Indian classical musical instrument classification using Timbral features

Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 33; no. 21
Main Authors: Gulhane, Sushen Rameshpant, Shirbahadurkar, Suresh Damodar, Badhe, Sanjay Shrikrushna
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 10.11.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively.
AbstractList Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively.
Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an automatic system of recognizing the music signals and classify the instruments interplayed through the music. Thus, this paper proposes a model for the Indian music classification system using the optimization‐based stacked autoencoder. The significance of this research is based on the proposed Cuckoo‐dragonfly optimization (CuDro)‐based stacked autoencoder, where the proposed CuDro optimization trains the stacked autoencoder for acquiring accurate classification results. The proposed CuDro technique is the combination of the standard Cuckoo search (CS) and the Dragonfly algorithm (DA) that renders optimal weights for training the stacked autoencoder (SAE). Moreover, the musical instrument classification using the proposed CuDro‐based stack autoencoder is based on the compact features, such as Timbral features and proposed FrMkMFCC features, which further add value to this research. The Timbral features like Spectral flux, spectral kurtosis (SK), Spectral skewness, Spectral pitch similarity, Roughness, In harmonicity are added in the research for efficient musical instrument classification. The proposed FrMkMFCC feature is the integration of the Fractional Fourier transforms and Multi kernel method, and Mel Frequency Cepstral Coefficient (MFCC) features. The analysis using the developed classification methodology confirms that the proposed method acquired the maximum accuracy of 96.16%, the sensitivity of 86.86%, and specificity of 92.85%, respectively.
Author Gulhane, Sushen Rameshpant
Shirbahadurkar, Suresh Damodar
Badhe, Sanjay Shrikrushna
Author_xml – sequence: 1
  givenname: Sushen Rameshpant
  orcidid: 0000-0002-4741-3414
  surname: Gulhane
  fullname: Gulhane, Sushen Rameshpant
  email: sushenrameshpantgulhane@gmail.com
  organization: D Y Patil Institute of Technology
– sequence: 2
  givenname: Suresh Damodar
  surname: Shirbahadurkar
  fullname: Shirbahadurkar, Suresh Damodar
  organization: Zeal College of Engineering & Research
– sequence: 3
  givenname: Sanjay Shrikrushna
  surname: Badhe
  fullname: Badhe, Sanjay Shrikrushna
  organization: D Y Patil Institute of Technology
BookMark eNp1kE1Lw0AQhhepYFsFf0LAi5fU_Ui22aOUqoWCHup52U_Zkmzq7gbpvzdpigfR0wwzz_sO887AxLfeAHCL4AJBiB_UwSxogaoLMEUlwTmkpJj89JhegVmMewgRggRNwWbjtRM-U7WI0SlRZ003VudjCl1jfDovbT9OrvVZD_iPbOcaGXrOGpG6YOI1uLSijubmXOfg_Wm9W73k29fnzepxmyvMSJVrbGkpBEMVtEQQq2lVII0Eo1ZCqWGBJENLoQUsjNUSCluqkpGlkopQKUsyB3ej7yG0n52Jie_bLvj-JMdlhQoGMRuo-5FSoY0xGMsPwTUiHDmCfAiK90HxIageXfxClUunT1MQrv5LkI-CL1eb47_GfPW2PvHfsMd8TQ
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108582
crossref_primary_10_2478_amns_2023_2_01363
crossref_primary_10_1109_TASLPRO_2025_3543974
Cites_doi 10.1109/TASL.2013.2248720
10.1007/s00521-016-2501-7
10.1007/s00521-015-1920-1
10.1109/TSMCB.2007.913394
10.1162/COMJ_a_00210
10.1007/978-981-13-2345-4_10
10.1109/TASLP.2016.2632307
10.1109/SoCPaR.2009.94
10.1016/j.ymssp.2019.07.007
10.1109/SPIN48934.2020.9071125
10.1109/NCCISP.2012.6189710
10.35940/ijrte.D9271.118419
10.1109/CSA.2008.67
10.1109/ICDMW.2015.213
10.1007/s10844-017-0464-5
10.3390/app8122630
10.1097/IAE.0b013e3181eef401
10.1007/s10844-015-0360-9
10.1007/s11042-016-4021-y
10.1186/1687-4722-2009-497292
10.1504/IJKEDM.2018.095525
10.1016/j.procs.2020.03.178
10.1109/IGARSS.2007.4424027
10.3390/s19020269
10.17531/ein.2015.4.12
10.46253/jcmps.v2i2.a4
10.1007/978-3-642-01533-5_10
10.1109/CICSyN.2012.61
10.1109/TASL.2007.910786
10.1097/GCO.0000000000000186
10.1007/s11033-019-04680-3
10.1109/TSA.2005.860351
10.1007/s10772-018-9494-9
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6418
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Music
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6418
CPE6418
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-d2f65aa9180f3a3fd6841d1a96fb0bd041b917ada04efdb0af5c5937cbc36bb53
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 09 08:37:27 EST 2025
Tue Nov 18 22:19:38 EST 2025
Sat Nov 29 01:41:26 EST 2025
Wed Jan 22 16:27:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-d2f65aa9180f3a3fd6841d1a96fb0bd041b917ada04efdb0af5c5937cbc36bb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4741-3414
PQID 2581490295
PQPubID 2045170
PageCount 19
ParticipantIDs proquest_journals_2581490295
crossref_primary_10_1002_cpe_6418
crossref_citationtrail_10_1002_cpe_6418
wiley_primary_10_1002_cpe_6418_CPE6418
PublicationCentury 2000
PublicationDate 10 November 2021
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 10 November 2021
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 8
2018; 29
1997; 22
2013; 21
2019; 2
2008; 38
2006; 14
2008; 16
2011; 31
2020; 167
2007; 32
2018; 21
2018; 19
2009; 2009
2018; 8
2013; 37
2015; 27
2010; 25
2018; 5
2018; 1
2007; 2007
2017; 76
2020; 9
2018
2016
2018; 50
2009; 2
2016; 27
2016; 25
2019; 133
2016; 46
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
Kitahara T (e_1_2_7_17_1) 2007; 2007
e_1_2_7_8_1
e_1_2_7_7_1
Ankur A (e_1_2_7_9_1) 2020; 9
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
Vinusha S (e_1_2_7_20_1) 2018; 1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
Kostek B (e_1_2_7_11_1) 1997; 22
e_1_2_7_28_1
e_1_2_7_29_1
Ciancarelli I (e_1_2_7_4_1) 2010; 25
Kostek B (e_1_2_7_10_1) 2007; 32
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Thomas R (e_1_2_7_19_1) 2018; 1
References_xml – volume: 32
  start-page: 617
  issue: 3
  year: 2007
  end-page: 629
  article-title: Applying computational intelligence to musical acoustics
  publication-title: Arch Acoust
– volume: 9
  start-page: 1081
  issue: 6
  year: 2020
  end-page: 1087
  article-title: Musical instrument sound classification using deep convolutional neural network
  publication-title: Mukt Shabd J
– volume: 19
  issue: 2
  year: 2018
  article-title: Fault detection of electric impact drills and coffee grinders using acoustic signals
  publication-title: Sensors
– volume: 8
  year: 2018
  article-title: Recognition of acoustic signals of commutator motors
  publication-title: Appl Sci
– volume: 5
  start-page: 333
  issue: 4
  year: 2018
  end-page: 348
  article-title: Clustering news articles using efficient similarity measure and N‐grams
  publication-title: Int J Knowl Eng Data Mining
– volume: 29
  start-page: 13
  year: 2018
  end-page: 19
  article-title: Speaker recognition with hybrid features from a deep belief network
  publication-title: Neural Comput Appl
– volume: 76
  start-page: 20719
  issue: 20
  year: 2017
  end-page: 20737
  article-title: Optimized phase‐space reconstruction for accurate musical‐instrument signal classification
  publication-title: Multimed Tools Appl
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  end-page: 1073
  article-title: Dragonfly algorithm: a new meta‐heuristic optimization technique for solving single‐objective, discrete, and multi‐objective problems
  publication-title: Neural Comput Appl
– volume: 37
  start-page: 70
  issue: 4
  year: 2013
  end-page: 86
  article-title: Classification of musical timbre using bayesian networks
  publication-title: Comput Music J
– volume: 27
  start-page: 291
  issue: 4
  year: 2015
  end-page: 296
  article-title: Latest developments and techniques in gynaecological oncology surgery
  publication-title: Current Opinion Obstetr Gynecol
– volume: 2009
  start-page: 14
  year: 2009
  end-page: 23
  article-title: Drum sound detection in polyphonic music with hidden markov models
  publication-title: EURASIP J Audio Speech Music Process
– volume: 2007
  start-page: 155
  issue: 1
  year: 2007
  end-page: 155
  article-title: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps
  publication-title: EURASIP J Appl Signal Process
– volume: 25
  start-page: 81
  issue: 2
  year: 2010
  article-title: Evaluation of neuropsychological functions in patients with Friedreich ataxia before and after cognitive therapy
  publication-title: Funct Neurol
– volume: 167
  start-page: 16
  year: 2020
  end-page: 25
  article-title: Musical instrument emotion recognition using deep recurrent neural network
  publication-title: Proc Comput Sci
– year: 2016
– volume: 8
  start-page: 8772
  issue: 4
  year: 2019
  end-page: 8774
  article-title: An enhanced musical instrument classification using deep convolutional neural network
  publication-title: Int J Recent Technol Eng (IJRTE)
– volume: 50
  start-page: 363
  issue: 2
  year: 2018
  end-page: 338
  article-title: Automatic music genre classification based on musical instrument track separation
  publication-title: J Intell Inf Syst
– volume: 46
  start-page: 425
  issue: 3
  year: 2016
  end-page: 446
  article-title: Automatic musical instrument classification using fractional fourier transform based‐ MFCC features and counter propagation neural network
  publication-title: J Intell Inf Syst
– volume: 21
  start-page: 1805
  issue: 9
  year: 2013
  end-page: 1817
  article-title: Musical instrument recognition in polyphonic audio using missing feature approach
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 31
  start-page: 707
  issue: 4
  year: 2011
  end-page: 716
  article-title: Comparison of macular thickness measurements between time‐domain and spectral‐domain optical coherence tomographies in eyes with and without macular abnormalities
  publication-title: Retina
– start-page: 123
  year: 2018
  end-page: 138
– volume: 14
  start-page: 68
  issue: 1
  year: 2006
  end-page: 80
  article-title: Instrument recognition in polyphonic music based on automatic taxonomies
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 21
  start-page: 185
  issue: 2
  year: 2018
  end-page: 192
  article-title: Robust noise MKMFCC–SVM automatic speaker identification
  publication-title: Int J Speech Technol
– volume: 1
  start-page: 19
  issue: 1
  year: 2018
  end-page: 27
  article-title: Performance analysis of the adaptive cuckoo search rate optimization scheme for the congestion control in the WSN
  publication-title: J Netw Commun Syst
– volume: 16
  start-page: 116
  issue: 1
  year: 2008
  end-page: 128
  article-title: Instrument‐specific harmonic atoms for mid‐level music representation
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 2
  start-page: 259
  year: 2009
  end-page: 273
– volume: 1
  start-page: 33
  issue: 1
  year: 2018
  end-page: 43
  article-title: Hybrid optimization based DBN for face recognition using low‐resolution images
  publication-title: Multimed Res
– volume: 133
  year: 2019
  article-title: Acoustic fault analysis of three commutator motors
  publication-title: Mech Syst Signal Process
– volume: 22
  start-page: 27
  issue: 1
  year: 1997
  end-page: 50
  article-title: Application of artificial neural networks to the recognition of musical sounds
  publication-title: Arch Acoust
– volume: 38
  start-page: 429
  issue: 2
  year: 2008
  end-page: 438
  article-title: A study on feature analysis for musical instrument classification
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– volume: 25
  start-page: 208
  issue: 1
  year: 2016
  end-page: 221
  article-title: Deep convolutional neural networks for predominant instrument recognition in polyphonic music
  publication-title: IEEE/ACM Trans Audio Speech Lang Process
– volume: 2
  start-page: 31
  issue: 2
  year: 2019
  end-page: 37
  article-title: Hybrid genetic algorithm and particle swarm optimization algorithm for optimal power flow in power system
  publication-title: J Comput Mech Power Syst Control
– ident: e_1_2_7_25_1
  doi: 10.1109/TASL.2013.2248720
– ident: e_1_2_7_37_1
– ident: e_1_2_7_42_1
  doi: 10.1007/s00521-016-2501-7
– ident: e_1_2_7_38_1
  doi: 10.1007/s00521-015-1920-1
– ident: e_1_2_7_8_1
  doi: 10.1109/TSMCB.2007.913394
– ident: e_1_2_7_16_1
  doi: 10.1162/COMJ_a_00210
– ident: e_1_2_7_32_1
  doi: 10.1007/978-981-13-2345-4_10
– ident: e_1_2_7_6_1
  doi: 10.1109/TASLP.2016.2632307
– ident: e_1_2_7_5_1
  doi: 10.1109/SoCPaR.2009.94
– ident: e_1_2_7_40_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ymssp.2019.07.007
– ident: e_1_2_7_12_1
  doi: 10.1109/SPIN48934.2020.9071125
– ident: e_1_2_7_7_1
  doi: 10.1109/NCCISP.2012.6189710
– volume: 32
  start-page: 617
  issue: 3
  year: 2007
  ident: e_1_2_7_10_1
  article-title: Applying computational intelligence to musical acoustics
  publication-title: Arch Acoust
– volume: 22
  start-page: 27
  issue: 1
  year: 1997
  ident: e_1_2_7_11_1
  article-title: Application of artificial neural networks to the recognition of musical sounds
  publication-title: Arch Acoust
– ident: e_1_2_7_34_1
  doi: 10.35940/ijrte.D9271.118419
– ident: e_1_2_7_18_1
  doi: 10.1109/CSA.2008.67
– ident: e_1_2_7_28_1
  doi: 10.1109/ICDMW.2015.213
– ident: e_1_2_7_30_1
  doi: 10.1007/s10844-017-0464-5
– ident: e_1_2_7_46_1
  doi: 10.3390/app8122630
– ident: e_1_2_7_3_1
  doi: 10.1097/IAE.0b013e3181eef401
– ident: e_1_2_7_14_1
  doi: 10.1007/s10844-015-0360-9
– volume: 1
  start-page: 19
  issue: 1
  year: 2018
  ident: e_1_2_7_20_1
  article-title: Performance analysis of the adaptive cuckoo search rate optimization scheme for the congestion control in the WSN
  publication-title: J Netw Commun Syst
– ident: e_1_2_7_29_1
  doi: 10.1007/s11042-016-4021-y
– volume: 1
  start-page: 33
  issue: 1
  year: 2018
  ident: e_1_2_7_19_1
  article-title: Hybrid optimization based DBN for face recognition using low‐resolution images
  publication-title: Multimed Res
– ident: e_1_2_7_24_1
  doi: 10.1186/1687-4722-2009-497292
– ident: e_1_2_7_13_1
  doi: 10.1504/IJKEDM.2018.095525
– ident: e_1_2_7_33_1
  doi: 10.1016/j.procs.2020.03.178
– ident: e_1_2_7_35_1
  doi: 10.1109/IGARSS.2007.4424027
– ident: e_1_2_7_44_1
  doi: 10.3390/s19020269
– ident: e_1_2_7_27_1
– ident: e_1_2_7_45_1
  doi: 10.17531/ein.2015.4.12
– volume: 2007
  start-page: 155
  issue: 1
  year: 2007
  ident: e_1_2_7_17_1
  article-title: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps
  publication-title: EURASIP J Appl Signal Process
– volume: 9
  start-page: 1081
  issue: 6
  year: 2020
  ident: e_1_2_7_9_1
  article-title: Musical instrument sound classification using deep convolutional neural network
  publication-title: Mukt Shabd J
– ident: e_1_2_7_21_1
  doi: 10.46253/jcmps.v2i2.a4
– ident: e_1_2_7_22_1
  doi: 10.1007/978-3-642-01533-5_10
– ident: e_1_2_7_41_1
  doi: 10.1109/CICSyN.2012.61
– ident: e_1_2_7_26_1
  doi: 10.1109/TASL.2007.910786
– ident: e_1_2_7_2_1
  doi: 10.1097/GCO.0000000000000186
– ident: e_1_2_7_39_1
  doi: 10.1007/s11033-019-04680-3
– ident: e_1_2_7_15_1
  doi: 10.1109/TSA.2005.860351
– ident: e_1_2_7_23_1
– ident: e_1_2_7_36_1
  doi: 10.1007/s10772-018-9494-9
– volume: 25
  start-page: 81
  issue: 2
  year: 2010
  ident: e_1_2_7_4_1
  article-title: Evaluation of neuropsychological functions in patients with Friedreich ataxia before and after cognitive therapy
  publication-title: Funct Neurol
– ident: e_1_2_7_31_1
SSID ssj0011031
Score 2.316433
Snippet Summary Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop...
Musical instrument classification becomes effective when the music signal arrives with profound characteristics. This urged the researchers to develop an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Classification
cuckoo search
dragonfly algorithm
Fourier transforms
fractional Fourier transforms
Indian classical music
Kurtosis
Music
musical instrument
Musical instruments
Optimization
Search algorithms
Signal classification
Spectra
stack autoencoder
Timbral features
Title Indian classical musical instrument classification using Timbral features
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6418
https://www.proquest.com/docview/2581490295
Volume 33
WOSCitedRecordID wos000655749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnUyqInuKSNunSo0yHAxlDHOxWkjSRwazDqn-_SZtuCgqCpxyaQHgffb-8vPwewDk1yrGGRMhdwiGqmUCcZT3EdMI5kz1CpCqbTfRGIz6dJmNfVenewlT8EMuEm_OM8n_tHFzIorsiDVULfRVTwtehGVqzpQ1o3jwMJvfLOwTXwKBiSw0Rtri9pp7FYbde-z0YrRDmV5xaBppB6z9b3IYtDy-D68oedmBN57vQqls3BN6T92A4zJ1hBMqBZ6en4Pm9GmclpazLGfqPxmf1Alci_xRY5dotzQOjS0rQYh8mg9vH_h3yXRWQsqGdoyw0MRMiIRybSEQmizklGRFJbCSWGaZE2iOcyASm2mQSC8MUsyBGSRXFUrLoABr5S64PIdA4wXEidGxcF3VhsY4wXGNNKTNESdmGy1q8qfKU467zxTytyJLD1EoodRJqw9ly5qKi2fhhTqfWUOodrUhDxu0ZD4cJa8NFqYtf16f98a0bj_468Rg2Q1fBUhb9daBhpa9PYEN9vM2K11Nvbp9vENoC
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK-jF-sRq1Qiip7XZ3WSbxZPUlhZrKdJCb0uSTaRQ12LV32-yj1ZBQfCUwyYQ5rHzZTL5BuCCaGlZQ3zHXsI5RFHuMBo3HapCxqhouq6QabOJ5mDAJpNwWIKb4i1Mxg-xTLhZz0j_19bBbUK6sWINlXN1HRCXrUGFGCuiZajcPXbG_eUlgu1gkNGleg42wL3gnsVeo1j7PRqtIOZXoJpGmk71X3vchq0cYKLbzCJ2oKSSXagWzRtQ7st70Osl1jSQtPDZago9v2fjNCWVtVnD_KPO83rIFsk_IaNes6cZ0iolBV3sw7jTHrW6Tt5XwZEmuDMn9nRAOQ9dhrXPfR0HjLixy8NACyxiTFxhDnE85pgoHQvMNZXUwBgppB8IQf0DKCcviToEpHCIg5CrQNs-6tygHa6ZwooQql0pRA2uCvlGMicdt70vZlFGl-xFRkKRlVANzpcz5xnRxg9z6oWKotzVFpFHmTnlYS-kNbhMlfHr-qg1bNvx6K8Tz2CjO3roR_3e4P4YNj1bz5KWANahbDShTmBdfrxNF6-nue19An2Z3fI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_MTcSL8xOnUyuInurSNulSPMm24nCMIQ52K0mayGDW4dS_36RNNwUFwVMOTSC8j75fXl5-D-ACK2FYQwLXXMK5WBLmUpK2XSIjSglvex4XebOJ9nBIJ5NoVIGb8i1MwQ-xTLgZz8j_18bB5TxVrRVrqJjL6xB7dA1qmESh9spa9yEeD5aXCKaDQUGX6rtIA_eSexb5rXLt92i0gphfgWoeaeL6v_a4DVsWYDq3hUXsQEVmu1Avmzc41pf3oN_PjGk4wsBnoynn-b0YpzmprMka2o_K5vUcUyT_5Gj16j3NHCVzUtDFPozj3mPnzrV9FVyhgzt1U1-FhLHIo0gFLFBpSLGXeiwKFUc8Rdjj-hDHUoawVClHTBFBNIwRXAQh5yQ4gGr2kslDcCSKUBgxGSrTR51ptMMUlUhiTJQnOG_AVSnfRFjScdP7YpYUdMl-oiWUGAk14Hw5c14Qbfwwp1mqKLGutkh8QvUpD_kRacBlroxf1yedUc-MR3-deAYbo26cDPrD-2PY9E05S14B2ISqVoQ8gXXx8TZdvJ5a0_sEO5DdbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indian+classical+musical+instrument+classification+using+Timbral+features&rft.jtitle=Concurrency+and+computation&rft.au=Gulhane%2C+Sushen+Rameshpant&rft.au=Shirbahadurkar%2C+Suresh+Damodar&rft.au=Badhe%2C+Sanjay+Shrikrushna&rft.date=2021-11-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=21&rft_id=info:doi/10.1002%2Fcpe.6418&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon