Optimization techniques for task scheduling criteria in IaaS cloud computing atmosphere using nature inspired hybrid spotted hyena optimization algorithm

Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 34; číslo 24
Hlavní autoři: Natesan, Gobalakrishnan, Ali, Javid, Krishnadoss, Pradeep, Chidambaram, Raman, Nanjappan, Manikandan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.11.2022
Wiley Subscription Services, Inc
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation.
AbstractList Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation.
Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation.
Author Natesan, Gobalakrishnan
Nanjappan, Manikandan
Chidambaram, Raman
Krishnadoss, Pradeep
Ali, Javid
Author_xml – sequence: 1
  givenname: Gobalakrishnan
  orcidid: 0000-0003-3820-6744
  surname: Natesan
  fullname: Natesan, Gobalakrishnan
  email: gobalakrishnanse@gmail.com
  organization: Sri Venkateswara College of Engineering
– sequence: 2
  givenname: Javid
  surname: Ali
  fullname: Ali, Javid
  organization: St. Joseph's Institute of Technology
– sequence: 3
  givenname: Pradeep
  orcidid: 0000-0002-6430-5650
  surname: Krishnadoss
  fullname: Krishnadoss, Pradeep
  organization: Vellore Institute of Technology
– sequence: 4
  givenname: Raman
  surname: Chidambaram
  fullname: Chidambaram, Raman
  organization: St. Joseph's College of Engineering
– sequence: 5
  givenname: Manikandan
  orcidid: 0000-0001-7406-1242
  surname: Nanjappan
  fullname: Nanjappan, Manikandan
  organization: SRM Institute of Science and Technology, Kattankulathur
BookMark eNp1kFtLwzAYhoNMcJuCPyHgjTedOWxtdylj6mCgoF6HNE3WzDaJSYrMf-K_td1ERPTqO_B8h_cdgYGxRgJwjtEEI0SuhJOTjJD8CAzxjJIEpXQ6-M5JegJGIWwRwhhRPAQf9y7qRr_zqK2BUYrK6NdWBqish5GHFxhEJcu21mYDhddRes2hNnDF-SMUtW1LKGzj2tgDPDY2uEp6CdvQNwyPbVdoE5z2soTVrvC6hMHZGPelNBzany_wemO7M1VzCo4Vr4M8-4pj8HyzfFrcJev729Xiep0IMqd5UlCe0jwXWCKeyhmeYjXPCkyzeS6QmHGlcFGQTj1GJUEFzSQvqSpRD2AlBB2Di8Ne522vPLKtbb3pTjKSEZTOcJaTjro8UMLbELxUzHndcL9jGLHeeNYZz3rjO3TyCxU67sVFz3X910ByGHjTtdz9u5gtHpZ7_hOWYZpN
CitedBy_id crossref_primary_10_3390_s23188009
crossref_primary_10_1016_j_susoc_2024_07_001
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_32604_cmc_2024_046304
crossref_primary_10_1038_s41598_023_46284_9
crossref_primary_10_1016_j_simpat_2024_103014
Cites_doi 10.1016/j.swevo.2017.09.010
10.1016/j.future.2015.08.006
10.24200/sci.2018.50766.1855
10.1016/j.jss.2019.110405
10.1109/ACCESS.2015.2508940
10.1016/j.eij.2015.07.001
10.1016/j.future.2019.04.029
10.1016/j.advengsoft.2017.05.014
10.1109/ACCESS.2016.2633288
10.1007/s13174-010-0007-6
10.1007/s10922-014-9307-7
10.1007/s00521-019-04067-2
10.1007/s00521-019-04118-8
10.1016/j.simpat.2018.10.004
10.1007/s13319-019-0222-2
10.1109/4235.797971
10.1007/s11277-019-06566-w
10.1016/j.simpat.2018.09.001
10.1109/TASE.2013.2272758
10.1016/j.jestch.2018.11.003
10.1016/j.future.2018.10.037
10.1016/j.icte.2018.07.002
10.1016/j.future.2008.12.001
10.1007/s11277-018-5816-0
10.1007/s40998-019-00260-0
10.1016/j.asoc.2019.105627
10.1016/j.asej.2020.07.003
10.1016/j.ins.2019.10.035
10.1016/j.knosys.2018.03.011
10.1016/j.compeleceng.2015.07.021
10.1007/s11277-019-06817-w
10.1007/s00521-018-3610-2
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7228
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7228
CPE7228
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AFZJQ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-b3a6388c1e0a6e5141f97b13798c0c5aff1bb253210d20b37ead3fd037981fcc3
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Fri Jul 25 03:11:04 EDT 2025
Sat Nov 29 01:41:30 EST 2025
Tue Nov 18 22:35:31 EST 2025
Wed Jan 22 16:24:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-b3a6388c1e0a6e5141f97b13798c0c5aff1bb253210d20b37ead3fd037981fcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3820-6744
0000-0002-6430-5650
0000-0001-7406-1242
PQID 2720651782
PQPubID 2045170
PageCount 24
ParticipantIDs proquest_journals_2720651782
crossref_primary_10_1002_cpe_7228
crossref_citationtrail_10_1002_cpe_7228
wiley_primary_10_1002_cpe_7228_CPE7228
PublicationCentury 2000
PublicationDate 1 November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 1 November 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 25
2019; 93
2015; 16
2019; 5
2015; 3
2019; 31
2019; 10
2018; 101
2019; 109
1999; 3
2020; 32
2017; 114
2019; 100
2018; 27
2018; J61
2016; 56
2015; 23
2016; 5
2015; 47
2018; 39
2021; 32
2010; 1
2021; 12
2019; 83
2018; 150
2013; 11
2019; 22
2019; 24
2020; 512
2019; 158
2020; 23
2020; 44
2019; 110
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
Sanaj MS (e_1_2_12_17_1) 2020; 23
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_16_1
Chandio AA (e_1_2_12_23_1) 2019; 24
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_28_1
e_1_2_12_29_1
Gobalakrishnan N (e_1_2_12_8_1) 2018; 61
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
Dubey K (e_1_2_12_27_1) 2021; 32
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 5
  start-page: 22067
  year: 2016
  end-page: 22080
  article-title: A multi‐objective hybrid cloud resource scheduling method based on deadline and cost constraints
  publication-title: IEEE Access
– volume: 25
  start-page: 599
  issue: 6
  year: 2009
  end-page: 616
  article-title: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility
  publication-title: Future Gener Comput Syst
– volume: 100
  start-page: 98
  year: 2019
  end-page: 108
  article-title: Dynamic multi‐workflow scheduling: a deadline and cost‐aware approach for commercial clouds
  publication-title: Future Gener Comput Syst
– volume: 512
  start-page: 1170
  year: 2020
  end-page: 1191
  article-title: A scheduling scheme in the cloud computing environment using deep Q‐learning
  publication-title: Inform Sci
– volume: 27
  start-page: 3096
  year: 2018
  end-page: 3117
  article-title: Quasi‐oppositional symbiotic organisms search algorithm for different economic load dispatch problems
  publication-title: Sci Iran
– volume: J61
  start-page: 1523
  issue: 10
  year: 2018
  end-page: 1536
  article-title: A new multi‐objective optimal programming model for task scheduling using genetic gray wolf optimization in cloud computing
  publication-title: The Computer
– volume: 101
  start-page: 2287
  issue: 4
  year: 2018
  end-page: 2311
  article-title: A hybrid approach for task scheduling using the cuckoo and harmony search in cloud computing environment
  publication-title: Wirel Person Commun
– volume: 10
  issue: 2
  year: 2019
  article-title: LGSA: hybrid task scheduling in multi objective functionality in cloud computing environment
  publication-title: 3D Research
– volume: 24
  year: 2019
  article-title: Energy efficient VM scheduling strategies for HPC workloads in cloud data centers
  publication-title: Sust Comput Inform Syst
– volume: 3
  start-page: 2687
  year: 2015
  end-page: 2699
  article-title: A multi‐objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
– volume: 83
  year: 2019
  article-title: Cost optimized hybrid genetic‐gravitational search algorithm for load scheduling in cloud computing
  publication-title: Appl Soft Comput
– volume: 23
  start-page: 891
  issue: 4
  year: 2020
  end-page: 902
  article-title: Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere
  publication-title: Eng Sci Tech Int J
– volume: 3
  start-page: 287
  issue: 4
  year: 1999
  end-page: 297
  article-title: The compact genetic algorithm
  publication-title: IEEE Trans Evol Comput
– volume: 47
  start-page: 186
  year: 2015
  end-page: 203
  article-title: Resource management in cloud computing: taxonomy, prospects, and challenges
  publication-title: Comput Elect Eng
– volume: 16
  start-page: 275
  issue: 3
  year: 2015
  end-page: 295
  article-title: A review of metaheuristic scheduling techniques in cloud computing
  publication-title: Egyp Inform J
– volume: 93
  start-page: 3
  year: 2019
  end-page: 20
  article-title: GAME‐SCORE: game‐based energy‐aware cloud scheduler and simulator for computational clouds
  publication-title: Simul Mod Pract Theo
– volume: 109
  start-page: 315
  issue: 1
  year: 2019
  end-page: 331
  article-title: A multi‐objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization
  publication-title: Wirel Person Commun
– volume: 32
  start-page: 5901
  year: 2020
  end-page: 5907
  article-title: Amelioration of task scheduling in cloud computing using crow search algorithm
  publication-title: Neural Comput Appl
– volume: 44
  start-page: 781
  year: 2020
  end-page: 804
  article-title: Quasi‐oppositional backtracking search algorithm to solve load frequency control problem of interconnected power system
  publication-title: Iran J Sci Tech Trans Electr Eng
– volume: 23
  start-page: 567
  issue: 3
  year: 2015
  end-page: 619
  article-title: Resource management in clouds: survey and research challenges
  publication-title: J Netw Syst Manag
– volume: 110
  start-page: 1887
  issue: 4
  year: 2019
  end-page: 1913
  article-title: Multi‐objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment
  publication-title: Wirel Person Commun
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications
  publication-title: Adv Eng Softw
– volume: 32
  year: 2021
  article-title: A novel multi‐objective CR‐PSO task scheduling algorithm with deadline constraint in cloud computing
  publication-title: Sustain Comput Inform Syst
– volume: 56
  start-page: 640
  year: 2016
  end-page: 650
  article-title: Symbiotic organism search optimization based task scheduling in cloud computing environment
  publication-title: Future Gener Comput Syst
– volume: 32
  start-page: 5553
  year: 2020
  end-page: 5570
  article-title: QL‐HEFT: a novel machine learning scheduling scheme base on cloud computing environment
  publication-title: Neural Comput Appl
– volume: 158
  year: 2019
  article-title: ECOS: an efficient task‐clustering based cost‐effective aware scheduling algorithm for scientific workflows execution on heterogeneous cloud systems
  publication-title: J Syst Softw
– volume: 11
  start-page: 564
  issue: 2
  year: 2013
  end-page: 573
  article-title: Self‐adaptive learning PSO‐based deadline constrained task scheduling for hybrid IaaS cloud
  publication-title: IEEE Trans Autom Sci Eng
– volume: 5
  start-page: 110
  issue: 2
  year: 2019
  end-page: 114
  article-title: Task scheduling in heterogeneous cloud environment using mean grey wolf optimization algorithm
  publication-title: ICT Express
– volume: 39
  start-page: 1
  year: 2018
  end-page: 23
  article-title: Opposition based learning: a literature review
  publication-title: Swarm Evol Comput
– volume: 31
  start-page: 1353
  year: 2019
  end-page: 1363
  article-title: An efficient cost‐based algorithm for scheduling workflow tasks in cloud computing systems
  publication-title: Neural Comput Appl
– volume: 93
  start-page: 119
  year: 2019
  end-page: 132
  article-title: MOWS: multi‐objective workflow scheduling in cloud computing based on heuristic algorithm
  publication-title: Simul Mod Pract Theo
– volume: 12
  start-page: 631
  issue: 1
  year: 2021
  end-page: 639
  article-title: Hybrid electro search with genetic algorithm for task scheduling in cloud computing
  publication-title: Ain Shams Eng J
– volume: 150
  start-page: 175
  year: 2018
  end-page: 197
  article-title: Multi‐objective spotted hyena optimizer: a multi‐objective optimization algorithm for engineering problems
  publication-title: Knowl‐based Syst
– volume: 1
  start-page: 7
  year: 2010
  end-page: 18
  article-title: Cloud computing: state‐of‐the‐art and research challenges
  publication-title: J Inter Serv Appl
– volume: 22
  start-page: 646
  issue: 2
  year: 2019
  end-page: 655
  article-title: A novel resource aware scheduling with multi‐criteria for heterogeneous computing systems
  publication-title: Eng Sci Tech Int J
– volume: 93
  start-page: 212
  year: 2019
  end-page: 223
  article-title: A methodological framework for cloud resource provisioning and scheduling of data parallel applications under uncertainty
  publication-title: Future Gener Comput Syst
– ident: e_1_2_12_30_1
  doi: 10.1016/j.swevo.2017.09.010
– ident: e_1_2_12_34_1
  doi: 10.1016/j.future.2015.08.006
– ident: e_1_2_12_31_1
  doi: 10.24200/sci.2018.50766.1855
– ident: e_1_2_12_25_1
  doi: 10.1016/j.jss.2019.110405
– ident: e_1_2_12_35_1
  doi: 10.1109/ACCESS.2015.2508940
– ident: e_1_2_12_6_1
  doi: 10.1016/j.eij.2015.07.001
– ident: e_1_2_12_20_1
  doi: 10.1016/j.future.2019.04.029
– ident: e_1_2_12_28_1
  doi: 10.1016/j.advengsoft.2017.05.014
– ident: e_1_2_12_37_1
  doi: 10.1109/ACCESS.2016.2633288
– ident: e_1_2_12_3_1
  doi: 10.1007/s13174-010-0007-6
– ident: e_1_2_12_4_1
  doi: 10.1007/s10922-014-9307-7
– ident: e_1_2_12_11_1
  doi: 10.1007/s00521-019-04067-2
– ident: e_1_2_12_9_1
  doi: 10.1007/s00521-019-04118-8
– ident: e_1_2_12_19_1
  doi: 10.1016/j.simpat.2018.10.004
– ident: e_1_2_12_12_1
  doi: 10.1007/s13319-019-0222-2
– ident: e_1_2_12_33_1
  doi: 10.1109/4235.797971
– ident: e_1_2_12_7_1
  doi: 10.1007/s11277-019-06566-w
– ident: e_1_2_12_18_1
  doi: 10.1016/j.simpat.2018.09.001
– ident: e_1_2_12_36_1
  doi: 10.1109/TASE.2013.2272758
– ident: e_1_2_12_21_1
  doi: 10.1016/j.jestch.2018.11.003
– ident: e_1_2_12_22_1
  doi: 10.1016/j.future.2018.10.037
– ident: e_1_2_12_13_1
  doi: 10.1016/j.icte.2018.07.002
– ident: e_1_2_12_2_1
  doi: 10.1016/j.future.2008.12.001
– ident: e_1_2_12_15_1
  doi: 10.1007/s11277-018-5816-0
– volume: 32
  start-page: 100605
  year: 2021
  ident: e_1_2_12_27_1
  article-title: A novel multi‐objective CR‐PSO task scheduling algorithm with deadline constraint in cloud computing
  publication-title: Sustain Comput Inform Syst
– ident: e_1_2_12_32_1
  doi: 10.1007/s40998-019-00260-0
– volume: 24
  start-page: 100352
  year: 2019
  ident: e_1_2_12_23_1
  article-title: Energy efficient VM scheduling strategies for HPC workloads in cloud data centers
  publication-title: Sust Comput Inform Syst
– ident: e_1_2_12_24_1
  doi: 10.1016/j.asoc.2019.105627
– ident: e_1_2_12_26_1
  doi: 10.1016/j.asej.2020.07.003
– volume: 61
  start-page: 1523
  issue: 10
  year: 2018
  ident: e_1_2_12_8_1
  article-title: A new multi‐objective optimal programming model for task scheduling using genetic gray wolf optimization in cloud computing
  publication-title: The Computer
– ident: e_1_2_12_16_1
  doi: 10.1016/j.ins.2019.10.035
– volume: 23
  start-page: 891
  issue: 4
  year: 2020
  ident: e_1_2_12_17_1
  article-title: Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere
  publication-title: Eng Sci Tech Int J
– ident: e_1_2_12_29_1
  doi: 10.1016/j.knosys.2018.03.011
– ident: e_1_2_12_5_1
  doi: 10.1016/j.compeleceng.2015.07.021
– ident: e_1_2_12_10_1
  doi: 10.1007/s11277-019-06817-w
– ident: e_1_2_12_14_1
  doi: 10.1007/s00521-018-3610-2
SSID ssj0011031
Score 2.3611913
Snippet Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance...
Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cloud computing
Computer architecture
Genetic algorithms
Heuristic
Heuristic methods
Heuristic scheduling
Machine learning
meta‐heuristic
Optimization
optimization and scheduling
Optimization techniques
Parameters
QoS parameters
Resource utilization
Scheduling
Task scheduling
Title Optimization techniques for task scheduling criteria in IaaS cloud computing atmosphere using nature inspired hybrid spotted hyena optimization algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7228
https://www.proquest.com/docview/2720651782
Volume 34
WOSCitedRecordID wos000831095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i-uLEURP1TZpbXoUdVEQFV94K0maruJuK7YK_hT_rTN9rAoKgqfSMmlDkpl8afJ9w9gmBkA_0aF2pEl9x0f45khrpKNMwFMbqNBW6d5uT8OzM3l3F100pyqJC1PrQwx_uJFnVPGaHFzpYvdTNNQ82Z2QcznKxolThQuv8cPL7s3pcA-BEhjUaqnccRG3t9KzLt9ty36fjD4R5lecWk003en_VHGGTTXwEvbr8TDLRmw2x6bb1A3QePI8ez_HUDFoOJgwFHItADEslKp4BFz14ixEZHXAwEKKzgoeMjhR6gpMP39JwFRvJQNVDvKC9Aks0Dn6HtRyoWhP-_g2gfs3IoYBLqHLsrq1mYL8axVUv5fjZ-4HC-yme3R9cOw0WRocg1BBOloo9GFpPOuqPYv4y0ujUHsijKRxTaDS1NOaB8QVSrirRYhjV6SJSwZeaoxYZGNZntklBkIkWkQmkqFFoOOnSgTWR7yn8VmiErfDttvuik0jYU6ZNPpxLb7MY2zxmFq8wzaGlk-1bMcPNqttj8eN4xYxbUvvBR7ipg7bqvr21_LxwcURXZf_arjCJjmRJyom4yobK59f7BqbMK_lQ_G83gzfD1Yx-Jk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VLRJcKF8VCwUGCcEpNLGTtSNOqHTVimWpoEW9RbbjtBW7SdWkSPwU_i0z-dgWCSQkTlGicWLZnvGznfcG4CUFwDi3ygbaFXEQE3wLtHc6MC4RhU-M8m26t68zNZ_r4-P0YA3eDlyYTh9iteHGntHGa3Zw3pDevlINdef-jRJC34D1eCKVHsH6-8_To9nqEIEzGHRyqSIICbgP2rOh2B7K_j4bXUHM60C1nWmmG_9Vx7twpweY-K4bEfdgzZf3YWNI3oC9Lz-An58oWCx7FiaupFxrJBSLjam_Ia17aR5iujpSaGFNZ4NnJe4b8wXdorrM0bVvZQPTLKuaFQo88p_0J9gJhpI9n-T7HE9_MDUMaRHdNO2tLw1W16tgFicVfeZ0-RCOpruHO3tBn6chcAQWdGClIS_WLvKhmXhCYFGRKhtJlWoXusQURWStSJgtlIvQSkWjVxZ5yAZR4ZzchFFZlf4RoJS5lalLtfIEdeLCyMTHhPgsPctNHo7h9dBfmetFzDmXxiLr5JdFRi2ecYuP4cXK8rwT7viDzdbQ5VnvunXGB9OTJCLkNIZXbef-tXy2c7DL18f_avgcbu0dfpxls_35hydwWzCVouU1bsGoubj0T-Gm-96c1RfP-rH8CydI_Ik
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL3UbRFfrK0WV6u9BdGn2GQmaSb4JG0XS5d1aa30LcxnW9xNliYV_Cn-W-_kY1tBQfApJNxJhpm5d87M5JwL8IYCYGxUqgKhXRzEBN8CYbUIpE6Ys4lMbZPu7es4nUzExUU2XYEPPRem1YdYbrh5z2jitXdwuzBu7041VC_s-5Qx8QBW4yRL4gGsHp6OzsfLQwSfwaCVS2VBSMC9154N2V5f9vfZ6A5i3geqzUwzWv-vOj6Bxx3AxI_tiNiAFVtswnqfvAE7X34KPz9TsJh3LExcSrlWSCgWa1l9Q1r30jzk6epIocVrOku8LvBYyjPUs_LWoG7e6g1kPS8rr1Bg0f9Jf4mtYCjZ-5N8a_Dqh6eGIS2i67q5tYXE8n4V5OyypM9czZ_B-ejoy8GnoMvTEGgCCyJQXJIXCx3ZUO5bQmCRy1IV8TQTOtSJdC5SiiWeLWRYqHhKo5c7E3qDyGnNt2BQlIV9Dsi5UTzTmUgtQZ3YSZ7YmBCfomdGmnAI7_r-ynUnYu5zaczyVn6Z5dTiuW_xIewuLRetcMcfbLb7Ls87161yfzC9n0SEnIbwtuncv5bPD6ZH_vriXw134OH0cJSPjycnL-ER80yKhta4DYP65ta-gjX9vb6ubl53Q_kXucr8BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+techniques+for+task+scheduling+criteria+in+IaaS+cloud+computing+atmosphere+using+nature+inspired+hybrid+spotted+hyena+optimization+algorithm&rft.jtitle=Concurrency+and+computation&rft.au=Natesan%2C+Gobalakrishnan&rft.au=Javid%2C+Ali&rft.au=Krishnadoss%2C+Pradeep&rft.au=Chidambaram%2C+Raman&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=24&rft_id=info:doi/10.1002%2Fcpe.7228&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon