A fuzzy C‐regression model algorithm using a new PSO algorithm

Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear Takagi‐Sugeno fuzzy models using the weighted recursive least squares (WRLS). The WRLS is sensitive to initialization, which leads to no convergence. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing Jg. 32; H. 1; S. 115 - 133
Hauptverfasser: Taieb, Adel, Soltani, Moez, Chaari, Abdelkader
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.01.2018
Schlagworte:
ISSN:0890-6327, 1099-1115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear Takagi‐Sugeno fuzzy models using the weighted recursive least squares (WRLS). The WRLS is sensitive to initialization, which leads to no convergence. In order to overcome this problem, adaptive chaos particle swarm optimization is proposed to optimize the initial states of WRLS. This new algorithm is improved versions of the original particle swarm optimization algorithm. Finally, comparative experiments are designed to verify the validity of the proposed clustering algorithm and the Takagi‐Sugeno fuzzy model identification method, and the results show that the new method is effective in describing a complicated nonlinear system with significantly high accuracies compared with approaches in the literature.
AbstractList In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear Takagi‐Sugeno fuzzy models using the weighted recursive least squares (WRLS). The WRLS is sensitive to initialization, which leads to no convergence. In order to overcome this problem, adaptive chaos particle swarm optimization is proposed to optimize the initial states of WRLS. This new algorithm is improved versions of the original particle swarm optimization algorithm. Finally, comparative experiments are designed to verify the validity of the proposed clustering algorithm and the Takagi‐Sugeno fuzzy model identification method, and the results show that the new method is effective in describing a complicated nonlinear system with significantly high accuracies compared with approaches in the literature.
Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple-input-multiple-output local linear Takagi-Sugeno fuzzy models using the weighted recursive least squares (WRLS). The WRLS is sensitive to initialization, which leads to no convergence. In order to overcome this problem, adaptive chaos particle swarm optimization is proposed to optimize the initial states of WRLS. This new algorithm is improved versions of the original particle swarm optimization algorithm. Finally, comparative experiments are designed to verify the validity of the proposed clustering algorithm and the Takagi-Sugeno fuzzy model identification method, and the results show that the new method is effective in describing a complicated nonlinear system with significantly high accuracies compared with approaches in the literature.
Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear Takagi‐Sugeno fuzzy models using the weighted recursive least squares (WRLS). The WRLS is sensitive to initialization, which leads to no convergence. In order to overcome this problem, adaptive chaos particle swarm optimization is proposed to optimize the initial states of WRLS. This new algorithm is improved versions of the original particle swarm optimization algorithm. Finally, comparative experiments are designed to verify the validity of the proposed clustering algorithm and the Takagi‐Sugeno fuzzy model identification method, and the results show that the new method is effective in describing a complicated nonlinear system with significantly high accuracies compared with approaches in the literature.
Author Chaari, Abdelkader
Soltani, Moez
Taieb, Adel
Author_xml – sequence: 1
  givenname: Adel
  orcidid: 0000-0002-4719-1954
  surname: Taieb
  fullname: Taieb, Adel
  email: taeibadel@live.fr
  organization: National Higher Engineering School of Tunis (ENSIT)
– sequence: 2
  givenname: Moez
  surname: Soltani
  fullname: Soltani, Moez
  organization: National Higher Engineering School of Tunis (ENSIT)
– sequence: 3
  givenname: Abdelkader
  surname: Chaari
  fullname: Chaari, Abdelkader
  organization: National Higher Engineering School of Tunis (ENSIT)
BookMark eNp1kM1KAzEUhYNUsK2CjxBw42bqTWaan51l8A8KFarrkGbSmjKd1GSG0q58BJ_RJ3FqBUF0dRfnO_fec3qoU_nKInROYEAA6JU2cUAFlUeoS0DKhBAy7KAuCAkJSyk_Qb0YlwCtRtIuuh7hebPbbXH-8fYe7CLYGJ2v8MoXtsS6XPjg6pcVbqKrFljjym7w43Tyo5yi47kuoz37nn30fHvzlN8n48ndQz4aJ4bKVCaMm4xza2bAtRDMpMKm2ugZLSRvHymElRooY7zQkGXamEJmxBAyYwUHAZD20cVh7zr418bGWi19E6r2pCJSsKEExvfU4ECZ4GMMdq6Mq3XdJqqDdqUioPYtqbYltW-pNVz-MqyDW-mw_QtNDujGlXb7L6dG-fSL_wSurned
CitedBy_id crossref_primary_10_1007_s00500_020_05238_3
crossref_primary_10_1007_s40815_019_00747_2
crossref_primary_10_1108_EC_08_2018_0356
crossref_primary_10_1007_s00521_020_05133_w
crossref_primary_10_1007_s00500_019_04343_2
crossref_primary_10_1002_acs_3696
Cites_doi 10.1109/3477.809024
10.1016/j.jher.2016.05.007
10.1016/j.asoc.2009.10.012
10.1109/TFUZZ.2011.2173693
10.1109/91.236552
10.1049/iet-cta:20060415
10.1109/72.80202
10.1007/978-94-011-4868-9
10.1109/91.618271
10.1016/j.engappai.2009.02.003
10.1016/j.eswa.2009.07.052
10.1016/j.asoc.2007.02.008
10.1016/S0165-0114(03)00111-8
10.1016/j.apm.2015.02.049
10.1109/91.824766
10.1080/01969720600886980
10.1016/j.fss.2007.04.009
10.1109/3477.809026
10.1109/4235.985692
10.1007/978-94-015-8702-0_11
10.1109/NAFIPS.2007.383845
10.1108/03684921311310602
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.2829
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 133
ExternalDocumentID 10_1002_acs_2829
ACS2829
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-67c477ecb07a886c38e3acab2d97913d8e9a02667da044accd941c11b6d708003
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419919900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-6327
IngestDate Fri Jul 25 12:24:17 EDT 2025
Sat Nov 29 05:44:48 EST 2025
Tue Nov 18 21:06:29 EST 2025
Wed Aug 20 07:27:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-67c477ecb07a886c38e3acab2d97913d8e9a02667da044accd941c11b6d708003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4719-1954
PQID 1986590670
PQPubID 996374
PageCount 19
ParticipantIDs proquest_journals_1986590670
crossref_citationtrail_10_1002_acs_2829
crossref_primary_10_1002_acs_2829
wiley_primary_10_1002_acs_2829_ACS2829
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 22
2010; 10
2015; 39
2010; 37
2016; 207
1999; 29
2004; 141
2002; 6
2000; 8
2013; 42
2006; 37
1998
2009
1996
2007
2008; 8
1995
2004; 2
2006; 2
2002
1997; 5
1993; 1
2007; 15
2013; 9
1999
1990; 1
2017; 14
2007; 1
2012; 20
e_1_2_9_30_1
Djoewahir A (e_1_2_9_25_1) 2013; 9
Eftekhari M (e_1_2_9_17_1) 2008; 8
e_1_2_9_34_1
e_1_2_9_32_1
Soltani M (e_1_2_9_24_1) 2013; 42
e_1_2_9_33_1
Juang CF (e_1_2_9_22_1) 2007; 15
Li C (e_1_2_9_11_1) 2012; 20
Li C (e_1_2_9_9_1) 2009; 22
Li C (e_1_2_9_10_1) 2010; 37
e_1_2_9_15_1
e_1_2_9_16_1
Chen CC (e_1_2_9_20_1) 2006; 37
Zhao L (e_1_2_9_31_1) 2010; 10
Trabelsi A (e_1_2_9_4_1) 2004; 2
e_1_2_9_19_1
e_1_2_9_18_1
Abbasia R (e_1_2_9_12_1) 2015; 39
e_1_2_9_21_1
Lagrat I (e_1_2_9_3_1) 2006; 2
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_2_1
Cordon O (e_1_2_9_14_1) 1999; 29
Wong CC (e_1_2_9_5_1) 1999; 29
Zimmermann HJ (e_1_2_9_6_1) 1996
e_1_2_9_26_1
e_1_2_9_28_1
Hoppner F (e_1_2_9_7_1) 1999
Guana W (e_1_2_9_13_1) 2016; 207
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 6
  start-page: 58
  issue: 2
  year: 2002
  end-page: 73
  article-title: The particle swarm: explosion, stability, and convergence in a multi‐dimensional complex space
  publication-title: IEEE Trans Evol Comput
– volume: 1
  start-page: 1255
  issue: 5
  year: 2007
  end-page: 1265
  article-title: Affine Takagi‐Sugeno fuzzy modelling algorithm by fuzzy c‐regression models clustering with a novel cluster validity criterion
  publication-title: IET Control Theory Appl
– volume: 5
  start-page: 328
  issue: 3
  year: 1997
  end-page: 337
  article-title: A new approach to fuzzy modeling
  publication-title: IEEE Trans Fuzzy Syst
– start-page: 203
  year: 1996
  end-page: 216
– year: 2007
– volume: 20
  start-page: 305
  issue: 2
  year: 2012
  end-page: 317
  article-title: TS fuzzy model identification with a gravitational search‐based hyperplane clustering algorithm
  publication-title: IEEE Trans Fuzzy Syst
– volume: 15
  start-page: 1979
  issue: 8
  year: 2007
  end-page: 1996
  article-title: Automatic construction of feedforward/recurrent fuzzy systems by clustering aided simplex particle swarm optimization
  publication-title: Fuzzy Set Syst
– volume: 1
  start-page: 195
  issue: 3
  year: 1993
  end-page: 204
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Trans Fuzzy Syst
– volume: 37
  start-page: 2214
  issue: 3
  year: 2010
  end-page: 2221
  article-title: A new T‐S fuzzy modeling approach to identify a boiler turbine system
  publication-title: Expert Syst Appl
– volume: 29
  start-page: 686
  issue: 6
  year: 1999
  end-page: 693
  article-title: A hybrid clustering and gradient descent approach for fuzzy modeling
  publication-title: IEEE Trans Syst Man Cybern
– volume: 8
  start-page: 37
  issue: 1
  year: 2000
  end-page: 45
  article-title: Evolutionary design of fuzzy rule base for nonlinear system modeling and control
  publication-title: IEEE Trans Fuzzy Syst
– volume: 9
  start-page: 3903
  issue: 10
  year: 2013
  end-page: 3914
  article-title: Adaptive PSO‐based self‐tuning PID controller for ultrasonic motor
  publication-title: Int J Innov Comput Inf Control
– year: 1998
– volume: 8
  start-page: 466
  year: 2008
  end-page: 476
  article-title: Eliciting transparent fuzzy model using differential evolution
  publication-title: Appl Soft Comput
– volume: 10
  start-page: 938
  issue: 3
  year: 2010
  end-page: 944
  article-title: Automatically extracting TS fuzzy models using cooperative random learning particle swarm optimization
  publication-title: Appl Soft Comput
– volume: 14
  start-page: 1
  year: 2017
  end-page: 18
  article-title: f‐MOPSO: an alternative multi‐objective PSO algorithm for conjunctive water use management
  publication-title: J Hydro Environ Res
– volume: 22
  start-page: 646
  issue: 4/5
  year: 2009
  end-page: 653
  article-title: T‐S fuzzy model identification based on a novel fuzzy c‐regression model clustering algorithm
  publication-title: Eng Appl Artif Intel
– volume: 2
  start-page: 1137
  issue: 9
  year: 2006
  end-page: 1144
  article-title: Fuzzy sliding mode PI controller for nonlinear systems
  publication-title: WSEAS Trans Signal Process
– volume: 29
  start-page: 703
  issue: 6
  year: 1999
  end-page: 715
  article-title: A two‐stage evolutionary process for designing TSK fuzzy rule‐based systems
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
– start-page: 203
  year: 1999
  end-page: 216
– volume: 42
  start-page: 268
  issue: 2
  year: 2013
  end-page: 281
  article-title: A novel weighted recursive least squares based on Euclidean particle swarm optimization
  publication-title: Kybernetes
– year: 2002
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  end-page: 27
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans Neural Netw
– volume: 39
  start-page: 7134
  issue: 23
  year: 2015
  end-page: 7154
  article-title: Modeling and stability analysis Of HIV‐1 as a time delay fuzzy T‐S system via LMIs
  publication-title: Appl Math Model
– volume: 141
  start-page: 5
  issue: 1
  year: 2004
  end-page: 31
  article-title: Ten years of genetic fuzzy systems: current framework and new trends
  publication-title: Fuzzy Set System
– volume: 37
  start-page: 707
  issue: 7
  year: 2006
  end-page: 723
  article-title: A PSO‐based method for extracting fuzzy rules directly from numerical data
  publication-title: Cybern Syst
– volume: 2
  start-page: 137
  issue: 3
  year: 2004
  end-page: 153
  article-title: Identification of nonlinear multivariable systems by adaptive fuzzy Takagi‐Sugeno model
  publication-title: International Journal of Computational Cognition
– year: 1995
– volume: 207
  start-page: 60
  issue: 26
  year: 2016
  end-page: 70
  article-title: Finite time dissipative control for singular T‐S fuzzy Markovian jump systems under actuator saturation with partly unknown transition rates
  publication-title: Neuro‐Computing
– year: 1999
– volume: 29
  start-page: 686
  issue: 6
  year: 1999
  ident: e_1_2_9_5_1
  article-title: A hybrid clustering and gradient descent approach for fuzzy modeling
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/3477.809024
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jher.2016.05.007
– ident: e_1_2_9_28_1
– volume: 10
  start-page: 938
  issue: 3
  year: 2010
  ident: e_1_2_9_31_1
  article-title: Automatically extracting TS fuzzy models using cooperative random learning particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.012
– volume: 20
  start-page: 305
  issue: 2
  year: 2012
  ident: e_1_2_9_11_1
  article-title: TS fuzzy model identification with a gravitational search‐based hyperplane clustering algorithm
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2011.2173693
– ident: e_1_2_9_32_1
  doi: 10.1109/91.236552
– ident: e_1_2_9_27_1
  doi: 10.1049/iet-cta:20060415
– ident: e_1_2_9_33_1
  doi: 10.1109/72.80202
– volume: 9
  start-page: 3903
  issue: 10
  year: 2013
  ident: e_1_2_9_25_1
  article-title: Adaptive PSO‐based self‐tuning PID controller for ultrasonic motor
  publication-title: Int J Innov Comput Inf Control
– ident: e_1_2_9_2_1
  doi: 10.1007/978-94-011-4868-9
– volume: 2
  start-page: 137
  issue: 3
  year: 2004
  ident: e_1_2_9_4_1
  article-title: Identification of nonlinear multivariable systems by adaptive fuzzy Takagi‐Sugeno model
  publication-title: International Journal of Computational Cognition
– ident: e_1_2_9_8_1
  doi: 10.1109/91.618271
– ident: e_1_2_9_19_1
– volume: 22
  start-page: 646
  issue: 4
  year: 2009
  ident: e_1_2_9_9_1
  article-title: T‐S fuzzy model identification based on a novel fuzzy c‐regression model clustering algorithm
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2009.02.003
– volume: 37
  start-page: 2214
  issue: 3
  year: 2010
  ident: e_1_2_9_10_1
  article-title: A new T‐S fuzzy modeling approach to identify a boiler turbine system
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.07.052
– volume: 8
  start-page: 466
  year: 2008
  ident: e_1_2_9_17_1
  article-title: Eliciting transparent fuzzy model using differential evolution
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.02.008
– ident: e_1_2_9_15_1
  doi: 10.1016/S0165-0114(03)00111-8
– volume: 207
  start-page: 60
  issue: 26
  year: 2016
  ident: e_1_2_9_13_1
  article-title: Finite time dissipative control for singular T‐S fuzzy Markovian jump systems under actuator saturation with partly unknown transition rates
  publication-title: Neuro‐Computing
– volume: 39
  start-page: 7134
  issue: 23
  year: 2015
  ident: e_1_2_9_12_1
  article-title: Modeling and stability analysis Of HIV‐1 as a time delay fuzzy T‐S system via LMIs
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.02.049
– ident: e_1_2_9_16_1
  doi: 10.1109/91.824766
– volume: 37
  start-page: 707
  issue: 7
  year: 2006
  ident: e_1_2_9_20_1
  article-title: A PSO‐based method for extracting fuzzy rules directly from numerical data
  publication-title: Cybern Syst
  doi: 10.1080/01969720600886980
– volume: 15
  start-page: 1979
  issue: 8
  year: 2007
  ident: e_1_2_9_22_1
  article-title: Automatic construction of feedforward/recurrent fuzzy systems by clustering aided simplex particle swarm optimization
  publication-title: Fuzzy Set Syst
  doi: 10.1016/j.fss.2007.04.009
– volume: 29
  start-page: 703
  issue: 6
  year: 1999
  ident: e_1_2_9_14_1
  article-title: A two‐stage evolutionary process for designing TSK fuzzy rule‐based systems
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/3477.809026
– ident: e_1_2_9_23_1
  doi: 10.1109/4235.985692
– ident: e_1_2_9_30_1
– ident: e_1_2_9_18_1
– start-page: 203
  volume-title: Fuzzy Set Theory and Its Applications
  year: 1996
  ident: e_1_2_9_6_1
  doi: 10.1007/978-94-015-8702-0_11
– volume: 2
  start-page: 1137
  issue: 9
  year: 2006
  ident: e_1_2_9_3_1
  article-title: Fuzzy sliding mode PI controller for nonlinear systems
  publication-title: WSEAS Trans Signal Process
– ident: e_1_2_9_21_1
  doi: 10.1109/NAFIPS.2007.383845
– ident: e_1_2_9_34_1
– volume: 42
  start-page: 268
  issue: 2
  year: 2013
  ident: e_1_2_9_24_1
  article-title: A novel weighted recursive least squares based on Euclidean particle swarm optimization
  publication-title: Kybernetes
  doi: 10.1108/03684921311310602
– ident: e_1_2_9_29_1
– start-page: 203
  volume-title: Fuzzy Cluster Analysis
  year: 1999
  ident: e_1_2_9_7_1
SSID ssj0009913
Score 2.178805
Snippet Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear...
In this paper, a new methodology is introduced for the identification of the parameters of the multiple‐input–multiple‐output local linear Takagi‐Sugeno fuzzy...
Summary In this paper, a new methodology is introduced for the identification of the parameters of the multiple-input-multiple-output local linear...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Algorithms
chaos adaptive particle swarm optimization
Clustering
fuzzy C‐regression model clustering algorithm
identification
multiple‐input multiple‐output
Nonlinear systems
Parameter identification
Particle swarm optimization
Regression models
Takagi‐Sugeno fuzzy models
Title A fuzzy C‐regression model algorithm using a new PSO algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.2829
https://www.proquest.com/docview/1986590670
Volume 32
WOSCitedRecordID wos000419919900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009913
  issn: 0890-6327
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aetCDb7FaJYLoaTX76Ca5WarFg9RiLfS25LW1ULfSbQV78if4G_0lJvvoVlAQPOWwE1gmmcw3ycw3AJzq405ihIWlEOeWR2xbmxR1LR1LoFqITMRCkmYTuNUivR5tZ1mVphYm5YeYX7gZy0jOa2PgjMeXBWkoE_GFeQZcBmVTU6UDr_L1Q7N7V1Du0rQ5MqE6QHIdnFPPIucyn_vdGRUIcxGnJo6mufGfX9wE6xm8hPV0P2yBJRVtg7UF0sEdcFWH4XQ2e4ONz_ePseqnibARTHriQDbsj8aDydMzNBnxfcigxt2w3bkvvuyCbvPmsXFrZX0ULKGdObV8LDyMleAIM0J84RLlMsG4IynWOpJEUaZDMR9LhjyPCSGpZwvb5r5eRg0o3T1QikaR2gfQ97lCSjjS0LwgTrkbSk-ETHLt-6WwK-A8V2ggMpJx0-tiGKT0yE6gdRIYnVTAyVzyJSXW-EGmmq9JkJlWHNiU-DVqyosq4CzR_q_zg3qjY8aDvwoeglUNiEh6xVIFpcl4qo7AinidDOLxcbbBvgB6I9Nn
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK6gH32K1agTR09rso5sEL5ZqUaxVfIC3Ja9WQVtpq6Anf4K_0V9isg9bQUHwtIedwDLJZL6ZTb4PYMtsd4pgIh2NhXAC6rompJjvmFoCV1rYViw0FpsgzSa9uWHnOdjL7sIk_BBfDTcbGfF-bQPcNqTLQ9ZQLvu79j_gGBSC0Cc0D4WDi_p1Y8i5yxJ1ZMpMheR7JOOexV45G_s9Gw0h5ihQjTNNfeZf3zgL0ynARNVkRcxBTnfmYWqEdnAB9quo9fT6-oJqH2_vPd1OjsJ2UKyKg_h9u9u7G9w-IHsmvo04MsgbnV-eDd8swnX98Kp25KRKCo406Zw5IZEBIVoKTDilofSp9rnkwlOMGCcpqhk3xVhIFMdBwKVULHCl64rQTKSBlP4S5Dvdjl4GFIZCYy09ZYlesGDCb6lAtrgSJvsr6RZhJ_NoJFOacat2cR8lBMleZHwSWZ8UYfPL8jGh1vjBppRNSpQGVz9yGQ0rzF4wKsJ27P5fx0fV2qV9rvzVcAMmjq5OG1HjuHmyCpMGHtGk4VKC_KD3pNdgXD4P7vq99XS1fQIpqtdX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL3UVkQXvsVq1Qiiq7GZRycJbizVoii1-AB3Q15TBa3SVkFXfoLf6JeYzKNVUBBcZTE3MJzk5p6bx7kAW2a5UwQT6WgshBNQ1zUuxXzH5BK4FmObsdCk2ARptej1NWsXYC9_C5PqQww33KxnJOu1dXD9qOLqSDWUy_6uPQccg1JQY7WgCKWD8-bV6Uhzl6XVkSkzGZLvkVx7FnvVvO_3aDSimF-JahJpmjP_-sdZmM4IJqqnM2IOCro7D1NfZAcXYL-O4qfX1xfU-Hh77-lOehW2i5KqOIjfdR56t4Obe2TvxHcQR4Z5o_bF2ejLIlw1Dy8bR05WScGRJpwzJyQyIERLgQmnNJQ-1T6XXHiKEQOSoppxk4yFRHEcBFxKxQJXuq4IzUAaSukvQbH70NXLgMJQaKylp6zQCxZM-LEKZMyVMNFfSbcMOzmikcxkxm21i7soFUj2IoNJZDEpw-bQ8jGV1vjBppIPSpQ5Vz9yGQ1rzD4wKsN2Av-v_aN648K2K3813ICJ9kEzOj1unazCpGFHNN1vqUBx0HvSazAunwe3_d56Ntk-AfBw1tI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+C%E2%80%90regression+model+algorithm+using+a+new+PSO+algorithm&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Taieb%2C+Adel&rft.au=Soltani%2C+Moez&rft.au=Chaari%2C+Abdelkader&rft.date=2018-01-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=32&rft.issue=1&rft.spage=115&rft.epage=133&rft_id=info:doi/10.1002%2Facs.2829&rft.externalDBID=10.1002%252Facs.2829&rft.externalDocID=ACS2829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon