An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods

In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and ex...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 19; no. 6; pp. 807 - 822
Main Authors: Zhou, Aimin, Sun, Jianyong, Zhang, Qingfu
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and expensive local search (LS) methods for making use of both global statistical information and individual location information. In our approach, part of a new solution is sampled from a modified univariate histogram probabilistic model and the rest is generated by refining a parent solution through a cheap LS method that does not need any function evaluation. When the population has converged, an expensive LS method is applied to improve a promising solution found so far. Controlled experiments have been carried out to investigate the effects of the algorithm components and the control parameters, the scalability on the number of variables, and the running time. The proposed algorithm has been compared with two state-of-the-art algorithms on two test suites of 27 test instances. Experimental results have shown that, for simple test instances, our algorithm can produce better or similar solutions but with faster convergence speed than the compared methods and for some complicated test instances it can find better solutions.
AbstractList In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are sampled, whereas individual location information is not directly and fully exploited. In this paper, we suggest to combine an EDA with cheap and expensive local search (LS) methods for making use of both global statistical information and individual location information. In our approach, part of a new solution is sampled from a modified univariate histogram probabilistic model and the rest is generated by refining a parent solution through a cheap LS method that does not need any function evaluation. When the population has converged, an expensive LS method is applied to improve a promising solution found so far. Controlled experiments have been carried out to investigate the effects of the algorithm components and the control parameters, the scalability on the number of variables, and the running time. The proposed algorithm has been compared with two state-of-the-art algorithms on two test suites of 27 test instances. Experimental results have shown that, for simple test instances, our algorithm can produce better or similar solutions but with faster convergence speed than the compared methods and for some complicated test instances it can find better solutions.
Author Aimin Zhou
Qingfu Zhang
Jianyong Sun
Author_xml – sequence: 1
  givenname: Aimin
  surname: Zhou
  fullname: Zhou, Aimin
– sequence: 2
  givenname: Jianyong
  surname: Sun
  fullname: Sun, Jianyong
– sequence: 3
  givenname: Qingfu
  surname: Zhang
  fullname: Zhang, Qingfu
BookMark eNp9kElPwzAQhS0EEm3hByAuljineEnq-FiFskhFHGiBW-Q4E-qqjYPtIvj3uIs4cOAyi_TePM3XR8etbQGhC0qGlBJ5PZu8FENGaDpkPBcp50eoR2VKE0LY6DjOJJeJEPnbKep7vyRRmVHZQ_Nxiyc-mLUKxrbYNvjG-OBMtdnt49W7dSYs1vg1VlwsQHVYtTWefHXQevMJeGq1WuFnUE4v8COEha39GTpp1MrD-aEP0Px2Mivuk-nT3UMxniaaSR4SmlIy0rIhACOeV0LWItOUV1WaalmD1qxmWdZAzWoSJ1CacVbJOidQpbnK-ABd7e92zn5swIdyaTeujZElFTzPs5QyElV0r9LOeu-gKTsXH3bfJSXlll65pVdu6ZUHetEj_ni0CTtGwSmz-td5uXcaAPhNEpE4lYL_ADnAfwM
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107366
crossref_primary_10_1109_TSMC_2022_3205010
crossref_primary_10_1109_TCYB_2021_3117359
crossref_primary_10_1016_j_ins_2017_02_021
crossref_primary_10_1016_j_compstruct_2025_119311
crossref_primary_10_1016_j_eswa_2025_126526
crossref_primary_10_1007_s00521_016_2624_x
crossref_primary_10_1109_TEVC_2023_3290670
crossref_primary_10_1109_LAWP_2023_3325232
crossref_primary_10_1016_j_compeleceng_2021_107491
crossref_primary_10_1109_ACCESS_2019_2958288
crossref_primary_10_1007_s00521_018_3457_6
crossref_primary_10_1016_j_knosys_2018_02_001
crossref_primary_10_3390_e21060602
crossref_primary_10_1109_TCYB_2016_2602561
crossref_primary_10_1007_s10586_018_1725_y
crossref_primary_10_1371_journal_pone_0302207
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1016_j_swevo_2022_101073
crossref_primary_10_1063_5_0211828
crossref_primary_10_1016_j_ins_2017_09_044
crossref_primary_10_1016_j_asoc_2019_02_045
crossref_primary_10_1016_j_swevo_2018_04_009
crossref_primary_10_1109_TCYB_2020_3038694
crossref_primary_10_1016_j_ins_2022_07_016
crossref_primary_10_1080_0305215X_2018_1502759
crossref_primary_10_1016_j_biosystems_2019_04_001
crossref_primary_10_1016_j_engappai_2024_108263
crossref_primary_10_1007_s00500_018_3390_8
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1016_j_swevo_2025_101967
crossref_primary_10_1016_j_ymssp_2024_112256
crossref_primary_10_1016_j_swevo_2024_101502
crossref_primary_10_1016_j_ins_2020_05_108
crossref_primary_10_1016_j_swevo_2023_101324
crossref_primary_10_1016_j_swevo_2024_101663
crossref_primary_10_1109_ACCESS_2021_3131807
crossref_primary_10_1016_j_swevo_2024_101741
crossref_primary_10_1109_TCYB_2017_2780274
crossref_primary_10_1109_JAS_2024_124377
crossref_primary_10_23919_JSEE_2024_000128
crossref_primary_10_1016_j_swevo_2020_100808
crossref_primary_10_1109_TETCI_2023_3301794
crossref_primary_10_1109_TEVC_2021_3101697
crossref_primary_10_1109_TCYB_2021_3086501
crossref_primary_10_1109_TSMC_2023_3295371
crossref_primary_10_1109_TCYB_2016_2523000
crossref_primary_10_3390_math9243207
crossref_primary_10_1016_j_knosys_2022_108517
crossref_primary_10_1109_TEVC_2019_2910721
crossref_primary_10_1016_j_ins_2020_01_050
crossref_primary_10_1016_j_ins_2022_11_029
crossref_primary_10_1016_j_asoc_2018_08_039
crossref_primary_10_1002_cpe_6074
crossref_primary_10_1016_j_asoc_2024_111541
crossref_primary_10_1109_ACCESS_2024_3403889
crossref_primary_10_1109_MCI_2024_3401369
crossref_primary_10_1109_TSMC_2019_2962880
crossref_primary_10_1016_j_knosys_2018_02_029
crossref_primary_10_1016_j_swevo_2020_100801
crossref_primary_10_1016_j_swevo_2025_101974
crossref_primary_10_1016_j_eswa_2023_121261
crossref_primary_10_1109_TEVC_2024_3354850
crossref_primary_10_1007_s11432_023_3909_x
crossref_primary_10_1109_TEVC_2019_2932624
crossref_primary_10_1007_s10732_017_9356_7
crossref_primary_10_1007_s13042_024_02146_y
crossref_primary_10_1109_ACCESS_2023_3270297
crossref_primary_10_1016_j_cja_2023_11_018
crossref_primary_10_1016_j_asoc_2023_110464
crossref_primary_10_1016_j_swevo_2025_101905
crossref_primary_10_1109_TEVC_2017_2672689
crossref_primary_10_1155_2018_3419213
crossref_primary_10_1109_TETCI_2023_3299298
crossref_primary_10_1109_TASE_2020_3019694
crossref_primary_10_1109_TCYB_2018_2869567
crossref_primary_10_1016_j_eswa_2023_123122
crossref_primary_10_1016_j_swevo_2024_101642
Cites_doi 10.1007/3-540-61723-X_983
10.1109/TEVC.2007.902851
10.1145/1143997.1144078
10.1162/106365601750190398
10.1016/j.ins.2004.06.009
10.1016/S0020-0255(03)00174-9
10.1007/978-1-4615-1539-5
10.1109/TSMCC.2004.841914
10.1023/A:1023993325417
10.1109/4235.771163
10.1109/TEVC.2009.2014613
10.1016/S0020-0190(02)00447-7
10.1073/pnas.0610471104
10.1007/978-1-4471-0819-1_39
10.1023/A:1008202821328
10.1007/978-3-540-34954-9
10.1023/A:1013500812258
10.1162/evco.2008.16.2.185
10.1109/TEVC.2005.846356
10.1007/3-540-61723-X_982
10.1108/02644400410511864
10.1007/978-3-540-30217-9_22
10.1007/s101070100290
10.1109/CEC.2010.5585938
10.1360/aas-007-0113
10.1162/EVCO_a_00068
10.1109/4235.797971
10.1109/TEVC.2006.872133
10.1109/TEVC.2013.2247404
10.1007/s11633-007-0273-3
10.1109/TEVC.2008.927706
10.1109/CEC.2008.4630984
10.1007/s10898-006-9030-3
10.1109/TEVC.2013.2248012
10.1162/evco.1999.7.4.353
10.1109/TEVC.2004.840835
10.1007/3-540-32494-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2014.2387433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 822
ExternalDocumentID 3883754961
10_1109_TEVC_2014_2387433
7001197
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program (973 Program)
  grantid: 2011CB707104
– fundername: National Natural Science Foundation of China
  grantid: 61273313
  funderid: 10.13039/501100001809
– fundername: China National Instrumentation Program
  grantid: 2012YQ180132
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-14106c9f0ee638b79d75c13bb44c9decc2d255fed2d0d25eac232b9d80eb48a53
IEDL.DBID RIE
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366105600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Jun 29 12:44:32 EDT 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:37:09 EST 2025
Tue Aug 26 16:40:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Distribution information
estimation of distribution algorithm (EDA)
location information
global optimization
univariate marginal distribution algorithm (UMDA)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-14106c9f0ee638b79d75c13bb44c9decc2d255fed2d0d25eac232b9d80eb48a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1738854120
PQPubID 85418
PageCount 16
ParticipantIDs proquest_journals_1738854120
crossref_citationtrail_10_1109_TEVC_2014_2387433
crossref_primary_10_1109_TEVC_2014_2387433
ieee_primary_7001197
PublicationCentury 2000
PublicationDate 2015-Dec.
2015-12-00
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
cho (ref29) 2001
ref53
ref52
ref55
ref54
ref10
posik (ref44) 2007
ref19
de jong (ref3) 2006
ref51
ref50
hastie (ref8) 2001
baluja (ref13) 1994
ref46
ref45
ref48
ref47
ref41
ref43
press (ref40) 2007
ref49
fletcher (ref39) 1987
ref9
larrañaga (ref16) 0
ref4
etxeberria (ref21) 0
pelikan (ref11) 2006
ref35
ref34
ref37
ref36
ref31
ref33
baluja (ref18) 1997
ref32
ref38
suganthan (ref42) 2005
cho (ref30) 2002
bosman (ref14) 2000
pelikan (ref20) 1999
mühlenbein (ref5) 1996
holland (ref1) 1975
ref24
ref23
de bonet (ref17) 1997
ref26
ref25
ref22
ref28
ref27
lozano (ref6) 2006; 192
goldberg (ref2) 1989
bishop (ref7) 2006
References_xml – start-page: 188
  year: 1996
  ident: ref5
  article-title: From recombination of genes to the estimation of distributions II: Continuous parameters
  publication-title: Parallel Problem Solving From Nature-PPSN IV (LNCS 1141)
  doi: 10.1007/3-540-61723-X_983
– ident: ref55
  doi: 10.1109/TEVC.2007.902851
– ident: ref25
  doi: 10.1145/1143997.1144078
– ident: ref22
  doi: 10.1162/106365601750190398
– start-page: 767
  year: 2000
  ident: ref14
  article-title: Expanding from discrete to continuous estimation of distribution algorithms: The IDEA
  publication-title: Proceedings of the Parallel Problem Solving from Nature
– year: 2005
  ident: ref42
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
– ident: ref38
  doi: 10.1016/j.ins.2004.06.009
– start-page: 521
  year: 2001
  ident: ref29
  article-title: Continuous estimation of distribution algorithms with probabilistic principal component analysis
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref43
  doi: 10.1016/S0020-0255(03)00174-9
– year: 2007
  ident: ref40
  publication-title: Numerical Recipes The Art of Scientific Computing
– year: 1994
  ident: ref13
  article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
– year: 1989
  ident: ref2
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref10
  doi: 10.1007/978-1-4615-1539-5
– ident: ref27
  doi: 10.1109/TSMCC.2004.841914
– ident: ref28
  doi: 10.1023/A:1023993325417
– ident: ref41
  doi: 10.1109/4235.771163
– ident: ref49
  doi: 10.1109/TEVC.2009.2014613
– start-page: 201
  year: 0
  ident: ref16
  article-title: Optimization in continuous domains by learning and simulation of Gaussian networks
  publication-title: Proc Genet Evol Comput Conf (GECCO 2010)
– start-page: 1396
  year: 2002
  ident: ref30
  article-title: Evolutionary optimization by distribution estimation with mixtures of factor analyzers
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref53
  doi: 10.1016/S0020-0190(02)00447-7
– ident: ref34
  doi: 10.1073/pnas.0610471104
– ident: ref26
  doi: 10.1007/978-1-4471-0819-1_39
– ident: ref50
  doi: 10.1023/A:1008202821328
– year: 2006
  ident: ref11
  publication-title: Scalable Optimization via Probabilistic Modeling From Algorithms to Applications
  doi: 10.1007/978-3-540-34954-9
– ident: ref9
  doi: 10.1023/A:1013500812258
– ident: ref48
  doi: 10.1162/evco.2008.16.2.185
– ident: ref54
  doi: 10.1109/TEVC.2005.846356
– start-page: 30
  year: 1997
  ident: ref18
  article-title: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space
  publication-title: Proc 14th Int Conf Mach Learn
– ident: ref4
  doi: 10.1007/3-540-61723-X_982
– ident: ref23
  doi: 10.1108/02644400410511864
– ident: ref31
  doi: 10.1007/978-3-540-30217-9_22
– ident: ref46
  doi: 10.1007/s101070100290
– ident: ref36
  doi: 10.1109/CEC.2010.5585938
– ident: ref12
  doi: 10.1360/aas-007-0113
– year: 1987
  ident: ref39
  publication-title: Practical Methods of Optimization
– ident: ref37
  doi: 10.1162/EVCO_a_00068
– ident: ref15
  doi: 10.1109/4235.797971
– year: 2006
  ident: ref3
  publication-title: Evolutionary Computation A Unified Approach
– year: 2001
  ident: ref8
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– year: 1999
  ident: ref20
  article-title: BOA: The Bayesian optimization algorithm
– ident: ref51
  doi: 10.1109/TEVC.2006.872133
– ident: ref24
  doi: 10.1109/TEVC.2013.2247404
– year: 2006
  ident: ref7
  publication-title: Pattern Recognition and Machine Learning
– ident: ref35
  doi: 10.1007/s11633-007-0273-3
– ident: ref52
  doi: 10.1109/TEVC.2008.927706
– ident: ref33
  doi: 10.1109/CEC.2008.4630984
– year: 2007
  ident: ref44
  article-title: On the use of probabilistic models and coordinate transforms in real-valued evolutionary algorithms
– ident: ref47
  doi: 10.1007/s10898-006-9030-3
– start-page: 424
  year: 1997
  ident: ref17
  article-title: MIMIC: Finding optima by estimating probability densities
  publication-title: Advances in neural information processing systems
– ident: ref45
  doi: 10.1109/TEVC.2013.2248012
– start-page: 332
  year: 0
  ident: ref21
  article-title: Global optimization using Bayesian networks
  publication-title: Proc 2nd Symp Artif Intell (CIMAF-99)
– ident: ref19
  doi: 10.1162/evco.1999.7.4.353
– ident: ref32
  doi: 10.1109/TEVC.2004.840835
– volume: 192
  year: 2006
  ident: ref6
  publication-title: Towards a new Evolutionary Computation Advances in Estimation of Distribution Algorithms
  doi: 10.1007/3-540-32494-1
– year: 1975
  ident: ref1
  publication-title: Adaptation in Natural and Artificial Systems
SSID ssj0014519
Score 2.476383
Snippet In an estimation of distribution algorithm (EDA), global population distribution is modeled by a probabilistic model, from which new trial solutions are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 807
SubjectTerms Computational modeling
Convergence
distribution information
estimation of distribution algorithm
global optimisation
Histograms
location information
Optimization
Search methods
Sociology
univariate marginal distribution algorithm
Title An Estimation of Distribution Algorithm With Cheap and Expensive Local Search Methods
URI https://ieeexplore.ieee.org/document/7001197
https://www.proquest.com/docview/1738854120
Volume 19
WOSCitedRecordID wos000366105600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4BYoCBRwuivOSBCZE2TpzYHqtSxACIgUe3KLavUAlS1BZ-P7bjViAQEkvk4RxF-Xw-n_35PoATKkpVuo0qmvEkYibPolKhjGSaK8VVghyFF5vgNzdiMJC3S3C2uAuDiJ58hm3X9Gf5Zqzf3VZZh9cyWcuwzHle39VanBi4Mik1mV7aFaMYhBNMGsvOXf-h50hcrG3jk42Y6bcY5EVVfszEPrxcbP7vw7ZgIywjSbfGfRuWsGrA5lyigQSPbcD6l3qDTbjvVqRvfbq-rkjGQ3Lu6uYGySvSfXkaT0az51fyaJ-kZ-fpN1JWhrh6yJ7nTq5c6CM1R5lce_Xp6Q7cX_TvepdR0FWItA3us8hRO3MthzGi9T7FpeGZpqlSjGlpLKaJsYnGEE1iYtuyU7NddilpRIyKiTJLd2GlGle4B6Tk1lDntGQxY0hRSVmizbipznRqEtGCeP6nCx2Kjjvti5fCJx-xLBw4hQOnCOC04HTR5a2uuPGXcdOhsTAMQLTgcA5nEXxyWlCeCpExmsT7v_c6gDX77qwmqxzCymzyjkewqj9mo-nk2A-3T6Ak0hw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7qCtLYYUDZRBkDHzihhcaJU9vHqhSBKNUOLestiu1XhsTSqj_292M7bjUEQtol8uFZifL5-fnZn98HcEZFoQq3UUUznkTMtLOoUCgjmbaV4ipBjsKLTfDBQIzH8mcNfmzuwiCiJ5_hhWv6s3wz1Su3VdbilUzWB9hyylnhttbmzMAVSqno9NKuGcU4nGHSWLaGvfuuo3GxCxuhbMxMX0QhL6vyai72AeZq9_8-bQ8-h4Uk6VTI70MNywbsrkUaSPDZBnz6p-LgAYw6JelZr64uLJLphFy6yrlB9Ip0nh6m88fl7z_kl32Srp2pZ6QoDXEVkT3TnfRd8CMVS5ncef3pxRcYXfWG3esoKCtE2ob3ZeTInW0tJzGi9T_FpeGZpqlSjGlpLKqJsanGBE1iYtuyk7NdeClpRIyKiSJLv0K9nJZ4CKTg1lC3acFixpCikrJAm3NTnenUJKIJ8fpP5zqUHXfqF0-5Tz9imTtwcgdOHsBpwvmmy6yqufGe8YFDY2MYgGjC8RrOPHjlIqc8FSJjNImP3u51Ch-vh3f9vH8zuP0GO_Y9WUVdOYb6cr7C77Ct_y4fF_MTP_SeAbu51WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Estimation+of+Distribution+Algorithm+With+Cheap+and+Expensive+Local+Search+Methods&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Aimin+Zhou&rft.au=Jianyong+Sun&rft.au=Qingfu+Zhang&rft.date=2015-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=19&rft.issue=6&rft.spage=807&rft.epage=822&rft_id=info:doi/10.1109%2FTEVC.2014.2387433&rft.externalDocID=7001197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon