The impact of organo‐montmorillonite on rheology and crystalline structure of uncured and cured acrylonitrile‐butadiene rubber/poly(ethylene‐co‐vinyl acetate) nanocomposites
The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The n...
Uloženo v:
| Vydáno v: | Polymer composites Ročník 42; číslo 7; s. 3184 - 3194 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2021
Blackwell Publishing Ltd |
| Témata: | |
| ISSN: | 0272-8397, 1548-0569 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts. |
|---|---|
| AbstractList | The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts. The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I 110 /I 200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts. The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts. |
| Author | Razavi‐Nouri, Mohammad Sabet, Alireza Mohebbi, Maryam |
| Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0001-9699-4510 surname: Razavi‐Nouri fullname: Razavi‐Nouri, Mohammad email: m.razavi@ippi.ac.ir organization: Iran Polymer and Petrochemical Institute – sequence: 2 givenname: Alireza orcidid: 0000-0002-3245-5638 surname: Sabet fullname: Sabet, Alireza email: a.sabet@ippi.ac.ir organization: Iran Polymer and Petrochemical Institute – sequence: 3 givenname: Maryam surname: Mohebbi fullname: Mohebbi, Maryam organization: Iran Polymer and Petrochemical Institute |
| BookMark | eNp1kc1q3TAQhUVJoDc_0EcQdJMufCPLsn21LJf-QaBdJGsjy6NcBVlyJbnFuzxCX6YvlCfJ3Lir0q5mGL5z5jBzRk588EDIm5JtS8b49aS3vGFCviKbsha7gtWNPCEbxlte7CrZviZnKT0gWTZNtSG_bw9A7TgpnWkwNMR75cPT468x-DyGaJ0L3magwdN4gODC_UKVH6iOS8rKOeuBphxnnecIR4fZa-yGFVo7ZF9c0A3Qup-zGiygMM59D_F6Cm65gnxYHA4R0McAP6xfHGohqwzvqMdYOoxTSJgmXZBTo1yCyz_1nNx9_HC7_1zcfP30Zf_-ptBcVrIw7SCrmrUKdGUaYxreMyh3UMuhBaOAt4Jr3fC25rznVc_UbhDCtEyIhhuA6py8XX2nGL7PkHL3EObocWXHayGZYFzWSG1XSseQUgTTaYupLZ4wKuu6knXH13ST7l5eg4KrvwRTtKOKy7_QYkV_4vGW_3Ldt_3KPwN9o6iO |
| CitedBy_id | crossref_primary_10_1002_pc_26724 crossref_primary_10_1016_j_clema_2022_100071 crossref_primary_10_1002_pc_27111 crossref_primary_10_1002_pc_26697 crossref_primary_10_1002_pc_27863 crossref_primary_10_1002_pc_27069 crossref_primary_10_1007_s13726_023_01163_y crossref_primary_10_1016_j_ijbiomac_2023_127473 |
| Cites_doi | 10.5254/1.3538451 10.1002/app.22157 10.1016/S0376-7388(03)00175-3 10.1002/pol.1982.180201007 10.1002/pen.20894 10.1016/S0032-3861(02)00187-8 10.1007/s13367-012-0027-9 10.1080/03602550600553747 10.1002/polb.20366 10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E 10.1002/mame.201600255 10.1002/1097-4628(20010110)79:2<193::AID-APP10>3.0.CO;2-8 10.1002/pen.20737 10.1007/s10853-005-2439-0 10.1002/(SICI)1099-0488(19990801)37:15<1815::AID-POLB6>3.0.CO;2-E 10.1007/s00289-019-03060-y 10.1002/(SICI)1097-4628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5 10.1080/00222348.2012.687255 10.1002/macp.200700470 10.1016/j.clay.2015.07.009 10.1080/14658011.2016.1209622 10.1016/j.tca.2011.07.014 10.3144/expresspolymlett.2009.31 10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X 10.1002/app.34355 10.1016/j.compositesb.2015.01.046 10.1080/00914037.2011.593065 10.1016/j.compositesa.2008.03.006 10.1016/j.eurpolymj.2010.02.007 10.1002/pc.22306 10.1002/app.25253 10.1002/pc.24317 10.1002/pi.1161 10.1002/marc.200500007 10.1002/app.12082 10.1016/j.eurpolymj.2004.04.006 10.1002/pc.20978 10.1002/mame.200400085 10.1080/03602559.2014.886054 10.1002/polb.10204 10.1021/cm010982m 10.1002/pi.1721 10.1002/pc.23225 10.1016/j.clay.2016.02.003 10.1016/j.clay.2009.12.011 10.1002/app.13673 10.1002/app.20736 10.1002/pi.1686 10.1007/s10965-010-9481-6 10.1002/pc.20565 10.1002/pc.22316 10.1016/j.polymer.2020.122212 10.1002/polb.20040 10.1007/BF03218475 10.1007/s10853-012-6820-5 10.1016/j.carbpol.2016.05.059 10.1007/s10965-014-0483-7 10.1007/s10965-011-9798-9 10.1002/pat.687 10.1002/pen.23325 10.1002/pi.2385 10.1016/j.polymer.2014.10.050 10.1177/0731684413497414 10.1016/S0032-3861(03)00170-8 10.1016/j.polymer.2015.11.029 10.1016/j.polymer.2004.08.075 10.1177/0021998305048154 10.1016/j.polymer.2018.08.059 10.1016/S0032-3861(01)00527-4 10.1016/S0032-3861(02)00400-7 10.1016/j.eurpolymj.2006.11.028 10.1016/j.compscitech.2009.01.029 10.1016/j.compscitech.2009.02.023 10.1002/polb.22131 10.1002/app.12887 10.1295/polymj.34.103 10.1007/s13233-010-0815-3 10.1016/j.polymertesting.2016.03.013 10.1016/0167-577X(95)00107-7 10.1002/app.10497 10.1007/s13367-016-0004-9 10.1016/S0032-3861(01)00640-1 10.1002/app.42915 10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I 10.1002/polb.20683 10.1080/03602559.2012.654580 10.1002/pc.22978 10.1023/A:1010144205297 10.1016/j.compscitech.2010.11.018 10.1002/pen.20934 10.1016/0014-3057(95)00056-9 10.1007/s13233-011-0403-1 10.1016/j.clay.2017.05.021 10.3144/expresspolymlett.2008.31 |
| ContentType | Journal Article |
| Copyright | 2021 Society of Plastics Engineers |
| Copyright_xml | – notice: 2021 Society of Plastics Engineers |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1002/pc.26049 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1548-0569 |
| EndPage | 3194 |
| ExternalDocumentID | 10_1002_pc_26049 PC26049 |
| Genre | article |
| GroupedDBID | .-4 .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8AO 8FE 8FG 8FW 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABHFT ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA H.T H.X HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KB. KC. KQQ KZ1 LATKE LAW LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES M2P M2Q M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL S0X SAMSI SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X PHGZM PHGZT PQGLB 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c2939-f7d93507aec3f6ff62b0e18e59d7efae2742cc627522b23b0a8d44f704462fee3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0272-8397 |
| IngestDate | Fri Jul 25 19:16:53 EDT 2025 Sat Nov 29 07:10:23 EST 2025 Tue Nov 18 22:06:10 EST 2025 Wed Jan 22 16:28:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2939-f7d93507aec3f6ff62b0e18e59d7efae2742cc627522b23b0a8d44f704462fee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3245-5638 0000-0001-9699-4510 |
| PQID | 2549040295 |
| PQPubID | 37365 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2549040295 crossref_citationtrail_10_1002_pc_26049 crossref_primary_10_1002_pc_26049 wiley_primary_10_1002_pc_26049_PC26049 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
| PublicationTitle | Polymer composites |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
| References | 2007; 103 2012; 61 1995; 31 2015; 79 2015; 36 2012; 124 2004; 289 2010; 18 2019; 13 2008; 39 2011; 53 2012; 19 2016; 301 2005; 26 2008; 2 2011; 19 2016; 37 2003; 52 2011; 18 2014; 21 2001; 42 2012; 51 2018; 39 2003; 90 2011; 524 2002; 84 2002; 40 1995; 24 2011; 71 1982; 20 2002; 43 2013; 53 2013; 52 2016; 82 2012; 24 2001; 13 2005; 39 2014; 55 2003; 44 2016; 45 2016; 151 2003; 89 2014; 53 2001; 286 2009; 69 2010; 31 2004; 42 2013; 48 2004; 40 2002; 34 2000; 21 2006; 17 2004; 45 2008; 209 2005; 40 2016; 52 2005; 43 2008; 57 2020; 77 2001; 22 2012; 33 2001; 63 2018; 154 2020; 190 2009; 30 2010; 48 2004; 92 2016; 124–125 2010; 46 2004; 93 1997; 70 2006; 45 2013; 32 2015; 114 2006; 44 1999; 37 2016; 133 2005; 54 2005; 98 2009; 3 1999; 71 2007; 43 2017; 145 2016; 28 2001; 79 2007; 47 2003; 220 2005; 13 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 Pang Y. (e_1_2_6_95_1) 2019; 13 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 McLauchlin A. (e_1_2_6_28_1) 2011; 53 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_96_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 37 start-page: 684 year: 2016 publication-title: Polym. Compos. – volume: 301 start-page: 1513 year: 2016 publication-title: Macromol. Mater. Eng. – volume: 43 start-page: 5915 year: 2002 publication-title: Polymer – volume: 93 start-page: 2201 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 44 start-page: 371 year: 2006 publication-title: J. Polym. Sci. Polym. Phys. – volume: 45 start-page: 382 year: 2016 publication-title: Plast. Rubber Compos. – volume: 55 start-page: 6940 year: 2014 publication-title: Polymer – volume: 145 start-page: 1 year: 2017 publication-title: Appl. Clay Sci. – volume: 151 start-page: 119 year: 2016 publication-title: Carbohyd. Polym. – volume: 89 start-page: 1 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 70 start-page: 650 year: 1997 publication-title: Rubber Chem. Technol. – volume: 54 start-page: 456 year: 2005 publication-title: Polym. Int. – volume: 21 start-page: 483 year: 2014 publication-title: J. Polym. Res. – volume: 53 start-page: 749 year: 2011 publication-title: Appl. Clay Sci. – volume: 124–125 start-page: 46 year: 2016 publication-title: Appl. Clay Sci. – volume: 82 start-page: 57 year: 2016 publication-title: Polymer – volume: 13 start-page: 3760 year: 2001 publication-title: Chem. Mater. – volume: 22 start-page: 1306 year: 2001 publication-title: Macromol. Rapid Comm. – volume: 31 start-page: 1853 year: 2010 publication-title: Polym. Compos. – volume: 69 start-page: 1093 year: 2009 publication-title: Compos. Sci. Technol. – volume: 52 start-page: 13 year: 2013 publication-title: J. Macromol. Sci. B – volume: 47 start-page: 1847 year: 2007 publication-title: Polym. Eng. Sci. – volume: 286 start-page: 260 year: 2001 publication-title: Macromol. Mater. Eng. – volume: 40 start-page: 1556 year: 2002 publication-title: J. Polym. Sci. Polym. Phys. – volume: 26 start-page: 830 year: 2005 publication-title: Macromol. Rapid Comm. – volume: 21 start-page: 57 year: 2000 publication-title: Macromol. Rapid Comm. – volume: 32 start-page: 1634 year: 2013 publication-title: J. Reinf. Plast. Compos. – volume: 220 start-page: 13 year: 2003 publication-title: J. Membr. Sci. – volume: 39 start-page: 3110 year: 2018 publication-title: Polym. Compos. – volume: 36 start-page: 613 year: 2015 publication-title: Polym. Compos. – volume: 190 start-page: 122212 year: 2020 publication-title: Polymer – volume: 42 start-page: 9783 year: 2001 publication-title: Polymer – volume: 57 start-page: 618 year: 2008 publication-title: Polym. Int. – volume: 79 start-page: 193 year: 2001 publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 2100 year: 2007 publication-title: Polym. Eng. Sci. – volume: 77 start-page: 5933 year: 2020 publication-title: Polym. Bull. – volume: 30 start-page: 265 year: 2009 publication-title: Polym. Compos. – volume: 33 start-page: 1719 year: 2012 publication-title: Polym. Compos. – volume: 18 start-page: 843 year: 2011 publication-title: J. Polym. Res. – volume: 13 start-page: 1097 year: 2019 publication-title: ACS Nano – volume: 40 start-page: 2897 year: 2005 publication-title: J. Mater. Sci. – volume: 18 start-page: 772 year: 2010 publication-title: Macromol. Res. – volume: 39 start-page: 1177 year: 2008 publication-title: Compos. Part A‐Appl. S. – volume: 40 start-page: 2185 year: 2004 publication-title: Eur. Polym. J. – volume: 39 start-page: 745 year: 2005 publication-title: J. Compos. Mater. – volume: 28 start-page: 41 year: 2016 publication-title: Korea‐Aust. Rheol. J. – volume: 51 start-page: 568 year: 2012 publication-title: Polym.‐Plast. Technol. – volume: 2 start-page: 256 year: 2008 publication-title: Express Polym. Lett. – volume: 71 start-page: 197 year: 2011 publication-title: Compos. Sci. Technol. – volume: 44 start-page: 2761 year: 2003 publication-title: Polymer – volume: 524 start-page: 186 year: 2011 publication-title: Thermochim. Acta – volume: 46 start-page: 881 year: 2010 publication-title: Eur. Polym. J. – volume: 90 start-page: 2391 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 3 start-page: 245 year: 2009 publication-title: Express Polym. Lett. – volume: 45 start-page: 513 year: 2006 publication-title: Polym.‐Plast. Technol. – volume: 48 start-page: 127 year: 2010 publication-title: Appl. Clay Sci. – volume: 13 start-page: 418 year: 2005 publication-title: Macromol. Res. – volume: 124 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 37 start-page: 1815 year: 1999 publication-title: J. Polym. Sci. Polym. Phys. – volume: 52 start-page: 133 year: 2016 publication-title: Polym. Test. – volume: 114 start-page: 568 year: 2015 publication-title: Appl. Clay Sci. – volume: 48 start-page: 948 year: 2013 publication-title: J. Mater. Sci. – volume: 98 start-page: 767 year: 2005 publication-title: J. Appl. Polym. Sci. – volume: 61 start-page: 544 year: 2012 publication-title: Int. J. Polym. Mater. – volume: 63 start-page: 749 year: 2001 publication-title: J. Therm. Anal. Calorim. – volume: 53 start-page: 809 year: 2013 publication-title: Polym. Eng. Sci. – volume: 33 start-page: 2095 year: 2012 publication-title: Polym. Compos. – volume: 69 start-page: 1206 year: 2009 publication-title: Compos. Sci. Technol. – volume: 289 start-page: 890 year: 2004 publication-title: Macromol. Mater. Eng. – volume: 84 start-page: 2335 year: 2002 publication-title: J. Appl. Polym. Sci. – volume: 103 start-page: 618 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 31 start-page: 957 year: 1995 publication-title: Eur. Polym. J. – volume: 24 start-page: 333 year: 1995 publication-title: Mater. Lett. – volume: 24 start-page: 221 year: 2012 publication-title: Korea‐Aust. Rheol. J. – volume: 34 start-page: 103 year: 2002 publication-title: Polym. J. – volume: 45 start-page: 7673 year: 2004 publication-title: Polymer – volume: 71 start-page: 2335 year: 1999 publication-title: J. Appl. Polym. Sci. – volume: 20 start-page: 1835 year: 1982 publication-title: J. Polym. Sci. Polym. Phys. – volume: 42 start-page: 1685 year: 2004 publication-title: J. Polym. Sci. Polym. Phys. – volume: 43 start-page: 813 year: 2002 publication-title: Polymer – volume: 43 start-page: 689 year: 2005 publication-title: J. Polym. Sci. Polym. Phys. – volume: 43 start-page: 782 year: 2007 publication-title: Eur. Polym. J. – volume: 154 start-page: 101 year: 2018 publication-title: Polymer – volume: 53 start-page: 858 year: 2014 publication-title: Polym.‐Plast. Technol. – volume: 92 start-page: 698 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 17 start-page: 294 year: 2006 publication-title: Polym. Advan. Technol. – volume: 19 start-page: 326 year: 2011 publication-title: Macromol. Res. – volume: 52 start-page: 1070 year: 2003 publication-title: Polym. Int. – volume: 133 start-page: 42915 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 47 start-page: 649 year: 2007 publication-title: Polym. Eng. Sci. – volume: 209 start-page: 643 year: 2008 publication-title: Macromol. Chem. Phys. – volume: 54 start-page: 348 year: 2005 publication-title: Polym. Int. – volume: 79 start-page: 28 year: 2015 publication-title: Compos. Part B‐Eng. – volume: 48 start-page: 2379 year: 2010 publication-title: J. Polym. Sci. Polym. Phys. – volume: 43 start-page: 3699 year: 2002 publication-title: Polymer – volume: 19 start-page: 9798 year: 2012 publication-title: J. Polym. Res. – ident: e_1_2_6_67_1 doi: 10.5254/1.3538451 – ident: e_1_2_6_42_1 doi: 10.1002/app.22157 – ident: e_1_2_6_66_1 doi: 10.1016/S0376-7388(03)00175-3 – ident: e_1_2_6_92_1 doi: 10.1002/pol.1982.180201007 – ident: e_1_2_6_10_1 doi: 10.1002/pen.20894 – ident: e_1_2_6_41_1 doi: 10.1016/S0032-3861(02)00187-8 – ident: e_1_2_6_90_1 doi: 10.1007/s13367-012-0027-9 – ident: e_1_2_6_82_1 doi: 10.1080/03602550600553747 – ident: e_1_2_6_24_1 doi: 10.1002/polb.20366 – ident: e_1_2_6_30_1 doi: 10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E – ident: e_1_2_6_76_1 doi: 10.1002/mame.201600255 – ident: e_1_2_6_69_1 doi: 10.1002/1097-4628(20010110)79:2<193::AID-APP10>3.0.CO;2-8 – volume: 13 start-page: 1097 year: 2019 ident: e_1_2_6_95_1 publication-title: ACS Nano – ident: e_1_2_6_33_1 doi: 10.1002/pen.20737 – ident: e_1_2_6_12_1 doi: 10.1007/s10853-005-2439-0 – ident: e_1_2_6_64_1 doi: 10.1002/(SICI)1099-0488(19990801)37:15<1815::AID-POLB6>3.0.CO;2-E – ident: e_1_2_6_75_1 doi: 10.1007/s00289-019-03060-y – ident: e_1_2_6_59_1 doi: 10.1002/(SICI)1097-4628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5 – ident: e_1_2_6_57_1 doi: 10.1080/00222348.2012.687255 – ident: e_1_2_6_50_1 doi: 10.1002/macp.200700470 – ident: e_1_2_6_56_1 doi: 10.1016/j.clay.2015.07.009 – ident: e_1_2_6_19_1 doi: 10.1080/14658011.2016.1209622 – ident: e_1_2_6_35_1 doi: 10.1016/j.tca.2011.07.014 – ident: e_1_2_6_8_1 doi: 10.3144/expresspolymlett.2009.31 – ident: e_1_2_6_20_1 doi: 10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X – ident: e_1_2_6_46_1 doi: 10.1002/app.34355 – ident: e_1_2_6_85_1 doi: 10.1016/j.compositesb.2015.01.046 – ident: e_1_2_6_43_1 doi: 10.1080/00914037.2011.593065 – ident: e_1_2_6_53_1 doi: 10.1016/j.compositesa.2008.03.006 – ident: e_1_2_6_37_1 doi: 10.1016/j.eurpolymj.2010.02.007 – ident: e_1_2_6_89_1 doi: 10.1002/pc.22306 – ident: e_1_2_6_5_1 doi: 10.1002/app.25253 – ident: e_1_2_6_17_1 doi: 10.1002/pc.24317 – ident: e_1_2_6_18_1 doi: 10.1002/pi.1161 – ident: e_1_2_6_38_1 doi: 10.1002/marc.200500007 – ident: e_1_2_6_16_1 doi: 10.1002/app.12082 – ident: e_1_2_6_70_1 doi: 10.1016/j.eurpolymj.2004.04.006 – ident: e_1_2_6_29_1 doi: 10.1002/pc.20978 – ident: e_1_2_6_79_1 doi: 10.1002/mame.200400085 – ident: e_1_2_6_23_1 doi: 10.1080/03602559.2014.886054 – ident: e_1_2_6_62_1 doi: 10.1002/polb.10204 – ident: e_1_2_6_36_1 doi: 10.1021/cm010982m – ident: e_1_2_6_14_1 doi: 10.1002/pi.1721 – ident: e_1_2_6_13_1 doi: 10.1002/pc.23225 – ident: e_1_2_6_32_1 doi: 10.1016/j.clay.2016.02.003 – ident: e_1_2_6_54_1 doi: 10.1016/j.clay.2009.12.011 – ident: e_1_2_6_21_1 doi: 10.1002/app.13673 – ident: e_1_2_6_51_1 doi: 10.1002/app.20736 – ident: e_1_2_6_26_1 doi: 10.1002/pi.1686 – ident: e_1_2_6_55_1 doi: 10.1007/s10965-010-9481-6 – ident: e_1_2_6_9_1 doi: 10.1002/pc.20565 – ident: e_1_2_6_22_1 doi: 10.1002/pc.22316 – ident: e_1_2_6_74_1 doi: 10.1016/j.polymer.2020.122212 – ident: e_1_2_6_31_1 doi: 10.1002/polb.20040 – ident: e_1_2_6_83_1 doi: 10.1007/BF03218475 – ident: e_1_2_6_2_1 doi: 10.1007/s10853-012-6820-5 – ident: e_1_2_6_91_1 doi: 10.1016/j.carbpol.2016.05.059 – ident: e_1_2_6_4_1 doi: 10.1007/s10965-014-0483-7 – ident: e_1_2_6_86_1 doi: 10.1007/s10965-011-9798-9 – ident: e_1_2_6_39_1 doi: 10.1002/pat.687 – ident: e_1_2_6_40_1 doi: 10.1002/pen.23325 – ident: e_1_2_6_48_1 doi: 10.1002/pi.2385 – ident: e_1_2_6_71_1 doi: 10.1016/j.polymer.2014.10.050 – ident: e_1_2_6_58_1 doi: 10.1177/0731684413497414 – ident: e_1_2_6_15_1 doi: 10.1016/S0032-3861(03)00170-8 – ident: e_1_2_6_88_1 doi: 10.1016/j.polymer.2015.11.029 – ident: e_1_2_6_80_1 doi: 10.1016/j.polymer.2004.08.075 – ident: e_1_2_6_84_1 doi: 10.1177/0021998305048154 – ident: e_1_2_6_73_1 doi: 10.1016/j.polymer.2018.08.059 – ident: e_1_2_6_44_1 doi: 10.1016/S0032-3861(01)00527-4 – ident: e_1_2_6_11_1 doi: 10.1016/S0032-3861(02)00400-7 – ident: e_1_2_6_34_1 doi: 10.1016/j.eurpolymj.2006.11.028 – ident: e_1_2_6_6_1 doi: 10.1016/j.compscitech.2009.01.029 – ident: e_1_2_6_52_1 doi: 10.1016/j.compscitech.2009.02.023 – volume: 53 start-page: 749 year: 2011 ident: e_1_2_6_28_1 publication-title: Appl. Clay Sci. – ident: e_1_2_6_96_1 doi: 10.1002/polb.22131 – ident: e_1_2_6_68_1 doi: 10.1002/app.12887 – ident: e_1_2_6_7_1 doi: 10.1295/polymj.34.103 – ident: e_1_2_6_93_1 doi: 10.1007/s13233-010-0815-3 – ident: e_1_2_6_77_1 doi: 10.1016/j.polymertesting.2016.03.013 – ident: e_1_2_6_65_1 doi: 10.1016/0167-577X(95)00107-7 – ident: e_1_2_6_61_1 doi: 10.1002/app.10497 – ident: e_1_2_6_94_1 doi: 10.1007/s13367-016-0004-9 – ident: e_1_2_6_49_1 doi: 10.1016/S0032-3861(01)00640-1 – ident: e_1_2_6_25_1 doi: 10.1002/app.42915 – ident: e_1_2_6_27_1 doi: 10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I – ident: e_1_2_6_97_1 doi: 10.1002/polb.20683 – ident: e_1_2_6_45_1 doi: 10.1080/03602559.2012.654580 – ident: e_1_2_6_47_1 doi: 10.1002/pc.22978 – ident: e_1_2_6_60_1 doi: 10.1023/A:1010144205297 – ident: e_1_2_6_81_1 doi: 10.1016/j.compscitech.2010.11.018 – ident: e_1_2_6_3_1 doi: 10.1002/pen.20934 – ident: e_1_2_6_63_1 doi: 10.1016/0014-3057(95)00056-9 – ident: e_1_2_6_87_1 doi: 10.1007/s13233-011-0403-1 – ident: e_1_2_6_72_1 doi: 10.1016/j.clay.2017.05.021 – ident: e_1_2_6_78_1 doi: 10.3144/expresspolymlett.2008.31 |
| SSID | ssj0021663 |
| Score | 2.331739 |
| Snippet | The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3184 |
| SubjectTerms | Butadiene Crystal structure crystal structures Crystallinity Dicumyl peroxide Diffraction patterns Ethylene vinyl acetates Hardness Montmorillonite Nanocomposites Nitrile rubber Relaxation time Rheological properties Rheology Tensile properties Tensile strength Tensile tests Vinyl acetate X-ray diffraction X‐ray Yield stress |
| Title | The impact of organo‐montmorillonite on rheology and crystalline structure of uncured and cured acrylonitrile‐butadiene rubber/poly(ethylene‐co‐vinyl acetate) nanocomposites |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.26049 https://www.proquest.com/docview/2549040295 |
| Volume | 42 |
| WOSCitedRecordID | wos000635344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1548-0569 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021663 issn: 0272-8397 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aTQ_NIX3TTTdFhdLHwV2vbK_tY0i69BBCKA3kZiR5RBa2tvE-YG_5Cf0z_UP5JZmRvJsEWij0ZBtGQjCvT9boG4D36ciME2tNYFWaBLFSNsiijD4pDpZRbClFOZ7Zk_T0NLu4yM-6qkq-C-P5IbY_3NgzXLxmB1d6PrwlDW3MF8Licf4QdiSZbdKDnePvk_OT7XZrNPZ91GRKPk9pd0M9G8rhZuz9ZHSLMO_iVJdoJk_-Z4lPYa-Dl-LQ28MzeIDVc9i9Qzr4An6TZQh_OVLUVri2TvX11S-yx8XPup3yQTzhUFFXor10fX_XQlWlMO2akCRTeKPwrLPLFnkGyoz0Vnoh_0aybhaaDWlqvVy4yjIU7VJrbIdNPVt_QrIRynksYHgBq2m1ntFYLoDEz6KiZXHBO1eV4fwlnE--_jj6FnTNGwJDCCInZZd5RGBToYns2Nqx1CGOMkzyMkWrkI-IjWGOZCm1jHSosjKObcoHzNIiRq-gV9UVvgahVESBxXGp0W4p1SoLJfLV7zDRZahHffi40WJhOmZzbrAxKzwnsywaUzhF9OHdVrLxbB5_kBlsDKHo_Hle8Daawp3Mkz58cCr_6_ji7Mg99_9V8A08llwo42qAB9AjDeIBPDKrxXTevu2s-gYFCQOI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qK6gP_hfPVl1B_POQXm6TXBJ8kupR8TyKtNC3sLuZpQdncuTuCvfmR_DL-IX8JJ3ZTa4VFASfsoHZYWH-7u7sbwBepgMzTKw1gVVpEsRK2SCLMvolP1hGsaUQ5XBmx-lkkp2e5kdb8K57C-PxITYHbmwZzl-zgfOBdP8SNXRu9ikZj_NrsBOTFpF673z4OjoZb_Zbg6FvpCZTMnqKux32bCj73dzfo9Flink1UXWRZnTnv9Z4F263CaZ47zXiHmxhdR9uXYEdfAA_STeEfx4paitcY6f61_cfpJHLb3Uz5at4ykRFXYnmzHX-XQtVlcI0a8olGcQbhcedXTXIHCg20qj0RH5EtI4LcUNirVdLV1uGollpjU1_Xs_Wb5C0hKIeExhewPm0Ws9oLpdA4ltR0bK45J3rynDxEE5GH48PDoO2fUNgKIfISdxlHlG6qdBEdmjtUOoQBxkmeZmiVciXxMYwSrKUWkY6VFkZxzblK2ZpEaNHsF3VFT4GoVRErsWhqdF-KdUqCyXy4-8w0WWoBz143YmxMC22ObfYmBUelVkWc1M4QfTgxYZy7vE8_kCz12lC0Vr0ouCNNDk8mSc9eOVk_tf5xdGB-z75V8LncOPw-Mu4GH-afN6Fm5LLZlxF8B5skzTxKVw358vponnWqvgFb7AHeA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditNAFD6sXZH1wv_FuquOIP5cxKaTpEnwSnYtiqUUcWHvwszkDBZqEtJ2oXc-gi-zL7RPsudMku4KCoJXSeDMMHD-vsmc-Q7Ay3hoRpG1xrMqjrxQKeslQUKfFAfzILSUohzP7CSeTpPT03S2A--7uzANP8T2hxt7hovX7OBY5XZwxRpamXcExsP0BuyG3EOmB7vHX8cnk-1-azhqGqnJmJye8m7HPevLQTf292x0BTGvA1WXacZ3_2uN9-BOCzDFh8Yi7sMOFg_g9jXawYdwTrYhmuuRorTCNXYqL37-Iotc_SjrOR_FExIVZSHq767z70aoIhem3hCWZBJvFA3v7LpGnoFyI73ljVDzRrJuFpoNaWq9XrnaMhT1WmusB1W52LxBshLKeixgeAFn82KzoLFcAolvRUHL4pJ3rivD5SM4GX_8dvTJa9s3eIYwRErqztOA4KZCE9iRtSOpfRwmGKV5jFYhHxIbwyzJUmoZaF8leRjamI-YpUUM9qFXlAU-BqFUQKHFsanRfinWKvEl8uVvP9K5r4d9eN2pMTMttzm32FhkDSuzzCqTOUX04cVWsmr4PP4gc9hZQtZ69DLjjTQFPJlGfXjldP7X8dnsyD2f_Kvgc7g1Ox5nk8_TLwewJ7lqxhUEH0KPlIlP4aY5W82X9bPWwi8B86cG8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+organo%E2%80%90montmorillonite+on+rheology+and+crystalline+structure+of+uncured+and+cured+acrylonitrile%E2%80%90butadiene+rubber%2Fpoly%28ethylene%E2%80%90co%E2%80%90vinyl+acetate%29+nanocomposites&rft.jtitle=Polymer+composites&rft.au=Mohammad+Razavi%E2%80%90Nouri&rft.au=Sabet%2C+Alireza&rft.au=Mohebbi%2C+Maryam&rft.date=2021-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=42&rft.issue=7&rft.spage=3184&rft.epage=3194&rft_id=info:doi/10.1002%2Fpc.26049&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon |