Slow feature‐constrained decomposition autoencoder: Application to process anomaly detection and localization
Summary Detecting anomalies in manufacturing processes is crucial for ensuring safety. However, noise significantly undermines the reliability of data‐driven anomaly detection models. To address this challenge, we propose a slow feature‐constrained decomposition autoencoder (SFC‐DAE) for anomaly det...
Gespeichert in:
| Veröffentlicht in: | International journal of adaptive control and signal processing Jg. 39; H. 7; S. 1483 - 1502 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2025
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0890-6327, 1099-1115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!