Inverse source problem for a diffusion equation involving the fractional spectral Laplacian

In this paper, we consider an inverse problem related to a fractional diffusion equation. The model problem is governed by a nonlinear partial differential equation involving the fractional spectral Laplacian. This study is focused on the reconstruction of an unknown source term from a partial inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 44; H. 1; S. 917 - 936
Hauptverfasser: BenSalah, Mohamed, Hassine, Maatoug
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Wiley Subscription Services, Inc 15.01.2021
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we consider an inverse problem related to a fractional diffusion equation. The model problem is governed by a nonlinear partial differential equation involving the fractional spectral Laplacian. This study is focused on the reconstruction of an unknown source term from a partial internal measured data. The considered ill‐posed inverse problem is formulated as a minimization one. The existence, uniqueness, and stability of the solution are discussed. Some theoretical results are established. The numerical reconstruction of the unknown source term is investigated using an iterative process. The proposed method involves a denoising procedure at each iteration step and provides a sequence of source term approximations converging in norm to the actual solution of the minimization problem. Some numerical results are presented to show the efficiency and the accuracy of the proposed approach.
AbstractList In this paper, we consider an inverse problem related to a fractional diffusion equation. The model problem is governed by a nonlinear partial differential equation involving the fractional spectral Laplacian. This study is focused on the reconstruction of an unknown source term from a partial internal measured data. The considered ill‐posed inverse problem is formulated as a minimization one. The existence, uniqueness, and stability of the solution are discussed. Some theoretical results are established. The numerical reconstruction of the unknown source term is investigated using an iterative process. The proposed method involves a denoising procedure at each iteration step and provides a sequence of source term approximations converging in norm to the actual solution of the minimization problem. Some numerical results are presented to show the efficiency and the accuracy of the proposed approach.
Author Hassine, Maatoug
BenSalah, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: BenSalah
  fullname: BenSalah, Mohamed
  organization: University of Monastir
– sequence: 2
  givenname: Maatoug
  orcidid: 0000-0002-2220-9345
  surname: Hassine
  fullname: Hassine, Maatoug
  email: Maatoug.Hassine@enit.rnu.tn
BookMark eNp1kEtLAzEUhYNUsFXBnxBw42bqzUwmkyxL8VFocaMrFyHNJJoyrybTSv-9mdaV6OpeLt-5nHMmaNS0jUHohsCUAKT3da2mrBDiDI0JCJEQWrARGgMpIKEpoRdoEsIGADgh6Ri9L5q98cHg0O68Nrjz7boyNbatxwqXztpdcG2DzXan-mFxzb6t9q75wP2nwdYrPZxVhUNndO_jslRdpbRTzRU6t6oK5vpnXqK3x4fX-XOyfHlazGfLRKciE4mihOo8NRQUKXVWGpsVGVeMUmE5ZywvgGvICF2bwhDgtEiVYiUHwllJ1pBdotvT32h-uzOhl5sYJnoKMqUsF0BYTiM1PVHatyF4Y6V2_TFTdO0qSUAOBcpYoBwKjIK7X4LOu1r5w19ockK_XGUO_3JytZod-W_IJ4FT
CitedBy_id crossref_primary_10_1007_s11587_021_00632_x
crossref_primary_10_3390_math11132887
crossref_primary_10_1016_j_cam_2024_116047
crossref_primary_10_1007_s10440_022_00523_9
crossref_primary_10_1016_j_cnsns_2025_108772
crossref_primary_10_1007_s10958_025_07895_x
Cites_doi 10.1007/s11118-014-9443-4
10.1080/03605301003735680
10.1007/978-3-642-65024-6
10.1016/j.bulsci.2011.12.004
10.1007/s10543-014-0484-2
10.1109/TIP.2003.814255
10.1115/1.4000563
10.1002/cpa.20042
10.1016/j.na.2018.10.016
10.1002/mana.201500041
10.1016/S0165-1684(03)00150-6
10.1016/j.aim.2010.01.025
10.2307/2372313
10.1007/s00526-014-0815-9
10.1103/PhysRevE.94.052147
10.1016/j.cnsns.2015.01.005
10.1103/PhysRevLett.115.180403
10.3934/dcdss.2014.7.857
10.1515/fca-2017-0002
10.1002/2015WR018515
10.1142/p614
10.1039/C4CP03465A
10.1016/j.anihpc.2015.01.004
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.6799
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 936
ExternalDocumentID 10_1002_mma_6799
MMA6799
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2939-a414c52e40a1dc3def3738a6449f88665708c0314be7e108472aa6d80186d1b03
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:13:07 EDT 2025
Sat Nov 29 01:34:03 EST 2025
Tue Nov 18 22:28:12 EST 2025
Wed Jan 22 16:33:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-a414c52e40a1dc3def3738a6449f88665708c0314be7e108472aa6d80186d1b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2220-9345
PQID 2465901654
PQPubID 1016386
PageCount 20
ParticipantIDs proquest_journals_2465901654
crossref_citationtrail_10_1002_mma_6799
crossref_primary_10_1002_mma_6799
wiley_primary_10_1002_mma_6799_MMA6799
PublicationCentury 2000
PublicationDate 15 January 2021
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 15 January 2021
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 20
2010; 35
2010
2010; 224
2015; 54
2016; 289
2016; 52
2016; 94
1993
1971
2010; 63
2016; 33
2003; 12
2015; 24
2019; 181
2015; 115
2017; 16
2015; 42
2004; 57
2014; 16
1902; 13
2012; 136
2018; 11
2003; 83
2014; 7
2014; 54
1951; 73
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
Ferrari F (e_1_2_8_15_1) 2018; 11
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_16_1
Hadamard J (e_1_2_8_24_1) 1902; 13
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
Harbir A (e_1_2_8_20_1) 2017; 16
Samko SG (e_1_2_8_9_1) 1993
References_xml – volume: 54
  start-page: 937
  year: 2014
  end-page: 954
  article-title: Fourier spectral methods for fractional‐in‐space reaction‐diffusion equations
  publication-title: BIT Numer Math
– volume: 7
  start-page: 857
  issue: 4
  year: 2014
  end-page: 885
  article-title: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators
  publication-title: Disc Cont Dyn Sys Series S
– volume: 13
  start-page: 49
  year: 1902
  end-page: 52
  article-title: Sur les problèmes aux dérivées partielles et leur signification physique
  publication-title: Princ Univ Bull
– volume: 289
  start-page: 831
  year: 2016
  end-page: 844
  article-title: Regularity of spectral fractional Dirichlet and Neumann problems
  publication-title: Math Nach
– volume: 136
  start-page: 521
  year: 2012
  end-page: 573
  article-title: Hitchhiker's guide to the fractional Sobolev spaces
  publication-title: Bull Sci Math
– volume: 11
  start-page: 477
  issue: 3
  year: 2018
  end-page: 491
  article-title: Fractional laplacians, perimeters and heat semigroups in Carnot groups
  publication-title: Disc Cont Dyn Sys Ser S
– volume: 54
  start-page: 1009
  issue: 1
  year: 2015
  end-page: 1042
  article-title: Fractional semilinear Neumann problems arising from a fractional Keller‐Segel model
  publication-title: Calc Var Part Differ Equ
– volume: 181
  start-page: 24
  year: 2019
  end-page: 61
  article-title: Well‐posedness results for a class of semi‐linear super‐diffusive equations
  publication-title: Nonlinear Anal
– volume: 115
  year: 2015
  article-title: Propagation dynamics of a light beam in a fractional schrodinger equation
  publication-title: Phys Rev Letter
– year: 1971
– volume: 94
  year: 2016
  article-title: Fractional kinetics emerging from ergodicity breaking in random media
  publication-title: Phys Rev E
– volume: 20
  start-page: 7
  issue: 1
  year: 2017
  end-page: 51
  article-title: Ten equivalent definitions of the fractional laplace operator
  publication-title: Fractional Calculus and Applied Analysis
– year: 2010
– volume: 16
  start-page: 1395
  issue: 5
  year: 2017
  end-page: 1426
  article-title: Fractional operators with inhomogeneous boundary conditions: analysis, control and discretization
  publication-title: Commun Math Sci
– volume: 42
  start-page: 499
  issue: 2
  year: 2015
  end-page: 547
  article-title: The fractional relative capacity and the fractional Laplacian with Neumann and robin boundary conditions on open sets
  publication-title: Potential Anal
– volume: 52
  start-page: 2462
  issue: 4
  year: 2016
  end-page: 2473
  article-title: Backward fractional advection dispersion model for contaminant source prediction
  publication-title: Water Res Res
– volume: 83
  start-page: 2279
  issue: 10
  year: 2003
  end-page: 2283
  article-title: Wavelets and curvelets for image deconvolution: a combined approach
  publication-title: Signal Process
– volume: 224
  start-page: 2052
  issue: 5
  year: 2010
  end-page: 2093
  article-title: Positive solutions of nonlinear problems involving the square root of the Laplacian
  publication-title: Adv Math
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  end-page: 1457
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun Pure Appl Math
– volume: 16
  start-page: 24128
  year: 2014
  end-page: 24164
  article-title: Anomalous diffusion models and their properties: non‐stationarity, non‐ergodicity, and ageing at the centenary of single particle tracking
  publication-title: Phys Chem Chem Phys
– volume: 63
  issue: 1
  year: 2010
  article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results
  publication-title: Appl Mech Rev
– volume: 73
  start-page: 615
  issue: 3
  year: 1951
  end-page: 624
  article-title: An iterative formula for Fredholm integral equations of the first kind
  publication-title: Amer J Math
– year: 1993
– volume: 35
  start-page: 2092
  issue: 11
  year: 2010
  end-page: 2122
  article-title: Extension problem and Harnack's inequality for some fractional operators
  publication-title: Commun Partial Differ Equ
– volume: 33
  start-page: 767
  issue: 3
  year: 2016
  end-page: 807
  article-title: Fractional elliptic equations, Caccioppoli estimates and regularity
  publication-title: Annal Instit Henri Poin Nonlinear Anal
– volume: 12
  start-page: 906
  issue: 8
  year: 2003
  end-page: 916
  article-title: An EM algorithm for wavelet‐based image restoration
  publication-title: IEEE Trans Image Process
– volume: 24
  start-page: 169
  year: 2015
  end-page: 183
  article-title: Analytical studies of a time‐fractional porous medium equation: derivation, approximation and applications
  publication-title: Commun Nonlinear Sci Numer Simul
– ident: e_1_2_8_18_1
  doi: 10.1007/s11118-014-9443-4
– ident: e_1_2_8_16_1
  doi: 10.1080/03605301003735680
– volume: 16
  start-page: 1395
  issue: 5
  year: 2017
  ident: e_1_2_8_20_1
  article-title: Fractional operators with inhomogeneous boundary conditions: analysis, control and discretization
  publication-title: Commun Math Sci
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-642-65024-6
– ident: e_1_2_8_11_1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.bulsci.2011.12.004
– ident: e_1_2_8_13_1
  doi: 10.1007/s10543-014-0484-2
– ident: e_1_2_8_27_1
  doi: 10.1109/TIP.2003.814255
– ident: e_1_2_8_6_1
  doi: 10.1115/1.4000563
– ident: e_1_2_8_29_1
  doi: 10.1002/cpa.20042
– volume: 13
  start-page: 49
  year: 1902
  ident: e_1_2_8_24_1
  article-title: Sur les problèmes aux dérivées partielles et leur signification physique
  publication-title: Princ Univ Bull
– ident: e_1_2_8_25_1
  doi: 10.1016/j.na.2018.10.016
– ident: e_1_2_8_21_1
  doi: 10.1002/mana.201500041
– ident: e_1_2_8_28_1
  doi: 10.1016/S0165-1684(03)00150-6
– ident: e_1_2_8_14_1
  doi: 10.1016/j.aim.2010.01.025
– ident: e_1_2_8_23_1
  doi: 10.2307/2372313
– ident: e_1_2_8_22_1
  doi: 10.1007/s00526-014-0815-9
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevE.94.052147
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cnsns.2015.01.005
– volume: 11
  start-page: 477
  issue: 3
  year: 2018
  ident: e_1_2_8_15_1
  article-title: Fractional laplacians, perimeters and heat semigroups in Carnot groups
  publication-title: Disc Cont Dyn Sys Ser S
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevLett.115.180403
– ident: e_1_2_8_17_1
  doi: 10.3934/dcdss.2014.7.857
– ident: e_1_2_8_12_1
  doi: 10.1515/fca-2017-0002
– ident: e_1_2_8_8_1
  doi: 10.1002/2015WR018515
– ident: e_1_2_8_5_1
  doi: 10.1142/p614
– volume-title: Fractional Integrals and Derivatives : Theory and Applications
  year: 1993
  ident: e_1_2_8_9_1
– ident: e_1_2_8_2_1
  doi: 10.1039/C4CP03465A
– ident: e_1_2_8_19_1
  doi: 10.1016/j.anihpc.2015.01.004
SSID ssj0008112
Score 2.2780144
Snippet In this paper, we consider an inverse problem related to a fractional diffusion equation. The model problem is governed by a nonlinear partial differential...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 917
SubjectTerms fractional diffusion equation
fractional spectral Laplacian
Inverse problems
inverse source problem
Iterative methods
minimization problem
Noise reduction
Nonlinear differential equations
nonlocal operator
numerical reconstruction algorithm
Optimization
Partial differential equations
Reconstruction
source term
Title Inverse source problem for a diffusion equation involving the fractional spectral Laplacian
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.6799
https://www.proquest.com/docview/2465901654
Volume 44
WOSCitedRecordID wos000555904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEP6qbidEoE8eNQ16Rpmh5FHR62IeJg4KGkbQoDN3Xd_PvNa7NNQUHw1MtLUvI--_re7wGcijSkPGO-k0jqOdxT0lHGFJtPFc5ZlnqKinLYRNDrycEgfLBVldgLU-JDLBJuqBmFvUYFV3HeWoKGjkbqSgRhuApVZsTWr0D19rHd7yzssKTFv04EiHE4o3wOPeuy1nztd2e0jDC_xqmFo2lv_ecVt2HThpfkupSHGqzocR02ugts1rwONavOObmwmNOXO_CMeBuTXJMymU_snBliQlqiCE5RmWFajej3EhqcDMfGrmEygpitSTYp-yPM0UXrptmUdBTWexnp24V---7p5t6xcxecxDj_0FGc8sRnmruKpomX6gzhj5SJnMJMIj5e4MoEYe9jHWjqGv_GlBKp8XVSpDR2vT2ojF_Heh9ILLMgpIbjPPO5FiKMuXBT15zCRSwTvwHncwZEiQUlx9kYL1EJp8wic4cR3mEDThaUbyUQxw80zTkPI6uKecS4wP5a4fMGnBXc-nV91O1e4_Pgr4SHsM6wxsWlDvWbUJlOZvoI1pKP6TCfHFuB_ARKeOOV
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8QwFIAfbqAe3MVxjSAuh2qTpmmKJ1EHxZlBREHwUNI2BUFHnc74-32vy6igIHjqJUtJ3tbX5HsAOyoNucyE7ySae470jHYMmmL8VJFSZKlnuCqLTQSdjr6_D69H4Li-C1PyIYYJN9KMwl6TglNC-uiTGvr8bA5VEIajMC5RilC8x89umnetoSHWvPjZSYQYRwoua_asK47qvt-90WeI-TVQLTxNc_Zf7zgHM1WAyU5KiZiHEdtdgOn2kM6aL8B8pdA526-o0weL8EDEjV5uWZnOZ1WlGYZBLTOM6qgMKLHG7FsJB2ePXbRslI5gODTLeuUNCZy6uLyJg7KWoRNfKH9LcNc8vz29cKrKC06C7j90jOQy8YWVruFp4qU2IwCSwdgpzDQR8gJXJwS-j21guYseThijUvR2WqU8dr1lGOu-dO0KsFhnQchxz2XmS6tUGEvlpi7OIlWsE78Be_UOREmFJafqGE9RCVQWEa5hRGvYgO1hy9cSxfFDm_V6E6NKGfNISEU3bJUvG7BbbNev_aN2-4Seq39tuAWTF7ftVtS67FytwZSgEy8ud7i_DmP93sBuwETy3n_Me5uVdH4A7zTnhQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFIAPuonog3dxXiOIl4dqk6Zpik9DHYrbEHEw8KGkbQoDnXPd_P3m9LIpKAg-9SWXkpNzaZrzHYAjEfuUJ8y1IkkdiztKWsqYYvOpwjlLYkdRkReb8Npt2e36DzNwWebC5HyIyYEbakZmr1HB9SBOLqbU0NdXdS4835-FKscaMhWoXj82Os2JIZY0-9mJhBiLM8pL9qzNLsq-373RNMT8Gqhmnqax_K93XIGlIsAk9XxHrMKM7q_BYmtCZ03XYLVQ6JScFtTps3V4RuLGMNUkP84nRaUZYoJaogjWURnjwRrR7zkcnPT6xrLhcQQxQ5NkmGdImKmz5E0zKGkqvPFl9t8GdBo3T1e3VlF5wYqM-_ctxSmPXKa5rWgcObFOEICkTOzkJxIJeZ4tIwTfh9rT1DYejiklYuPtpIhpaDubUOm_9fUWkFAmnk-NzHnici2EH3Jhx7aZhYtQRm4NTkoJBFGBJcfqGC9BDlRmgVnDANewBoeTloMcxfFDm91SiEGhjGnAuMAMW-HyGhxn4vq1f9Bq1fG5_deGBzD_cN0Imnft-x1YYHjhxaYWdXehMhqO9R7MRR-jXjrcLzbnJ54q5wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+source+problem+for+a+diffusion+equation+involving+the+fractional+spectral+Laplacian&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=BenSalah%2C+Mohamed&rft.au=Hassine%2C+Maatoug&rft.date=2021-01-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=1&rft.spage=917&rft.epage=936&rft_id=info:doi/10.1002%2Fmma.6799&rft.externalDBID=10.1002%252Fmma.6799&rft.externalDocID=MMA6799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon