converged, an expensive LS method is applied to improve a promising solution found so far. Controlled experiments have been carried out to investigate the effects of the algorithm components and the control parameters, the scalability on the number of variables, and the running time. The proposed algorithm has been compared with two state-of-the-art algorithms on two test suites of 27 test instances. Experimental results have shown that, for simple test instances, our algorithm can produce better or similar solutions but with faster convergence speed than the compared methods and for some complicated test instances it can find better solutions. |
|---|---|
| AbstractList | In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and expensive local search (LS) methods for making use of both global statistical information and individual location information. In our approach, part of a new solution is sampled from a modified univariate histogram probabilistic model and the rest is generated by refining a parent solution through a cheap LS method that does not need any function evaluation. When the population has converged, an expensive LS method is applied to improve a promising solution found so far. Controlled experiments have been carried out to investigate the effects of the algorithm components and the control parameters, the scalability on the number of variables, and the running time. The proposed algorithm has been compared with two state-of-the-art algorithms on two test suites of 27 test instances. Experimental results have shown that, for simple test instances, our algorithm can produce better or similar solutions but with faster convergence speed than the compared methods and for some complicated test instances it can find better solutions. |
| Author | Aimin Zhou Qingfu Zhang Jianyong Sun |
| Author_xml | – sequence: 1 givenname: Aimin surname: Zhou fullname: Zhou, Aimin – sequence: 2 givenname: Jianyong surname: Sun fullname: Sun, Jianyong – sequence: 3 givenname: Qingfu surname: Zhang fullname: Zhang, Qingfu |
| BookMark | eNp9kElPwzAQhS0EEm3hByAuljineEnq-FiFskhFHGiBW-Q4E-qqjYPtIvj3uIs4cOAyi_TePM3XR8etbQGhC0qGlBJ5PZu8FENGaDpkPBcp50eoR2VKE0LY6DjOJJeJEPnbKep7vyRRmVHZQ_Nxiyc-mLUKxrbYNvjG-OBMtdnt49W7dSYs1vg1VlwsQHVYtTWefHXQevMJeGq1WuFnUE4v8COEha39GTpp1MrD-aEP0Px2Mivuk-nT3UMxniaaSR4SmlIy0rIhACOeV0LWItOUV1WaalmD1qxmWdZAzWoSJ1CacVbJOidQpbnK-ABd7e92zn5swIdyaTeujZElFTzPs5QyElV0r9LOeu-gKTsXH3bfJSXlll65pVdu6ZUHetEj_ni0CTtGwSmz-td5uXcaAPhNEpE4lYL_ADnAfwM |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107366 crossref_primary_10_1109_TSMC_2022_3205010 crossref_primary_10_1109_TCYB_2021_3117359 crossref_primary_10_1016_j_ins_2017_02_021 crossref_primary_10_1016_j_compstruct_2025_119311 crossref_primary_10_1016_j_eswa_2025_126526 crossref_primary_10_1007_s00521_016_2624_x crossref_primary_10_1109_TEVC_2023_3290670 crossref_primary_10_1109_LAWP_2023_3325232 crossref_primary_10_1016_j_compeleceng_2021_107491 crossref_primary_10_1109_ACCESS_2019_2958288 crossref_primary_10_1007_s00521_018_3457_6 crossref_primary_10_1016_j_knosys_2018_02_001 crossref_primary_10_3390_e21060602 crossref_primary_10_1109_TCYB_2016_2602561 crossref_primary_10_1007_s10586_018_1725_y crossref_primary_10_1371_journal_pone_0302207 crossref_primary_10_1016_j_asoc_2022_109957 crossref_primary_10_1016_j_swevo_2022_101073 crossref_primary_10_1063_5_0211828 crossref_primary_10_1016_j_ins_2017_09_044 crossref_primary_10_1016_j_asoc_2019_02_045 crossref_primary_10_1016_j_swevo_2018_04_009 crossref_primary_10_1109_TCYB_2020_3038694 crossref_primary_10_1016_j_ins_2022_07_016 crossref_primary_10_1080_0305215X_2018_1502759 crossref_primary_10_1016_j_biosystems_2019_04_001 crossref_primary_10_1016_j_engappai_2024_108263 crossref_primary_10_1007_s00500_018_3390_8 crossref_primary_10_1016_j_swevo_2024_101506 crossref_primary_10_1016_j_swevo_2025_101967 crossref_primary_10_1016_j_ymssp_2024_112256 crossref_primary_10_1016_j_swevo_2024_101502 crossref_primary_10_1016_j_ins_2020_05_108 crossref_primary_10_1016_j_swevo_2023_101324 crossref_primary_10_1016_j_swevo_2024_101663 crossref_primary_10_1109_ACCESS_2021_3131807 crossref_primary_10_1016_j_swevo_2024_101741 crossref_primary_10_1109_TCYB_2017_2780274 crossref_primary_10_1109_JAS_2024_124377 crossref_primary_10_23919_JSEE_2024_000128 crossref_primary_10_1016_j_swevo_2020_100808 crossref_primary_10_1109_TETCI_2023_3301794 crossref_primary_10_1109_TEVC_2021_3101697 crossref_primary_10_1109_TCYB_2021_3086501 crossref_primary_10_1109_TSMC_2023_3295371 crossref_primary_10_1109_TCYB_2016_2523000 crossref_primary_10_3390_math9243207 crossref_primary_10_1016_j_knosys_2022_108517 crossref_primary_10_1109_TEVC_2019_2910721 crossref_primary_10_1016_j_ins_2020_01_050 crossref_primary_10_1016_j_ins_2022_11_029 crossref_primary_10_1016_j_asoc_2018_08_039 crossref_primary_10_1002_cpe_6074 crossref_primary_10_1016_j_asoc_2024_111541 crossref_primary_10_1109_ACCESS_2024_3403889 crossref_primary_10_1109_MCI_2024_3401369 crossref_primary_10_1109_TSMC_2019_2962880 crossref_primary_10_1016_j_knosys_2018_02_029 crossref_primary_10_1016_j_swevo_2020_100801 crossref_primary_10_1016_j_swevo_2025_101974 crossref_primary_10_1016_j_eswa_2023_121261 crossref_primary_10_1109_TEVC_2024_3354850 crossref_primary_10_1007_s11432_023_3909_x crossref_primary_10_1109_TEVC_2019_2932624 crossref_primary_10_1007_s10732_017_9356_7 crossref_primary_10_1007_s13042_024_02146_y crossref_primary_10_1109_ACCESS_2023_3270297 crossref_primary_10_1016_j_cja_2023_11_018 crossref_primary_10_1016_j_asoc_2023_110464 crossref_primary_10_1016_j_swevo_2025_101905 crossref_primary_10_1109_TEVC_2017_2672689 crossref_primary_10_1155_2018_3419213 crossref_primary_10_1109_TETCI_2023_3299298 crossref_primary_10_1109_TASE_2020_3019694 crossref_primary_10_1109_TCYB_2018_2869567 crossref_primary_10_1016_j_eswa_2023_123122 crossref_primary_10_1016_j_swevo_2024_101642 |
| Cites_doi | 10.1007/3-540-61723-X_983 10.1109/TEVC.2007.902851 10.1145/1143997.1144078 10.1162/106365601750190398 10.1016/j.ins.2004.06.009 10.1016/S0020-0255(03)00174-9 10.1007/978-1-4615-1539-5 10.1109/TSMCC.2004.841914 10.1023/A:1023993325417 10.1109/4235.771163 10.1109/TEVC.2009.2014613 10.1016/S0020-0190(02)00447-7 10.1073/pnas.0610471104 10.1007/978-1-4471-0819-1_39 10.1023/A:1008202821328 10.1007/978-3-540-34954-9 10.1023/A:1013500812258 10.1162/evco.2008.16.2.185 10.1109/TEVC.2005.846356 10.1007/3-540-61723-X_982 10.1108/02644400410511864 10.1007/978-3-540-30217-9_22 10.1007/s101070100290 10.1109/CEC.2010.5585938 10.1360/aas-007-0113 10.1162/EVCO_a_00068 10.1109/4235.797971 10.1109/TEVC.2006.872133 10.1109/TEVC.2013.2247404 10.1007/s11633-007-0273-3 10.1109/TEVC.2008.927706 10.1109/CEC.2008.4630984 10.1007/s10898-006-9030-3 10.1109/TEVC.2013.2248012 10.1162/evco.1999.7.4.353 10.1109/TEVC.2004.840835 10.1007/3-540-32494-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2014.2387433 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 822 |
| ExternalDocumentID | 3883754961 10_1109_TEVC_2014_2387433 7001197 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Basic Research Program (973 Program) grantid: 2011CB707104 – fundername: National Natural Science Foundation of China grantid: 61273313 funderid: 10.13039/501100001809 – fundername: China National Instrumentation Program grantid: 2012YQ180132 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-14106c9f0ee638b79d75c13bb44c9decc2d255fed2d0d25eac232b9d80eb48a53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366105600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 12:44:32 EDT 2025 Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 22:37:09 EST 2025 Tue Aug 26 16:40:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Distribution information estimation of distribution algorithm (EDA) location information global optimization univariate marginal distribution algorithm (UMDA) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-14106c9f0ee638b79d75c13bb44c9decc2d255fed2d0d25eac232b9d80eb48a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1738854120 |
| PQPubID | 85418 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_1738854120 crossref_citationtrail_10_1109_TEVC_2014_2387433 crossref_primary_10_1109_TEVC_2014_2387433 ieee_primary_7001197 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Dec. 2015-12-00 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2015 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 cho (ref29) 2001 ref53 ref52 ref55 ref54 ref10 posik (ref44) 2007 ref19 de jong (ref3) 2006 ref51 ref50 hastie (ref8) 2001 baluja (ref13) 1994 ref46 ref45 ref48 ref47 ref41 ref43 press (ref40) 2007 ref49 fletcher (ref39) 1987 ref9 larrañaga (ref16) 0 ref4 etxeberria (ref21) 0 pelikan (ref11) 2006 ref35 ref34 ref37 ref36 ref31 ref33 baluja (ref18) 1997 ref32 ref38 suganthan (ref42) 2005 cho (ref30) 2002 bosman (ref14) 2000 pelikan (ref20) 1999 mühlenbein (ref5) 1996 holland (ref1) 1975 ref24 ref23 de bonet (ref17) 1997 ref26 ref25 ref22 ref28 ref27 lozano (ref6) 2006; 192 goldberg (ref2) 1989 bishop (ref7) 2006 |
| References_xml | – start-page: 188 year: 1996 ident: ref5 article-title: From recombination of genes to the estimation of distributions II: Continuous parameters publication-title: Parallel Problem Solving From Nature-PPSN IV (LNCS 1141) doi: 10.1007/3-540-61723-X_983 – ident: ref55 doi: 10.1109/TEVC.2007.902851 – ident: ref25 doi: 10.1145/1143997.1144078 – ident: ref22 doi: 10.1162/106365601750190398 – start-page: 767 year: 2000 ident: ref14 article-title: Expanding from discrete to continuous estimation of distribution algorithms: The IDEA publication-title: Proceedings of the Parallel Problem Solving from Nature – year: 2005 ident: ref42 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization – ident: ref38 doi: 10.1016/j.ins.2004.06.009 – start-page: 521 year: 2001 ident: ref29 article-title: Continuous estimation of distribution algorithms with probabilistic principal component analysis publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref43 doi: 10.1016/S0020-0255(03)00174-9 – year: 2007 ident: ref40 publication-title: Numerical Recipes The Art of Scientific Computing – year: 1994 ident: ref13 article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning – year: 1989 ident: ref2 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref10 doi: 10.1007/978-1-4615-1539-5 – ident: ref27 doi: 10.1109/TSMCC.2004.841914 – ident: ref28 doi: 10.1023/A:1023993325417 – ident: ref41 doi: 10.1109/4235.771163 – ident: ref49 doi: 10.1109/TEVC.2009.2014613 – start-page: 201 year: 0 ident: ref16 article-title: Optimization in continuous domains by learning and simulation of Gaussian networks publication-title: Proc Genet Evol Comput Conf (GECCO 2010) – start-page: 1396 year: 2002 ident: ref30 article-title: Evolutionary optimization by distribution estimation with mixtures of factor analyzers publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref53 doi: 10.1016/S0020-0190(02)00447-7 – ident: ref34 doi: 10.1073/pnas.0610471104 – ident: ref26 doi: 10.1007/978-1-4471-0819-1_39 – ident: ref50 doi: 10.1023/A:1008202821328 – year: 2006 ident: ref11 publication-title: Scalable Optimization via Probabilistic Modeling From Algorithms to Applications doi: 10.1007/978-3-540-34954-9 – ident: ref9 doi: 10.1023/A:1013500812258 – ident: ref48 doi: 10.1162/evco.2008.16.2.185 – ident: ref54 doi: 10.1109/TEVC.2005.846356 – start-page: 30 year: 1997 ident: ref18 article-title: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space publication-title: Proc 14th Int Conf Mach Learn – ident: ref4 doi: 10.1007/3-540-61723-X_982 – ident: ref23 doi: 10.1108/02644400410511864 – ident: ref31 doi: 10.1007/978-3-540-30217-9_22 – ident: ref46 doi: 10.1007/s101070100290 – ident: ref36 doi: 10.1109/CEC.2010.5585938 – ident: ref12 doi: 10.1360/aas-007-0113 – year: 1987 ident: ref39 publication-title: Practical Methods of Optimization – ident: ref37 doi: 10.1162/EVCO_a_00068 – ident: ref15 doi: 10.1109/4235.797971 – year: 2006 ident: ref3 publication-title: Evolutionary Computation A Unified Approach – year: 2001 ident: ref8 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – year: 1999 ident: ref20 article-title: BOA: The Bayesian optimization algorithm – ident: ref51 doi: 10.1109/TEVC.2006.872133 – ident: ref24 doi: 10.1109/TEVC.2013.2247404 – year: 2006 ident: ref7 publication-title: Pattern Recognition and Machine Learning – ident: ref35 doi: 10.1007/s11633-007-0273-3 – ident: ref52 doi: 10.1109/TEVC.2008.927706 – ident: ref33 doi: 10.1109/CEC.2008.4630984 – year: 2007 ident: ref44 article-title: On the use of probabilistic models and coordinate transforms in real-valued evolutionary algorithms – ident: ref47 doi: 10.1007/s10898-006-9030-3 – start-page: 424 year: 1997 ident: ref17 article-title: MIMIC: Finding optima by estimating probability densities publication-title: Advances in neural information processing systems – ident: ref45 doi: 10.1109/TEVC.2013.2248012 – start-page: 332 year: 0 ident: ref21 article-title: Global optimization using Bayesian networks publication-title: Proc 2nd Symp Artif Intell (CIMAF-99) – ident: ref19 doi: 10.1162/evco.1999.7.4.353 – ident: ref32 doi: 10.1109/TEVC.2004.840835 – volume: 192 year: 2006 ident: ref6 publication-title: Towards a new Evolutionary Computation Advances in Estimation of Distribution Algorithms doi: 10.1007/3-540-32494-1 – year: 1975 ident: ref1 publication-title: Adaptation in Natural and Artificial Systems |
| SSID | ssj0014519 |
| Score | 2.476383 |
| Snippet | In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 807 |
| SubjectTerms | Computational modeling Convergence distribution information estimation of distribution algorithm global optimisation Histograms location information Optimization Search methods Sociology univariate marginal distribution algorithm |
| Title | An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods |
| URI | https://ieeexplore.ieee.org/document/7001197 https://www.proquest.com/docview/1738854120 |
| Volume | 19 |
| WOSCitedRecordID | wos000366105600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BYoCBRwuivOSBCZE2TpzYHqtSxACIgUe3KLavUAlS1BZ-P7bjViAQEkvk4RxF-Xw-n_35PoATKkpVuo0qmvEkYibPolKhjGSaK8VVghyFF5vgNzdiMJC3S3C2uAuDiJ58hm3X9Gf5Zqzf3VZZh9cyWcuwzHle39VanBi4Mik1mV7aFaMYhBNMGsvOXf-h50hcrG3jk42Y6bcY5EVVfszEPrxcbP7vw7ZgIywjSbfGfRuWsGrA5lyigQSPbcD6l3qDTbjvVqRvfbq-rkjGQ3Lu6uYGySvSfXkaT0az51fyaJ-kZ-fpN1JWhrh6yJ7nTq5c6CM1R5lce_Xp6Q7cX_TvepdR0FWItA3us8hRO3MthzGi9T7FpeGZpqlSjGlpLKaJsYnGEE1iYtuyU7NddilpRIyKiTJLd2GlGle4B6Tk1lDntGQxY0hRSVmizbipznRqEtGCeP6nCx2Kjjvti5fCJx-xLBw4hQOnCOC04HTR5a2uuPGXcdOhsTAMQLTgcA5nEXxyWlCeCpExmsT7v_c6gDX77qwmqxzCymzyjkewqj9mo-nk2A-3T6Ak0hw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7qCtLYYUDZRBkDHzihhcaJU9vHqhSBKNUOLestiu1XhsTSqj_292M7bjUEQtol8uFZifL5-fnZn98HcEZFoQq3UUUznkTMtLOoUCgjmbaV4ipBjsKLTfDBQIzH8mcNfmzuwiCiJ5_hhWv6s3wz1Su3VdbilUzWB9hyylnhttbmzMAVSqno9NKuGcU4nGHSWLaGvfuuo3GxCxuhbMxMX0QhL6vyai72AeZq9_8-bQ8-h4Uk6VTI70MNywbsrkUaSPDZBnz6p-LgAYw6JelZr64uLJLphFy6yrlB9Ip0nh6m88fl7z_kl32Srp2pZ6QoDXEVkT3TnfRd8CMVS5ncef3pxRcYXfWG3esoKCtE2ob3ZeTInW0tJzGi9T_FpeGZpqlSjGlpLKqJsanGBE1iYtuyk7NdeClpRIyKiSJLv0K9nJZ4CKTg1lC3acFixpCikrJAm3NTnenUJKIJ8fpP5zqUHXfqF0-5Tz9imTtwcgdOHsBpwvmmy6yqufGe8YFDY2MYgGjC8RrOPHjlIqc8FSJjNImP3u51Ch-vh3f9vH8zuP0GO_Y9WUVdOYb6cr7C77Ct_y4fF_MTP_SeAbu51WU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Estimation+of+Distribution+Algorithm+With+Cheap+and+Expensive+Local+Search+Methods&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Aimin+Zhou&rft.au=Jianyong+Sun&rft.au=Qingfu+Zhang&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=19&rft.issue=6&rft.spage=807&rft.epage=822&rft_id=info:doi/10.1109%2FTEVC.2014.2387433&rft.externalDocID=7001197 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |