The impact of organo‐montmorillonite on rheology and crystalline structure of uncured and cured acrylonitrile‐butadiene rubber/poly(ethylene‐co‐vinyl acetate) nanocomposites

The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Polymer composites Ročník 42; číslo 7; s. 3184 - 3194
Hlavní autoři: Razavi‐Nouri, Mohammad, Sabet, Alireza, Mohebbi, Maryam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.07.2021
Blackwell Publishing Ltd
Témata:
ISSN:0272-8397, 1548-0569
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts.
AbstractList The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts.
The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I 110 /I 200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts.
The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile properties of uncured and lightly cured acrylonitrile‐butadiene rubber (NBR)/poly(ethylene‐co‐vinyl acetate) (EVA)/OMMT nanocomposites. The nanocomposites containing 0 to 7 wt% OMMT was prepared and then cured with 0.3 wt% dicumyl peroxide. The low‐angle X‐ray diffraction results revealed that curing clearly improved the degree of exfoliation in the materials having high OMMT content. It was found from the hardness and tensile tests that the values of hardness, tensile strength, modulus, and energy at break were higher for the cured nanocomposites than those of the uncured materials in the range of OMMT examined. The results obtained from the Casson plot revealed that the nanofiller played a more effective role in increasing the yield stress of the uncured materials than that of the cured counterparts at a constant OMMT content. The characteristic relaxation time was also progressively increased with OMMT content for the uncured materials; however, the value was higher for the cured materials and it was much less sensitive to the nanofiller content. The I110/I200 peak intensity ratio of EVA calculated from the wide‐angle X‐ray diffraction patterns decreased with increasing in OMMT content for the uncured and cured materials; however, the value was always higher for the cured counterparts.
Author Razavi‐Nouri, Mohammad
Sabet, Alireza
Mohebbi, Maryam
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-9699-4510
  surname: Razavi‐Nouri
  fullname: Razavi‐Nouri, Mohammad
  email: m.razavi@ippi.ac.ir
  organization: Iran Polymer and Petrochemical Institute
– sequence: 2
  givenname: Alireza
  orcidid: 0000-0002-3245-5638
  surname: Sabet
  fullname: Sabet, Alireza
  email: a.sabet@ippi.ac.ir
  organization: Iran Polymer and Petrochemical Institute
– sequence: 3
  givenname: Maryam
  surname: Mohebbi
  fullname: Mohebbi, Maryam
  organization: Iran Polymer and Petrochemical Institute
BookMark eNp1kc1q3TAQhUVJoDc_0EcQdJMufCPLsn21LJf-QaBdJGsjy6NcBVlyJbnFuzxCX6YvlCfJ3Lir0q5mGL5z5jBzRk588EDIm5JtS8b49aS3vGFCviKbsha7gtWNPCEbxlte7CrZviZnKT0gWTZNtSG_bw9A7TgpnWkwNMR75cPT468x-DyGaJ0L3magwdN4gODC_UKVH6iOS8rKOeuBphxnnecIR4fZa-yGFVo7ZF9c0A3Qup-zGiygMM59D_F6Cm65gnxYHA4R0McAP6xfHGohqwzvqMdYOoxTSJgmXZBTo1yCyz_1nNx9_HC7_1zcfP30Zf_-ptBcVrIw7SCrmrUKdGUaYxreMyh3UMuhBaOAt4Jr3fC25rznVc_UbhDCtEyIhhuA6py8XX2nGL7PkHL3EObocWXHayGZYFzWSG1XSseQUgTTaYupLZ4wKuu6knXH13ST7l5eg4KrvwRTtKOKy7_QYkV_4vGW_3Ldt_3KPwN9o6iO
CitedBy_id crossref_primary_10_1002_pc_26724
crossref_primary_10_1016_j_clema_2022_100071
crossref_primary_10_1002_pc_27111
crossref_primary_10_1002_pc_26697
crossref_primary_10_1002_pc_27863
crossref_primary_10_1002_pc_27069
crossref_primary_10_1007_s13726_023_01163_y
crossref_primary_10_1016_j_ijbiomac_2023_127473
Cites_doi 10.5254/1.3538451
10.1002/app.22157
10.1016/S0376-7388(03)00175-3
10.1002/pol.1982.180201007
10.1002/pen.20894
10.1016/S0032-3861(02)00187-8
10.1007/s13367-012-0027-9
10.1080/03602550600553747
10.1002/polb.20366
10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E
10.1002/mame.201600255
10.1002/1097-4628(20010110)79:2<193::AID-APP10>3.0.CO;2-8
10.1002/pen.20737
10.1007/s10853-005-2439-0
10.1002/(SICI)1099-0488(19990801)37:15<1815::AID-POLB6>3.0.CO;2-E
10.1007/s00289-019-03060-y
10.1002/(SICI)1097-4628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5
10.1080/00222348.2012.687255
10.1002/macp.200700470
10.1016/j.clay.2015.07.009
10.1080/14658011.2016.1209622
10.1016/j.tca.2011.07.014
10.3144/expresspolymlett.2009.31
10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X
10.1002/app.34355
10.1016/j.compositesb.2015.01.046
10.1080/00914037.2011.593065
10.1016/j.compositesa.2008.03.006
10.1016/j.eurpolymj.2010.02.007
10.1002/pc.22306
10.1002/app.25253
10.1002/pc.24317
10.1002/pi.1161
10.1002/marc.200500007
10.1002/app.12082
10.1016/j.eurpolymj.2004.04.006
10.1002/pc.20978
10.1002/mame.200400085
10.1080/03602559.2014.886054
10.1002/polb.10204
10.1021/cm010982m
10.1002/pi.1721
10.1002/pc.23225
10.1016/j.clay.2016.02.003
10.1016/j.clay.2009.12.011
10.1002/app.13673
10.1002/app.20736
10.1002/pi.1686
10.1007/s10965-010-9481-6
10.1002/pc.20565
10.1002/pc.22316
10.1016/j.polymer.2020.122212
10.1002/polb.20040
10.1007/BF03218475
10.1007/s10853-012-6820-5
10.1016/j.carbpol.2016.05.059
10.1007/s10965-014-0483-7
10.1007/s10965-011-9798-9
10.1002/pat.687
10.1002/pen.23325
10.1002/pi.2385
10.1016/j.polymer.2014.10.050
10.1177/0731684413497414
10.1016/S0032-3861(03)00170-8
10.1016/j.polymer.2015.11.029
10.1016/j.polymer.2004.08.075
10.1177/0021998305048154
10.1016/j.polymer.2018.08.059
10.1016/S0032-3861(01)00527-4
10.1016/S0032-3861(02)00400-7
10.1016/j.eurpolymj.2006.11.028
10.1016/j.compscitech.2009.01.029
10.1016/j.compscitech.2009.02.023
10.1002/polb.22131
10.1002/app.12887
10.1295/polymj.34.103
10.1007/s13233-010-0815-3
10.1016/j.polymertesting.2016.03.013
10.1016/0167-577X(95)00107-7
10.1002/app.10497
10.1007/s13367-016-0004-9
10.1016/S0032-3861(01)00640-1
10.1002/app.42915
10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I
10.1002/polb.20683
10.1080/03602559.2012.654580
10.1002/pc.22978
10.1023/A:1010144205297
10.1016/j.compscitech.2010.11.018
10.1002/pen.20934
10.1016/0014-3057(95)00056-9
10.1007/s13233-011-0403-1
10.1016/j.clay.2017.05.021
10.3144/expresspolymlett.2008.31
ContentType Journal Article
Copyright 2021 Society of Plastics Engineers
Copyright_xml – notice: 2021 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.26049
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 3194
ExternalDocumentID 10_1002_pc_26049
PC26049
Genre article
GroupedDBID .-4
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8AO
8FE
8FG
8FW
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHFT
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KB.
KC.
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2P
M2Q
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
S0X
SAMSI
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
PHGZM
PHGZT
PQGLB
7SR
8FD
JG9
ID FETCH-LOGICAL-c2939-f7d93507aec3f6ff62b0e18e59d7efae2742cc627522b23b0a8d44f704462fee3
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000635344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0272-8397
IngestDate Fri Jul 25 19:16:53 EDT 2025
Sat Nov 29 07:10:23 EST 2025
Tue Nov 18 22:06:10 EST 2025
Wed Jan 22 16:28:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-f7d93507aec3f6ff62b0e18e59d7efae2742cc627522b23b0a8d44f704462fee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3245-5638
0000-0001-9699-4510
PQID 2549040295
PQPubID 37365
PageCount 11
ParticipantIDs proquest_journals_2549040295
crossref_citationtrail_10_1002_pc_26049
crossref_primary_10_1002_pc_26049
wiley_primary_10_1002_pc_26049_PC26049
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2007; 103
2012; 61
1995; 31
2015; 79
2015; 36
2012; 124
2004; 289
2010; 18
2019; 13
2008; 39
2011; 53
2012; 19
2016; 301
2005; 26
2008; 2
2011; 19
2016; 37
2003; 52
2011; 18
2014; 21
2001; 42
2012; 51
2018; 39
2003; 90
2011; 524
2002; 84
2002; 40
1995; 24
2011; 71
1982; 20
2002; 43
2013; 53
2013; 52
2016; 82
2012; 24
2001; 13
2005; 39
2014; 55
2003; 44
2016; 45
2016; 151
2003; 89
2014; 53
2001; 286
2009; 69
2010; 31
2004; 42
2013; 48
2004; 40
2002; 34
2000; 21
2006; 17
2004; 45
2008; 209
2005; 40
2016; 52
2005; 43
2008; 57
2020; 77
2001; 22
2012; 33
2001; 63
2018; 154
2020; 190
2009; 30
2010; 48
2004; 92
2016; 124–125
2010; 46
2004; 93
1997; 70
2006; 45
2013; 32
2015; 114
2006; 44
1999; 37
2016; 133
2005; 54
2005; 98
2009; 3
1999; 71
2007; 43
2017; 145
2016; 28
2001; 79
2007; 47
2003; 220
2005; 13
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
Pang Y. (e_1_2_6_95_1) 2019; 13
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
McLauchlin A. (e_1_2_6_28_1) 2011; 53
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_96_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_94_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 37
  start-page: 684
  year: 2016
  publication-title: Polym. Compos.
– volume: 301
  start-page: 1513
  year: 2016
  publication-title: Macromol. Mater. Eng.
– volume: 43
  start-page: 5915
  year: 2002
  publication-title: Polymer
– volume: 93
  start-page: 2201
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 44
  start-page: 371
  year: 2006
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 45
  start-page: 382
  year: 2016
  publication-title: Plast. Rubber Compos.
– volume: 55
  start-page: 6940
  year: 2014
  publication-title: Polymer
– volume: 145
  start-page: 1
  year: 2017
  publication-title: Appl. Clay Sci.
– volume: 151
  start-page: 119
  year: 2016
  publication-title: Carbohyd. Polym.
– volume: 89
  start-page: 1
  year: 2003
  publication-title: J. Appl. Polym. Sci.
– volume: 70
  start-page: 650
  year: 1997
  publication-title: Rubber Chem. Technol.
– volume: 54
  start-page: 456
  year: 2005
  publication-title: Polym. Int.
– volume: 21
  start-page: 483
  year: 2014
  publication-title: J. Polym. Res.
– volume: 53
  start-page: 749
  year: 2011
  publication-title: Appl. Clay Sci.
– volume: 124–125
  start-page: 46
  year: 2016
  publication-title: Appl. Clay Sci.
– volume: 82
  start-page: 57
  year: 2016
  publication-title: Polymer
– volume: 13
  start-page: 3760
  year: 2001
  publication-title: Chem. Mater.
– volume: 22
  start-page: 1306
  year: 2001
  publication-title: Macromol. Rapid Comm.
– volume: 31
  start-page: 1853
  year: 2010
  publication-title: Polym. Compos.
– volume: 69
  start-page: 1093
  year: 2009
  publication-title: Compos. Sci. Technol.
– volume: 52
  start-page: 13
  year: 2013
  publication-title: J. Macromol. Sci. B
– volume: 47
  start-page: 1847
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 286
  start-page: 260
  year: 2001
  publication-title: Macromol. Mater. Eng.
– volume: 40
  start-page: 1556
  year: 2002
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 26
  start-page: 830
  year: 2005
  publication-title: Macromol. Rapid Comm.
– volume: 21
  start-page: 57
  year: 2000
  publication-title: Macromol. Rapid Comm.
– volume: 32
  start-page: 1634
  year: 2013
  publication-title: J. Reinf. Plast. Compos.
– volume: 220
  start-page: 13
  year: 2003
  publication-title: J. Membr. Sci.
– volume: 39
  start-page: 3110
  year: 2018
  publication-title: Polym. Compos.
– volume: 36
  start-page: 613
  year: 2015
  publication-title: Polym. Compos.
– volume: 190
  start-page: 122212
  year: 2020
  publication-title: Polymer
– volume: 42
  start-page: 9783
  year: 2001
  publication-title: Polymer
– volume: 57
  start-page: 618
  year: 2008
  publication-title: Polym. Int.
– volume: 79
  start-page: 193
  year: 2001
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 2100
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 77
  start-page: 5933
  year: 2020
  publication-title: Polym. Bull.
– volume: 30
  start-page: 265
  year: 2009
  publication-title: Polym. Compos.
– volume: 33
  start-page: 1719
  year: 2012
  publication-title: Polym. Compos.
– volume: 18
  start-page: 843
  year: 2011
  publication-title: J. Polym. Res.
– volume: 13
  start-page: 1097
  year: 2019
  publication-title: ACS Nano
– volume: 40
  start-page: 2897
  year: 2005
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 772
  year: 2010
  publication-title: Macromol. Res.
– volume: 39
  start-page: 1177
  year: 2008
  publication-title: Compos. Part A‐Appl. S.
– volume: 40
  start-page: 2185
  year: 2004
  publication-title: Eur. Polym. J.
– volume: 39
  start-page: 745
  year: 2005
  publication-title: J. Compos. Mater.
– volume: 28
  start-page: 41
  year: 2016
  publication-title: Korea‐Aust. Rheol. J.
– volume: 51
  start-page: 568
  year: 2012
  publication-title: Polym.‐Plast. Technol.
– volume: 2
  start-page: 256
  year: 2008
  publication-title: Express Polym. Lett.
– volume: 71
  start-page: 197
  year: 2011
  publication-title: Compos. Sci. Technol.
– volume: 44
  start-page: 2761
  year: 2003
  publication-title: Polymer
– volume: 524
  start-page: 186
  year: 2011
  publication-title: Thermochim. Acta
– volume: 46
  start-page: 881
  year: 2010
  publication-title: Eur. Polym. J.
– volume: 90
  start-page: 2391
  year: 2003
  publication-title: J. Appl. Polym. Sci.
– volume: 3
  start-page: 245
  year: 2009
  publication-title: Express Polym. Lett.
– volume: 45
  start-page: 513
  year: 2006
  publication-title: Polym.‐Plast. Technol.
– volume: 48
  start-page: 127
  year: 2010
  publication-title: Appl. Clay Sci.
– volume: 13
  start-page: 418
  year: 2005
  publication-title: Macromol. Res.
– volume: 124
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 37
  start-page: 1815
  year: 1999
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 52
  start-page: 133
  year: 2016
  publication-title: Polym. Test.
– volume: 114
  start-page: 568
  year: 2015
  publication-title: Appl. Clay Sci.
– volume: 48
  start-page: 948
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 98
  start-page: 767
  year: 2005
  publication-title: J. Appl. Polym. Sci.
– volume: 61
  start-page: 544
  year: 2012
  publication-title: Int. J. Polym. Mater.
– volume: 63
  start-page: 749
  year: 2001
  publication-title: J. Therm. Anal. Calorim.
– volume: 53
  start-page: 809
  year: 2013
  publication-title: Polym. Eng. Sci.
– volume: 33
  start-page: 2095
  year: 2012
  publication-title: Polym. Compos.
– volume: 69
  start-page: 1206
  year: 2009
  publication-title: Compos. Sci. Technol.
– volume: 289
  start-page: 890
  year: 2004
  publication-title: Macromol. Mater. Eng.
– volume: 84
  start-page: 2335
  year: 2002
  publication-title: J. Appl. Polym. Sci.
– volume: 103
  start-page: 618
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 31
  start-page: 957
  year: 1995
  publication-title: Eur. Polym. J.
– volume: 24
  start-page: 333
  year: 1995
  publication-title: Mater. Lett.
– volume: 24
  start-page: 221
  year: 2012
  publication-title: Korea‐Aust. Rheol. J.
– volume: 34
  start-page: 103
  year: 2002
  publication-title: Polym. J.
– volume: 45
  start-page: 7673
  year: 2004
  publication-title: Polymer
– volume: 71
  start-page: 2335
  year: 1999
  publication-title: J. Appl. Polym. Sci.
– volume: 20
  start-page: 1835
  year: 1982
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 42
  start-page: 1685
  year: 2004
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 43
  start-page: 813
  year: 2002
  publication-title: Polymer
– volume: 43
  start-page: 689
  year: 2005
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 43
  start-page: 782
  year: 2007
  publication-title: Eur. Polym. J.
– volume: 154
  start-page: 101
  year: 2018
  publication-title: Polymer
– volume: 53
  start-page: 858
  year: 2014
  publication-title: Polym.‐Plast. Technol.
– volume: 92
  start-page: 698
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 294
  year: 2006
  publication-title: Polym. Advan. Technol.
– volume: 19
  start-page: 326
  year: 2011
  publication-title: Macromol. Res.
– volume: 52
  start-page: 1070
  year: 2003
  publication-title: Polym. Int.
– volume: 133
  start-page: 42915
  year: 2016
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 649
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 209
  start-page: 643
  year: 2008
  publication-title: Macromol. Chem. Phys.
– volume: 54
  start-page: 348
  year: 2005
  publication-title: Polym. Int.
– volume: 79
  start-page: 28
  year: 2015
  publication-title: Compos. Part B‐Eng.
– volume: 48
  start-page: 2379
  year: 2010
  publication-title: J. Polym. Sci. Polym. Phys.
– volume: 43
  start-page: 3699
  year: 2002
  publication-title: Polymer
– volume: 19
  start-page: 9798
  year: 2012
  publication-title: J. Polym. Res.
– ident: e_1_2_6_67_1
  doi: 10.5254/1.3538451
– ident: e_1_2_6_42_1
  doi: 10.1002/app.22157
– ident: e_1_2_6_66_1
  doi: 10.1016/S0376-7388(03)00175-3
– ident: e_1_2_6_92_1
  doi: 10.1002/pol.1982.180201007
– ident: e_1_2_6_10_1
  doi: 10.1002/pen.20894
– ident: e_1_2_6_41_1
  doi: 10.1016/S0032-3861(02)00187-8
– ident: e_1_2_6_90_1
  doi: 10.1007/s13367-012-0027-9
– ident: e_1_2_6_82_1
  doi: 10.1080/03602550600553747
– ident: e_1_2_6_24_1
  doi: 10.1002/polb.20366
– ident: e_1_2_6_30_1
  doi: 10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E
– ident: e_1_2_6_76_1
  doi: 10.1002/mame.201600255
– ident: e_1_2_6_69_1
  doi: 10.1002/1097-4628(20010110)79:2<193::AID-APP10>3.0.CO;2-8
– volume: 13
  start-page: 1097
  year: 2019
  ident: e_1_2_6_95_1
  publication-title: ACS Nano
– ident: e_1_2_6_33_1
  doi: 10.1002/pen.20737
– ident: e_1_2_6_12_1
  doi: 10.1007/s10853-005-2439-0
– ident: e_1_2_6_64_1
  doi: 10.1002/(SICI)1099-0488(19990801)37:15<1815::AID-POLB6>3.0.CO;2-E
– ident: e_1_2_6_75_1
  doi: 10.1007/s00289-019-03060-y
– ident: e_1_2_6_59_1
  doi: 10.1002/(SICI)1097-4628(19990404)71:14<2335::AID-APP7>3.0.CO;2-5
– ident: e_1_2_6_57_1
  doi: 10.1080/00222348.2012.687255
– ident: e_1_2_6_50_1
  doi: 10.1002/macp.200700470
– ident: e_1_2_6_56_1
  doi: 10.1016/j.clay.2015.07.009
– ident: e_1_2_6_19_1
  doi: 10.1080/14658011.2016.1209622
– ident: e_1_2_6_35_1
  doi: 10.1016/j.tca.2011.07.014
– ident: e_1_2_6_8_1
  doi: 10.3144/expresspolymlett.2009.31
– ident: e_1_2_6_20_1
  doi: 10.1002/1439-2054(20010401)286:4<260::AID-MAME260>3.0.CO;2-X
– ident: e_1_2_6_46_1
  doi: 10.1002/app.34355
– ident: e_1_2_6_85_1
  doi: 10.1016/j.compositesb.2015.01.046
– ident: e_1_2_6_43_1
  doi: 10.1080/00914037.2011.593065
– ident: e_1_2_6_53_1
  doi: 10.1016/j.compositesa.2008.03.006
– ident: e_1_2_6_37_1
  doi: 10.1016/j.eurpolymj.2010.02.007
– ident: e_1_2_6_89_1
  doi: 10.1002/pc.22306
– ident: e_1_2_6_5_1
  doi: 10.1002/app.25253
– ident: e_1_2_6_17_1
  doi: 10.1002/pc.24317
– ident: e_1_2_6_18_1
  doi: 10.1002/pi.1161
– ident: e_1_2_6_38_1
  doi: 10.1002/marc.200500007
– ident: e_1_2_6_16_1
  doi: 10.1002/app.12082
– ident: e_1_2_6_70_1
  doi: 10.1016/j.eurpolymj.2004.04.006
– ident: e_1_2_6_29_1
  doi: 10.1002/pc.20978
– ident: e_1_2_6_79_1
  doi: 10.1002/mame.200400085
– ident: e_1_2_6_23_1
  doi: 10.1080/03602559.2014.886054
– ident: e_1_2_6_62_1
  doi: 10.1002/polb.10204
– ident: e_1_2_6_36_1
  doi: 10.1021/cm010982m
– ident: e_1_2_6_14_1
  doi: 10.1002/pi.1721
– ident: e_1_2_6_13_1
  doi: 10.1002/pc.23225
– ident: e_1_2_6_32_1
  doi: 10.1016/j.clay.2016.02.003
– ident: e_1_2_6_54_1
  doi: 10.1016/j.clay.2009.12.011
– ident: e_1_2_6_21_1
  doi: 10.1002/app.13673
– ident: e_1_2_6_51_1
  doi: 10.1002/app.20736
– ident: e_1_2_6_26_1
  doi: 10.1002/pi.1686
– ident: e_1_2_6_55_1
  doi: 10.1007/s10965-010-9481-6
– ident: e_1_2_6_9_1
  doi: 10.1002/pc.20565
– ident: e_1_2_6_22_1
  doi: 10.1002/pc.22316
– ident: e_1_2_6_74_1
  doi: 10.1016/j.polymer.2020.122212
– ident: e_1_2_6_31_1
  doi: 10.1002/polb.20040
– ident: e_1_2_6_83_1
  doi: 10.1007/BF03218475
– ident: e_1_2_6_2_1
  doi: 10.1007/s10853-012-6820-5
– ident: e_1_2_6_91_1
  doi: 10.1016/j.carbpol.2016.05.059
– ident: e_1_2_6_4_1
  doi: 10.1007/s10965-014-0483-7
– ident: e_1_2_6_86_1
  doi: 10.1007/s10965-011-9798-9
– ident: e_1_2_6_39_1
  doi: 10.1002/pat.687
– ident: e_1_2_6_40_1
  doi: 10.1002/pen.23325
– ident: e_1_2_6_48_1
  doi: 10.1002/pi.2385
– ident: e_1_2_6_71_1
  doi: 10.1016/j.polymer.2014.10.050
– ident: e_1_2_6_58_1
  doi: 10.1177/0731684413497414
– ident: e_1_2_6_15_1
  doi: 10.1016/S0032-3861(03)00170-8
– ident: e_1_2_6_88_1
  doi: 10.1016/j.polymer.2015.11.029
– ident: e_1_2_6_80_1
  doi: 10.1016/j.polymer.2004.08.075
– ident: e_1_2_6_84_1
  doi: 10.1177/0021998305048154
– ident: e_1_2_6_73_1
  doi: 10.1016/j.polymer.2018.08.059
– ident: e_1_2_6_44_1
  doi: 10.1016/S0032-3861(01)00527-4
– ident: e_1_2_6_11_1
  doi: 10.1016/S0032-3861(02)00400-7
– ident: e_1_2_6_34_1
  doi: 10.1016/j.eurpolymj.2006.11.028
– ident: e_1_2_6_6_1
  doi: 10.1016/j.compscitech.2009.01.029
– ident: e_1_2_6_52_1
  doi: 10.1016/j.compscitech.2009.02.023
– volume: 53
  start-page: 749
  year: 2011
  ident: e_1_2_6_28_1
  publication-title: Appl. Clay Sci.
– ident: e_1_2_6_96_1
  doi: 10.1002/polb.22131
– ident: e_1_2_6_68_1
  doi: 10.1002/app.12887
– ident: e_1_2_6_7_1
  doi: 10.1295/polymj.34.103
– ident: e_1_2_6_93_1
  doi: 10.1007/s13233-010-0815-3
– ident: e_1_2_6_77_1
  doi: 10.1016/j.polymertesting.2016.03.013
– ident: e_1_2_6_65_1
  doi: 10.1016/0167-577X(95)00107-7
– ident: e_1_2_6_61_1
  doi: 10.1002/app.10497
– ident: e_1_2_6_94_1
  doi: 10.1007/s13367-016-0004-9
– ident: e_1_2_6_49_1
  doi: 10.1016/S0032-3861(01)00640-1
– ident: e_1_2_6_25_1
  doi: 10.1002/app.42915
– ident: e_1_2_6_27_1
  doi: 10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I
– ident: e_1_2_6_97_1
  doi: 10.1002/polb.20683
– ident: e_1_2_6_45_1
  doi: 10.1080/03602559.2012.654580
– ident: e_1_2_6_47_1
  doi: 10.1002/pc.22978
– ident: e_1_2_6_60_1
  doi: 10.1023/A:1010144205297
– ident: e_1_2_6_81_1
  doi: 10.1016/j.compscitech.2010.11.018
– ident: e_1_2_6_3_1
  doi: 10.1002/pen.20934
– ident: e_1_2_6_63_1
  doi: 10.1016/0014-3057(95)00056-9
– ident: e_1_2_6_87_1
  doi: 10.1007/s13233-011-0403-1
– ident: e_1_2_6_72_1
  doi: 10.1016/j.clay.2017.05.021
– ident: e_1_2_6_78_1
  doi: 10.3144/expresspolymlett.2008.31
SSID ssj0021663
Score 2.331739
Snippet The aim of this study was to evaluate the influence of organo‐montmorillonite (OMMT) content on rheology, crystalline structure, and also hardness and tensile...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3184
SubjectTerms Butadiene
Crystal structure
crystal structures
Crystallinity
Dicumyl peroxide
Diffraction patterns
Ethylene vinyl acetates
Hardness
Montmorillonite
Nanocomposites
Nitrile rubber
Relaxation time
Rheological properties
Rheology
Tensile properties
Tensile strength
Tensile tests
Vinyl acetate
X-ray diffraction
X‐ray
Yield stress
Title The impact of organo‐montmorillonite on rheology and crystalline structure of uncured and cured acrylonitrile‐butadiene rubber/poly(ethylene‐co‐vinyl acetate) nanocomposites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.26049
https://www.proquest.com/docview/2549040295
Volume 42
WOSCitedRecordID wos000635344900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1548-0569
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021663
  issn: 0272-8397
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBbtpof20Cb9odumQYXQn4O7svwj61jSLD2EEEJScjOWPKILW3vx7gb2lkfIy_SF-iSdkbybFFoI9GQdRoNgZjSfrNE3jO0LZZI0sXmknVFRalKB-2CWRJVA41fKFsLTLn47UsfHxcWFPumrKuktTOCH2Pxwo8jw-zUFeGXmoxvS0Jn9hFg81ffZlkS3zQZs68vp-Pxoc9yK89BHTSqMeUy7a-pZIUfruX8moxuEeRun-kQzfvI_S9xmj3t4yT8Hf9hh96B5yh7dIh18xn6iZ_DwOJK3jvu2Tu2vq2v0x8WPtpvQRTziUN42vPvu-_6ueNXU3HYrRJJE4Q08sM4uOyANmBlxVAehMEJZrwW1Aao2y4WvLAPeLY2BbjRrp6sPgD6COY8ELC3gctKspjiXCiDhI29wWVTwTlVlMH_OzseHZwdfo755Q2QRQejIqVonCDYrsInLnculERAXkOlagauAroitJY5kKY1MjKiKOk2dogtm6QCSF2zQtA28ZDxWqtDGCgUZpCqLK2IUNzLXIKyVJh6y92srlrZnNqcGG9MycDLLcmZLb4ghe7uRnAU2j7_I7K4doezjeV7SMRq3O6mzIXvnTf7P-eXJgf--uqvga_ZQUqGMrwHeZQO0ILxhD-zlYjLv9nqv_g23ugOW
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB9qK1gf_C-eVo0gah_Wy2b_ZBefpHpUPI8irfRt2WQneHDdPfbuCvfmR_DL-IX8JE6S3WsFBcGnzcNkCMxM5pfN5DcAz7lUURzpNMiNkkGsYk77YBIFJSfjl1Jn3NEufhnLySQ7Pc2PtuBN_xbG80NsfrjZyHD7tQ1w-0N6eMEaOtevCYzH-RXYicmLyL133n0enYw3560w9Y3UhKSgp7zbc89yMezn_p6NLiDmZaDqMs3o5n-t8Rbc6AAme-s94jZsYX0Hrl-iHbwLP8g3mH8eyRrDXGOn5ue37-SRy7OmndqreEKirKlZ-9V1_l2zsq6YbteEJS2JNzLPO7tq0Wqg3Eijygv5Eck6LaQNSbVaLV1tGbJ2pRS2w3kzW79C8hLKelZA2wWcT-v1jObaEkjcZzUty5a827oyXNyDk9H744PDoGvfEGjCEHlgZJVHBDdL1JFJjUmF4hhmmOSVRFOivSTW2rIkC6FEpHiZVXFspL1iFgYxug_bdVPjA2ChlFmuNJeYYCyTsLSc4kqkOXKthQoH8LI3Y6E7bnPbYmNWeFZmUcx14QwxgGcbybnn8_iDzF7vCUUX0YvCHqRpwxN5MoAXzuZ_nV8cHbjvw38VfArXDo8_jYvxh8nHR7ArbNmMqwjeg22yJj6Gq_p8OV20TzoX_wUhFAeG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEB_OPRF98L-4emoEUe-hbpv-ScM9HXcuisuyiCf3Vpp0ggtrW7q7B_vmR_DL-IXuk9wkbfdOUBB8ah4mQ2BmMr80k98AvPKFCqNQJ540SniRinzaB-PQy30yfi506jvaxa8TMZ2mp6dytgMH_VuYlh9i-8PNRobbr22AY12Y0SVraK3fERiP5DXYjWwPmQHsHn8en0y2560gaRupcUFBT3m35571-aif-3s2uoSYV4GqyzTjO_-1xrtwuwOY7LD1iHuwg-V9uHWFdvAB_CLfYO3zSFYZ5ho7Vec_fpJHrr5XzdxexRMSZVXJmm-u8--G5WXBdLMhLGlJvJG1vLPrBq0Gyo00KlqhdkSyTgtpQ1Kt1itXW4asWSuFzaiuFpu3SF5CWc8KaLuAs3m5WdBcWwKJ-6ykZdmSd1tXhsuHcDJ-_-Xog9e1b_A0YQjpGVHIkOBmjjo0iTEJVz4GKcayEGhytJfEWluWZM4VD5Wfp0UUGWGvmLlBDB_BoKxKfAwsECKVSvsCY4xEHOSWU1zxRKKvNVfBEN70Zsx0x21uW2wsspaVmWe1zpwhhvByK1m3fB5_kNnrPSHrInqZ2YM0bXhcxkN47Wz-1_nZ7Mh9n_yr4Au4MTseZ5OP009P4Sa3VTOuIHgPBmRMfAbX9dlqvmyedx5-AaT9BwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+organo%E2%80%90montmorillonite+on+rheology+and+crystalline+structure+of+uncured+and+cured+acrylonitrile%E2%80%90butadiene+rubber%2Fpoly%28ethylene%E2%80%90co%E2%80%90vinyl+acetate%29+nanocomposites&rft.jtitle=Polymer+composites&rft.au=Razavi%E2%80%90Nouri%2C+Mohammad&rft.au=Sabet%2C+Alireza&rft.au=Mohebbi%2C+Maryam&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=42&rft.issue=7&rft.spage=3184&rft.epage=3194&rft_id=info:doi/10.1002%2Fpc.26049&rft.externalDBID=10.1002%252Fpc.26049&rft.externalDocID=PC26049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon