Indian classical musical instrument classification using Timbral features
Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a...
Saved in:
| Published in: | Concurrency and computation Vol. 33; no. 21 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
10.11.2021
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1532-0626, 1532-0634 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively. |
|---|---|
| AbstractList | Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively. Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively. |
| Author | Gulhane, Sushen Rameshpant Shirbahadurkar, Suresh Damodar Badhe, Sanjay Shrikrushna |
| Author_xml | – sequence: 1 givenname: Sushen Rameshpant orcidid: 0000-0002-4741-3414 surname: Gulhane fullname: Gulhane, Sushen Rameshpant email: sushenrameshpantgulhane@gmail.com organization: D Y Patil Institute of Technology – sequence: 2 givenname: Suresh Damodar surname: Shirbahadurkar fullname: Shirbahadurkar, Suresh Damodar organization: Zeal College of Engineering & Research – sequence: 3 givenname: Sanjay Shrikrushna surname: Badhe fullname: Badhe, Sanjay Shrikrushna organization: D Y Patil Institute of Technology |
| BookMark | eNp1kE1Lw0AQhhepYFsFf0LAi5fU_Ui22aOUqoWCHup52U_Zkmzq7gbpvzdpigfR0wwzz_sO887AxLfeAHCL4AJBiB_UwSxogaoLMEUlwTmkpJj89JhegVmMewgRggRNwWbjtRM-U7WI0SlRZ003VudjCl1jfDovbT9OrvVZD_iPbOcaGXrOGpG6YOI1uLSijubmXOfg_Wm9W73k29fnzepxmyvMSJVrbGkpBEMVtEQQq2lVII0Eo1ZCqWGBJENLoQUsjNUSCluqkpGlkopQKUsyB3ej7yG0n52Jie_bLvj-JMdlhQoGMRuo-5FSoY0xGMsPwTUiHDmCfAiK90HxIageXfxClUunT1MQrv5LkI-CL1eb47_GfPW2PvHfsMd8TQ |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108582 crossref_primary_10_2478_amns_2023_2_01363 crossref_primary_10_1109_TASLPRO_2025_3543974 |
| Cites_doi | 10.1109/TASL.2013.2248720 10.1007/s00521-016-2501-7 10.1007/s00521-015-1920-1 10.1109/TSMCB.2007.913394 10.1162/COMJ_a_00210 10.1007/978-981-13-2345-4_10 10.1109/TASLP.2016.2632307 10.1109/SoCPaR.2009.94 10.1016/j.ymssp.2019.07.007 10.1109/SPIN48934.2020.9071125 10.1109/NCCISP.2012.6189710 10.35940/ijrte.D9271.118419 10.1109/CSA.2008.67 10.1109/ICDMW.2015.213 10.1007/s10844-017-0464-5 10.3390/app8122630 10.1097/IAE.0b013e3181eef401 10.1007/s10844-015-0360-9 10.1007/s11042-016-4021-y 10.1186/1687-4722-2009-497292 10.1504/IJKEDM.2018.095525 10.1016/j.procs.2020.03.178 10.1109/IGARSS.2007.4424027 10.3390/s19020269 10.17531/ein.2015.4.12 10.46253/jcmps.v2i2.a4 10.1007/978-3-642-01533-5_10 10.1109/CICSyN.2012.61 10.1109/TASL.2007.910786 10.1097/GCO.0000000000000186 10.1007/s11033-019-04680-3 10.1109/TSA.2005.860351 10.1007/s10772-018-9494-9 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6418 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Music |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6418 CPE6418 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-d2f65aa9180f3a3fd6841d1a96fb0bd041b917ada04efdb0af5c5937cbc36bb53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 09 08:37:27 EST 2025 Tue Nov 18 22:19:38 EST 2025 Sat Nov 29 01:41:26 EST 2025 Wed Jan 22 16:27:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-d2f65aa9180f3a3fd6841d1a96fb0bd041b917ada04efdb0af5c5937cbc36bb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4741-3414 |
| PQID | 2581490295 |
| PQPubID | 2045170 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2581490295 crossref_primary_10_1002_cpe_6418 crossref_citationtrail_10_1002_cpe_6418 wiley_primary_10_1002_cpe_6418_CPE6418 |
| PublicationCentury | 2000 |
| PublicationDate | 10 November 2021 |
| PublicationDateYYYYMMDD | 2021-11-10 |
| PublicationDate_xml | – month: 11 year: 2021 text: 10 November 2021 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2019; 8 2018; 29 1997; 22 2013; 21 2019; 2 2008; 38 2006; 14 2008; 16 2011; 31 2020; 167 2007; 32 2018; 21 2018; 19 2009; 2009 2018; 8 2013; 37 2015; 27 2010; 25 2018; 5 2018; 1 2007; 2007 2017; 76 2020; 9 2018 2016 2018; 50 2009; 2 2016; 27 2016; 25 2019; 133 2016; 46 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 Kitahara T (e_1_2_7_17_1) 2007; 2007 e_1_2_7_8_1 e_1_2_7_7_1 Ankur A (e_1_2_7_9_1) 2020; 9 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 Vinusha S (e_1_2_7_20_1) 2018; 1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 Kostek B (e_1_2_7_11_1) 1997; 22 e_1_2_7_28_1 e_1_2_7_29_1 Ciancarelli I (e_1_2_7_4_1) 2010; 25 Kostek B (e_1_2_7_10_1) 2007; 32 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Thomas R (e_1_2_7_19_1) 2018; 1 |
| References_xml | – volume: 32 start-page: 617 issue: 3 year: 2007 end-page: 629 article-title: Applying computational intelligence to musical acoustics publication-title: Arch Acoust – volume: 9 start-page: 1081 issue: 6 year: 2020 end-page: 1087 article-title: Musical instrument sound classification using deep convolutional neural network publication-title: Mukt Shabd J – volume: 19 issue: 2 year: 2018 article-title: Fault detection of electric impact drills and coffee grinders using acoustic signals publication-title: Sensors – volume: 8 year: 2018 article-title: Recognition of acoustic signals of commutator motors publication-title: Appl Sci – volume: 5 start-page: 333 issue: 4 year: 2018 end-page: 348 article-title: Clustering news articles using efficient similarity measure and N‐grams publication-title: Int J Knowl Eng Data Mining – volume: 29 start-page: 13 year: 2018 end-page: 19 article-title: Speaker recognition with hybrid features from a deep belief network publication-title: Neural Comput Appl – volume: 76 start-page: 20719 issue: 20 year: 2017 end-page: 20737 article-title: Optimized phase‐space reconstruction for accurate musical‐instrument signal classification publication-title: Multimed Tools Appl – volume: 27 start-page: 1053 issue: 4 year: 2016 end-page: 1073 article-title: Dragonfly algorithm: a new meta‐heuristic optimization technique for solving single‐objective, discrete, and multi‐objective problems publication-title: Neural Comput Appl – volume: 37 start-page: 70 issue: 4 year: 2013 end-page: 86 article-title: Classification of musical timbre using bayesian networks publication-title: Comput Music J – volume: 27 start-page: 291 issue: 4 year: 2015 end-page: 296 article-title: Latest developments and techniques in gynaecological oncology surgery publication-title: Current Opinion Obstetr Gynecol – volume: 2009 start-page: 14 year: 2009 end-page: 23 article-title: Drum sound detection in polyphonic music with hidden markov models publication-title: EURASIP J Audio Speech Music Process – volume: 2007 start-page: 155 issue: 1 year: 2007 end-page: 155 article-title: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps publication-title: EURASIP J Appl Signal Process – volume: 25 start-page: 81 issue: 2 year: 2010 article-title: Evaluation of neuropsychological functions in patients with Friedreich ataxia before and after cognitive therapy publication-title: Funct Neurol – volume: 167 start-page: 16 year: 2020 end-page: 25 article-title: Musical instrument emotion recognition using deep recurrent neural network publication-title: Proc Comput Sci – year: 2016 – volume: 8 start-page: 8772 issue: 4 year: 2019 end-page: 8774 article-title: An enhanced musical instrument classification using deep convolutional neural network publication-title: Int J Recent Technol Eng (IJRTE) – volume: 50 start-page: 363 issue: 2 year: 2018 end-page: 338 article-title: Automatic music genre classification based on musical instrument track separation publication-title: J Intell Inf Syst – volume: 46 start-page: 425 issue: 3 year: 2016 end-page: 446 article-title: Automatic musical instrument classification using fractional fourier transform based‐ MFCC features and counter propagation neural network publication-title: J Intell Inf Syst – volume: 21 start-page: 1805 issue: 9 year: 2013 end-page: 1817 article-title: Musical instrument recognition in polyphonic audio using missing feature approach publication-title: IEEE Trans Audio Speech Lang Process – volume: 31 start-page: 707 issue: 4 year: 2011 end-page: 716 article-title: Comparison of macular thickness measurements between time‐domain and spectral‐domain optical coherence tomographies in eyes with and without macular abnormalities publication-title: Retina – start-page: 123 year: 2018 end-page: 138 – volume: 14 start-page: 68 issue: 1 year: 2006 end-page: 80 article-title: Instrument recognition in polyphonic music based on automatic taxonomies publication-title: IEEE Trans Audio Speech Lang Process – volume: 21 start-page: 185 issue: 2 year: 2018 end-page: 192 article-title: Robust noise MKMFCC–SVM automatic speaker identification publication-title: Int J Speech Technol – volume: 1 start-page: 19 issue: 1 year: 2018 end-page: 27 article-title: Performance analysis of the adaptive cuckoo search rate optimization scheme for the congestion control in the WSN publication-title: J Netw Commun Syst – volume: 16 start-page: 116 issue: 1 year: 2008 end-page: 128 article-title: Instrument‐specific harmonic atoms for mid‐level music representation publication-title: IEEE Trans Audio Speech Lang Process – volume: 2 start-page: 259 year: 2009 end-page: 273 – volume: 1 start-page: 33 issue: 1 year: 2018 end-page: 43 article-title: Hybrid optimization based DBN for face recognition using low‐resolution images publication-title: Multimed Res – volume: 133 year: 2019 article-title: Acoustic fault analysis of three commutator motors publication-title: Mech Syst Signal Process – volume: 22 start-page: 27 issue: 1 year: 1997 end-page: 50 article-title: Application of artificial neural networks to the recognition of musical sounds publication-title: Arch Acoust – volume: 38 start-page: 429 issue: 2 year: 2008 end-page: 438 article-title: A study on feature analysis for musical instrument classification publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 25 start-page: 208 issue: 1 year: 2016 end-page: 221 article-title: Deep convolutional neural networks for predominant instrument recognition in polyphonic music publication-title: IEEE/ACM Trans Audio Speech Lang Process – volume: 2 start-page: 31 issue: 2 year: 2019 end-page: 37 article-title: Hybrid genetic algorithm and particle swarm optimization algorithm for optimal power flow in power system publication-title: J Comput Mech Power Syst Control – ident: e_1_2_7_25_1 doi: 10.1109/TASL.2013.2248720 – ident: e_1_2_7_37_1 – ident: e_1_2_7_42_1 doi: 10.1007/s00521-016-2501-7 – ident: e_1_2_7_38_1 doi: 10.1007/s00521-015-1920-1 – ident: e_1_2_7_8_1 doi: 10.1109/TSMCB.2007.913394 – ident: e_1_2_7_16_1 doi: 10.1162/COMJ_a_00210 – ident: e_1_2_7_32_1 doi: 10.1007/978-981-13-2345-4_10 – ident: e_1_2_7_6_1 doi: 10.1109/TASLP.2016.2632307 – ident: e_1_2_7_5_1 doi: 10.1109/SoCPaR.2009.94 – ident: e_1_2_7_40_1 – ident: e_1_2_7_43_1 doi: 10.1016/j.ymssp.2019.07.007 – ident: e_1_2_7_12_1 doi: 10.1109/SPIN48934.2020.9071125 – ident: e_1_2_7_7_1 doi: 10.1109/NCCISP.2012.6189710 – volume: 32 start-page: 617 issue: 3 year: 2007 ident: e_1_2_7_10_1 article-title: Applying computational intelligence to musical acoustics publication-title: Arch Acoust – volume: 22 start-page: 27 issue: 1 year: 1997 ident: e_1_2_7_11_1 article-title: Application of artificial neural networks to the recognition of musical sounds publication-title: Arch Acoust – ident: e_1_2_7_34_1 doi: 10.35940/ijrte.D9271.118419 – ident: e_1_2_7_18_1 doi: 10.1109/CSA.2008.67 – ident: e_1_2_7_28_1 doi: 10.1109/ICDMW.2015.213 – ident: e_1_2_7_30_1 doi: 10.1007/s10844-017-0464-5 – ident: e_1_2_7_46_1 doi: 10.3390/app8122630 – ident: e_1_2_7_3_1 doi: 10.1097/IAE.0b013e3181eef401 – ident: e_1_2_7_14_1 doi: 10.1007/s10844-015-0360-9 – volume: 1 start-page: 19 issue: 1 year: 2018 ident: e_1_2_7_20_1 article-title: Performance analysis of the adaptive cuckoo search rate optimization scheme for the congestion control in the WSN publication-title: J Netw Commun Syst – ident: e_1_2_7_29_1 doi: 10.1007/s11042-016-4021-y – volume: 1 start-page: 33 issue: 1 year: 2018 ident: e_1_2_7_19_1 article-title: Hybrid optimization based DBN for face recognition using low‐resolution images publication-title: Multimed Res – ident: e_1_2_7_24_1 doi: 10.1186/1687-4722-2009-497292 – ident: e_1_2_7_13_1 doi: 10.1504/IJKEDM.2018.095525 – ident: e_1_2_7_33_1 doi: 10.1016/j.procs.2020.03.178 – ident: e_1_2_7_35_1 doi: 10.1109/IGARSS.2007.4424027 – ident: e_1_2_7_44_1 doi: 10.3390/s19020269 – ident: e_1_2_7_27_1 – ident: e_1_2_7_45_1 doi: 10.17531/ein.2015.4.12 – volume: 2007 start-page: 155 issue: 1 year: 2007 ident: e_1_2_7_17_1 article-title: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps publication-title: EURASIP J Appl Signal Process – volume: 9 start-page: 1081 issue: 6 year: 2020 ident: e_1_2_7_9_1 article-title: Musical instrument sound classification using deep convolutional neural network publication-title: Mukt Shabd J – ident: e_1_2_7_21_1 doi: 10.46253/jcmps.v2i2.a4 – ident: e_1_2_7_22_1 doi: 10.1007/978-3-642-01533-5_10 – ident: e_1_2_7_41_1 doi: 10.1109/CICSyN.2012.61 – ident: e_1_2_7_26_1 doi: 10.1109/TASL.2007.910786 – ident: e_1_2_7_2_1 doi: 10.1097/GCO.0000000000000186 – ident: e_1_2_7_39_1 doi: 10.1007/s11033-019-04680-3 – ident: e_1_2_7_15_1 doi: 10.1109/TSA.2005.860351 – ident: e_1_2_7_23_1 – ident: e_1_2_7_36_1 doi: 10.1007/s10772-018-9494-9 – volume: 25 start-page: 81 issue: 2 year: 2010 ident: e_1_2_7_4_1 article-title: Evaluation of neuropsychological functions in patients with Friedreich ataxia before and after cognitive therapy publication-title: Funct Neurol – ident: e_1_2_7_31_1 |
| SSID | ssj0011031 |
| Score | 2.316433 |
| Snippet | Summary
Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop... Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Classification cuckoo search dragonfly algorithm Fourier transforms fractional Fourier transforms Indian classical music Kurtosis Music musical instrument Musical instruments Optimization Search algorithms Signal classification Spectra stack autoencoder Timbral features |
| Title | Indian classical musical instrument classification using Timbral features |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6418 https://www.proquest.com/docview/2581490295 |
| Volume | 33 |
| WOSCitedRecordID | wos000655749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnUyqInuKSNunSo0yHAxlDHOxWkjSRwazDqn-_SZtuCgqCpxyaQHgffb-8vPwewDk1yrGGRMhdwiGqmUCcZT3EdMI5kz1CpCqbTfRGIz6dJmNfVenewlT8EMuEm_OM8n_tHFzIorsiDVULfRVTwtehGVqzpQ1o3jwMJvfLOwTXwKBiSw0Rtri9pp7FYbde-z0YrRDmV5xaBppB6z9b3IYtDy-D68oedmBN57vQqls3BN6T92A4zJ1hBMqBZ6en4Pm9GmclpazLGfqPxmf1Alci_xRY5dotzQOjS0rQYh8mg9vH_h3yXRWQsqGdoyw0MRMiIRybSEQmizklGRFJbCSWGaZE2iOcyASm2mQSC8MUsyBGSRXFUrLoABr5S64PIdA4wXEidGxcF3VhsY4wXGNNKTNESdmGy1q8qfKU467zxTytyJLD1EoodRJqw9ly5qKi2fhhTqfWUOodrUhDxu0ZD4cJa8NFqYtf16f98a0bj_468Rg2Q1fBUhb9daBhpa9PYEN9vM2K11Nvbp9vENoC |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK-jF-sRq1Qiip7XZ3WSbxZPUlhZrKdJCb0uSTaRQ12LV32-yj1ZBQfCUwyYQ5rHzZTL5BuCCaGlZQ3zHXsI5RFHuMBo3HapCxqhouq6QabOJ5mDAJpNwWIKb4i1Mxg-xTLhZz0j_19bBbUK6sWINlXN1HRCXrUGFGCuiZajcPXbG_eUlgu1gkNGleg42wL3gnsVeo1j7PRqtIOZXoJpGmk71X3vchq0cYKLbzCJ2oKSSXagWzRtQ7st70Osl1jSQtPDZago9v2fjNCWVtVnD_KPO83rIFsk_IaNes6cZ0iolBV3sw7jTHrW6Tt5XwZEmuDMn9nRAOQ9dhrXPfR0HjLixy8NACyxiTFxhDnE85pgoHQvMNZXUwBgppB8IQf0DKCcviToEpHCIg5CrQNs-6tygHa6ZwooQql0pRA2uCvlGMicdt70vZlFGl-xFRkKRlVANzpcz5xnRxg9z6oWKotzVFpFHmTnlYS-kNbhMlfHr-qg1bNvx6K8Tz2CjO3roR_3e4P4YNj1bz5KWANahbDShTmBdfrxNF6-nue19An2Z3fI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_MTcSL8xOnUyuInurSNulSPMm24nCMIQ52K0mayGDW4dS_36RNNwUFwVMOTSC8j75fXl5-D-ACK2FYQwLXXMK5WBLmUpK2XSIjSglvex4XebOJ9nBIJ5NoVIGb8i1MwQ-xTLgZz8j_18bB5TxVrRVrqJjL6xB7dA1qmESh9spa9yEeD5aXCKaDQUGX6rtIA_eSexb5rXLt92i0gphfgWoeaeL6v_a4DVsWYDq3hUXsQEVmu1Avmzc41pf3oN_PjGk4wsBnoynn-b0YpzmprMka2o_K5vUcUyT_5Gj16j3NHCVzUtDFPozj3mPnzrV9FVyhgzt1U1-FhLHIo0gFLFBpSLGXeiwKFUc8Rdjj-hDHUoawVClHTBFBNIwRXAQh5yQ4gGr2kslDcCSKUBgxGSrTR51ptMMUlUhiTJQnOG_AVSnfRFjScdP7YpYUdMl-oiWUGAk14Hw5c14Qbfwwp1mqKLGutkh8QvUpD_kRacBlroxf1yedUc-MR3-deAYbo26cDPrD-2PY9E05S14B2ISqVoQ8gXXx8TZdvJ5a0_sEO5DdbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indian+classical+musical+instrument+classification+using+Timbral+features&rft.jtitle=Concurrency+and+computation&rft.au=Gulhane%2C+Sushen+Rameshpant&rft.au=Shirbahadurkar%2C+Suresh+Damodar&rft.au=Badhe%2C+Sanjay+Shrikrushna&rft.date=2021-11-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.6418&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |