On Shannon entropy computations in selected plasticity problems

This paper considers the problem of determining probabilistic entropy fluctuations, which are important for understanding uncertainty propagation in mechanical systems in the elasto‐plastic regime. Probabilistic entropy is conceptualized based on an initial definition by Shannon, which demands discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 122; H. 18; S. 5128 - 5143
1. Verfasser: Kamiński, Marcin M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.09.2021
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper considers the problem of determining probabilistic entropy fluctuations, which are important for understanding uncertainty propagation in mechanical systems in the elasto‐plastic regime. Probabilistic entropy is conceptualized based on an initial definition by Shannon, which demands discrete representation of the uncertainty source. Numerical analysis is performed using the Response Function Method with polynomial bases. Coefficients are found and order optimization is completed using polynomial interpolations or the Least Squares Method. Approximations are based on the Finite Element Method. Local polynomial bases enable nonlinear increment analysis, and allow for a given degree of freedom in the FEM model to be described as a function of a random input parameter. Academic FEM software and the ABAQUS system were used for numerical experiments. Polynomial approximations, probabilistic moment computations, and statistical entropy estimations were programmed in the symbolic algebra package MAPLE. Transformation of the input probability density into the output function was performed using the Monte‐Carlo simulation algorithm for statistically optimized polynomial bases of extreme displacement functions. Two computational examples are given to demonstrate probabilistic entropy fluctuations for a small statically indeterminate aluminum truss structure and also for practical engineering case study of the steel round bar under uniform tensile stress. In these examples, some material and geometrical uncertainties distributed according to Gaussian, triangular, uniform as well as lognormal distributions were analyzed. The presented approach could be used for constitutive models of solids, computational fluid dynamics, and in other discrete numerical methods.
AbstractList This paper considers the problem of determining probabilistic entropy fluctuations, which are important for understanding uncertainty propagation in mechanical systems in the elasto‐plastic regime. Probabilistic entropy is conceptualized based on an initial definition by Shannon, which demands discrete representation of the uncertainty source. Numerical analysis is performed using the Response Function Method with polynomial bases. Coefficients are found and order optimization is completed using polynomial interpolations or the Least Squares Method. Approximations are based on the Finite Element Method. Local polynomial bases enable nonlinear increment analysis, and allow for a given degree of freedom in the FEM model to be described as a function of a random input parameter. Academic FEM software and the ABAQUS system were used for numerical experiments. Polynomial approximations, probabilistic moment computations, and statistical entropy estimations were programmed in the symbolic algebra package MAPLE. Transformation of the input probability density into the output function was performed using the Monte‐Carlo simulation algorithm for statistically optimized polynomial bases of extreme displacement functions. Two computational examples are given to demonstrate probabilistic entropy fluctuations for a small statically indeterminate aluminum truss structure and also for practical engineering case study of the steel round bar under uniform tensile stress. In these examples, some material and geometrical uncertainties distributed according to Gaussian, triangular, uniform as well as lognormal distributions were analyzed. The presented approach could be used for constitutive models of solids, computational fluid dynamics, and in other discrete numerical methods.
Author Kamiński, Marcin M.
Author_xml – sequence: 1
  givenname: Marcin M.
  orcidid: 0000-0002-8180-6991
  surname: Kamiński
  fullname: Kamiński, Marcin M.
  email: marcin.kaminski@p.lodz.pl
  organization: Łódź University of Technology
BookMark eNp1kEtLAzEUhYNUsK2CP2HAjZupeUwmvSuRUh9Q7UJdh0ya4JSZzJikyPx709aV6Oou7nfO4ZwJGrnOGYQuCZ4RjOmNa82sFBxO0JhgEDmmWIzQOL0g5zAnZ2gSwhZjQjhmY3S7dtnrh3LJJTMu-q4fMt21_S6qWHcuZLXLgmmMjmaT9Y0KsdZ1HLLed1Vj2nCOTq1qgrn4uVP0fr98Wzzmq_XD0-JulWsKDHJrRWnn3BbUcK2AiaJgRAEIy7lmFCpQClNmoRKm4JtCcy0oJ6QiUG4IVmyKro6-KfhzZ0KU227nXYqUlHMoKRQlTtT1kdK-C8EbK3tft8oPkmC5n0emeeR-noTOfqGp16Fz9Kpu_hLkR8FX3ZjhX2P58rw88N8U93d7
CitedBy_id crossref_primary_10_3390_e27010067
crossref_primary_10_3390_e27070705
crossref_primary_10_3390_en15155483
crossref_primary_10_1016_j_compstruc_2022_106919
crossref_primary_10_1002_nme_7317
crossref_primary_10_1016_j_ijnonlinmec_2023_104367
crossref_primary_10_1155_2021_3087066
crossref_primary_10_1016_j_mechmat_2023_104821
crossref_primary_10_3390_ma15196811
crossref_primary_10_1007_s11071_022_07335_4
crossref_primary_10_3390_nano15030250
crossref_primary_10_3390_electronics13081524
Cites_doi 10.1016/j.cam.2013.10.047
10.1002/j.1538-7305.1948.tb00917.x
10.1111/j.2517-6161.1976.tb01566.x
10.1016/j.spl.2012.07.001
10.1016/0167-7152(94)90046-9
10.1214/aoms/1177729694
10.1016/0167-7152(94)00156-3
10.1002/nme.1620380703
10.1002/9781118481844
10.1115/1.2159025
10.1016/0020-7225(82)90033-7
10.1103/PhysRevLett.82.520
10.3390/e21030238
10.1007/BF01016429
10.1007/BF02736747
10.1002/nme.3350
10.1126/science.300.5617.249d
10.1007/BF02063299
10.1002/nme.5638
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.jmps.2018.09.004
10.1016/j.engstruct.2014.03.033
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6759
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 5143
ExternalDocumentID 10_1002_nme_6759
NME6759
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-ff76f85f42e5ca9374431a997f55c329b9aa023f9b7e45d4c5c72511b196d10a3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670862200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:23:35 EDT 2025
Sat Nov 29 06:44:00 EST 2025
Tue Nov 18 21:42:17 EST 2025
Wed Jan 22 16:29:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-ff76f85f42e5ca9374431a997f55c329b9aa023f9b7e45d4c5c72511b196d10a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8180-6991
PQID 2559629460
PQPubID 996376
PageCount 16
ParticipantIDs proquest_journals_2559629460
crossref_primary_10_1002_nme_6759
crossref_citationtrail_10_1002_nme_6759
wiley_primary_10_1002_nme_6759_NME6759
PublicationCentury 2000
PublicationDate 30 September 2021
PublicationDateYYYYMMDD 2021-09-30
PublicationDate_xml – month: 09
  year: 2021
  text: 30 September 2021
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2012; 82
2014; 70
1995; 38
1951; 22
2006
2005
1988; 52
1999; 82
1997; 6
2019; 123
1994; 20
2012; 90
2019; 21
2018; 113
1995; 24
1982; 20
2014; 261
2013
2003; 300
1998; 5
1976; 38
2006; 128
1959; 10
1948; 27
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
Zienkiewicz OC (e_1_2_7_23_1) 2005
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Vasicek O (e_1_2_7_20_1) 1976; 38
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Cover TM (e_1_2_7_11_1) 2006
Erickson GJ (e_1_2_7_13_1) 1988
Beirlant J (e_1_2_7_12_1) 1997; 6
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_21_1
References_xml – volume: 24
  start-page: 121
  year: 1995
  end-page: 132
  article-title: Limit theorems for the logarithm of sample spacings
  publication-title: Stat Prob Lett
– volume: 70
  start-page: 106
  year: 2014
  end-page: 116
  article-title: Structural reliability analysis based on probabilistic response modelling using the maximum entropy method
  publication-title: Eng Struct
– volume: 123
  start-page: 222
  year: 2019
  end-page: 233
  article-title: A homogenized model for size‐effects in porous metals
  publication-title: J Mech Phys Solids
– year: 2005
– volume: 20
  start-page: 225
  year: 1994
  end-page: 234
  article-title: Two measures of sample entropy
  publication-title: Stat Prob Lett
– volume: 128
  start-page: 326
  issue: 2
  year: 2006
  end-page: 336
  article-title: Relative entropy based method for probabilistic sensitivity analysis in engineering design
  publication-title: ASME J Mech Des
– volume: 38
  start-page: 54
  issue: 1
  year: 1976
  end-page: 59
  article-title: A test for normality based on sample entropy
  publication-title: J R Stat Soc
– volume: 10
  start-page: 193
  year: 1959
  end-page: 215
  article-title: On the dimension and entropy of probability distributions
  publication-title: Acta Math Acad Sci Hungar
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  article-title: A mathematical theory of communication Part I
  publication-title: Bell Syst Techn J
– volume: 52
  start-page: 479
  year: 1988
  end-page: 487
  article-title: Possible generalization of Boltzmann‐Gibbs statistics
  publication-title: J Stat Phys
– volume: 6
  start-page: 17
  issue: 1
  year: 1997
  end-page: 39
  article-title: Nonparametric entropy estimation: an overview
  publication-title: Int J Math Stat Sci
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: Ann Math Stat
– volume: 20
  start-page: 977
  issue: 9
  year: 1982
  end-page: 988
  article-title: Analysis of some finite element methods for a class of problems in elasto‐plasticity
  publication-title: Int J Eng Sci
– volume: 90
  start-page: 939
  issue: 8
  year: 2012
  end-page: 954
  article-title: Probabilistic entropy in homogenization of the periodic fiber‐reinforced composites with random elastic parameters
  publication-title: Int J Numer Methods Eng
– volume: 5
  start-page: 3
  issue: 1
  year: 1998
  end-page: 30
  article-title: Monte‐Carlo techniques in computational stochastic mechanics
  publication-title: Arch Comput Methods Eng
– volume: 82
  start-page: 1883
  year: 2012
  end-page: 1890
  article-title: Ratio estimation of the population mean using auxiliary information in simple random sampling and median ranked set sampling
  publication-title: Stat Prob Lett
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  article-title: A mathematical theory of communication Part II
  publication-title: Bell Syst Techn J
– volume: 300
  start-page: 249
  issue: 5617
  year: 2003
  end-page: 251
  article-title: Revisiting disorder and Tsallis statistics
  publication-title: Science
– volume: 261
  start-page: 95
  year: 2014
  end-page: 102
  article-title: Estimation of entropy using random sampling
  publication-title: J Comput Appl Math
– volume: 113
  start-page: 834
  year: 2018
  end-page: 857
  article-title: Tsallis entropy in dual homogenization of random composites using the stochastic finite element method
  publication-title: Int J Numer Methods Eng
– year: 1988
– year: 2006
– volume: 21
  start-page: 238
  year: 2019
  end-page: 256
  article-title: Extreme interval entropy based on symbolic analysis and a self‐adaptive method
  publication-title: Entropy
– volume: 82
  start-page: 520
  issue: 3
  year: 1999
  end-page: 523
  article-title: Kolmogorov‐Sinai entropy rate versus physical entropy
  publication-title: Phys Rev Lett
– volume: 38
  start-page: 1087
  year: 1995
  end-page: 1121
  article-title: A parallel Monte‐Carlo finite element procedure for the analysis of multicomponent media
  publication-title: Int J Numer Methods Eng
– year: 2013
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cam.2013.10.047
– ident: e_1_2_7_4_1
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 38
  start-page: 54
  issue: 1
  year: 1976
  ident: e_1_2_7_20_1
  article-title: A test for normality based on sample entropy
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1976.tb01566.x
– ident: e_1_2_7_15_1
  doi: 10.1016/j.spl.2012.07.001
– volume-title: Maximum‐Entropy and Bayesian Methods in Science and Engineering
  year: 1988
  ident: e_1_2_7_13_1
– ident: e_1_2_7_22_1
  doi: 10.1016/0167-7152(94)90046-9
– ident: e_1_2_7_9_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_7_21_1
  doi: 10.1016/0167-7152(94)00156-3
– ident: e_1_2_7_16_1
  doi: 10.1002/nme.1620380703
– ident: e_1_2_7_14_1
  doi: 10.1002/9781118481844
– volume-title: The Finite Element Method: Its Basis and Fundamentals
  year: 2005
  ident: e_1_2_7_23_1
– ident: e_1_2_7_26_1
  doi: 10.1115/1.2159025
– ident: e_1_2_7_25_1
  doi: 10.1016/0020-7225(82)90033-7
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevLett.82.520
– ident: e_1_2_7_18_1
  doi: 10.3390/e21030238
– volume: 6
  start-page: 17
  issue: 1
  year: 1997
  ident: e_1_2_7_12_1
  article-title: Nonparametric entropy estimation: an overview
  publication-title: Int J Math Stat Sci
– ident: e_1_2_7_8_1
  doi: 10.1007/BF01016429
– ident: e_1_2_7_17_1
  doi: 10.1007/BF02736747
– ident: e_1_2_7_2_1
  doi: 10.1002/nme.3350
– ident: e_1_2_7_6_1
  doi: 10.1126/science.300.5617.249d
– ident: e_1_2_7_5_1
  doi: 10.1007/BF02063299
– ident: e_1_2_7_7_1
  doi: 10.1002/nme.5638
– volume-title: Elements of Information Theory
  year: 2006
  ident: e_1_2_7_11_1
– ident: e_1_2_7_3_1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jmps.2018.09.004
– ident: e_1_2_7_24_1
  doi: 10.1016/j.engstruct.2014.03.033
SSID ssj0011503
Score 2.4241095
Snippet This paper considers the problem of determining probabilistic entropy fluctuations, which are important for understanding uncertainty propagation in mechanical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5128
SubjectTerms Algorithms
Aluminum
Approximation
Computational fluid dynamics
Computer algebra
Constitutive models
Entropy
Entropy (Information theory)
Finite element method
Least squares method
Mathematical models
Mechanical systems
Monte‐Carlo simulation
Numerical analysis
Numerical methods
Optimization
plasticity problems
Polynomials
probabilistic entropy
Response functions
Shannon theory
Statistical analysis
stochastic perturbation technique
Tensile stress
Uncertainty
Title On Shannon entropy computations in selected plasticity problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6759
https://www.proquest.com/docview/2559629460
Volume 122
WOSCitedRecordID wos000670862200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED5080EfnE7F6ZQIok91bdquzZOIbvjgpqiDvZU0TXCg3VinsH_vpU3nBAXBvpRCEsIl1_vucvkO4BTNAnMZp5ayBdfHjLGFVlBZcaKj_iJ0AlEUmwj6_XA4ZA8mq1LfhSn4IRYBN60Z-f9aKziPs9YSaeibvEC0y1ahqu9UoeNVvXnsDu4WZwgIddwywcNnoVNSz9q0Vfb9boy-EOYyTs0NTbf2nyluwaaBl-Sq2A_bsCLTOtQM1CRGkbM6bCzxEOJXb0Hemu3A5X1Knl54mo5TomO_48mciLz4QxHdI6OUZHn5HBxyguhbJ2bP5sTUpsl2YdDtPF_fWqbOgiX0QllKBW0V-sqj0hcc8YqHqIIzFijfFy5lMeMcTbticSA9P_GELwLtmcSovYljc3cPKjgluQ9EJdTHMWXCEsQNHsdHoofnOCxMEFqpBpyXAo-EISHXtTBeo4I-mUYos0jLrAEni5aTgnjjhzbNcs0io3pZpH2kNmVe227AWb46v_aP-r2Ofh_8teEhrFOd05LnizShMpu-yyNYEx-zUTY9NhvwE5Ft3lI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJqgPTqfidGoE0ae6frfBBxHdmLhN0Q18K2na4EC7sU5h_72XfjlBQbAvpZCEkMv1fne5_A7gBM0CNSjTFaFyJo8ZfQWtoFD8QEb9uas5PC024fT77vMzfSjBRX4XJuWHKAJuUjOS_7VUcBmQbi6whr6F5wh36RJUTNtw3DJUbh7bw25xiIBYx8gzPCzqajn3rKo3877frdEXxFwEqomlaVf_NccNWM8AJrlKd8QmlMKoBtUMbJJMleMarC0wEeJXr6Bvjbfg8j4iTy8sisYRkdHf8WROeFL-IY3vkVFE4qSADg45QfwtU7Nnc5JVp4m3YdhuDa47SlZpQeFSVIoQji1cS5h6aHGGiMVEXMEodYRlcUOnPmUMjbugvhOaVmByizvSN_FRfwNNZcYOlHFK4S4QEegWjhkGNEDkYDJ8QvTxNI26AYIrUYezfMU9ntGQy2oYr15KoKx7uGaeXLM6HBctJyn1xg9tGrnQvEz5Yk96SbZOTVutw2kinl_7e_1eS773_trwCFY6g17X69727_ZhVZcZLkn2SAPKs-l7eADL_GM2iqeH2W78BOYX4kI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mFNEHp1NxOjWC6FPd2jVrgw8ibkNxm0Md7K2kaYID7cY6hf33XvpjTlAQ7EspJCHkcr3vLpfvAE7RLLAa45ahqoLrY0bfQCuoDD_QUX_hmo5Iik043a47GLBeDi6zuzAJP8Q84KY1I_5fawWX40BVFlhD3-QFwl22BMs2ZdTOw3LjsdVvzw8REOvUsgwPylwz456tWpWs73dr9AUxF4FqbGlahX_NcRM2UoBJrpMdsQU5GRahkIJNkqpyVIT1BSZC_OrM6Vujbbh6CMnTCw_DUUh09Hc0nhERl39I4ntkGJIoLqCDQ44Rf-vU7OmMpNVpoh3ot5rPN7dGWmnBEFpUhlJOXblU2ZakgiNisRFXcMYcRamoWcxnnKNxV8x3pE0DW1DhaN_ER_0NzCqv7UIepyT3gKjAojimDFiAyMHm-Ej08UyTuQGCK1WC82zFPZHSkOtqGK9eQqBsebhmnl6zEpzMW44T6o0f2pQzoXmp8kWe9pLqFrPr1RKcxeL5tb_X7TT1e_-vDY9htddoee277v0BrFk6wSVOHilDfjp5l4ewIj6mw2hylG7GT5zl4b0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Shannon+entropy+computations+in+selected+plasticity+problems&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Kami%C5%84ski%2C+Marcin+M.&rft.date=2021-09-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=18&rft.spage=5128&rft.epage=5143&rft_id=info:doi/10.1002%2Fnme.6759&rft.externalDBID=10.1002%252Fnme.6759&rft.externalDocID=NME6759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon