Optimization techniques for task scheduling criteria in IaaS cloud computing atmosphere using nature inspired hybrid spotted hyena optimization algorithm
Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. T...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 34; číslo 24 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2022
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation. |
|---|---|
| AbstractList | Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation. Summary Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option owing to its infrastructure that comprises of heterogeneous collection of autonomous computers and adaptable network architecture. The tasks that are scheduled in an optimized manner for their execution could be classified under NP‐hard problems. Though meta‐heuristic scheduling algorithms emerge as scheduling options, they need to be much more consistent while dealing with the dynamic set up of the cloud environment. In this paper, we had proposed a multi‐objective meta‐heuristic scheduling algorithm namely Quasi Oppositional Genetic Spotted Hyena Optimization (QOGSHO) algorithm that globally optimizes the makespan, resource consumption and SLA violation QoS parameters, thereby improving the performance. The algorithm proposed is an amalgamated product of meta‐heuristic algorithms like Quasi Oppositional Based Learning (QOBL), Spotted Hyena Optimization (SHO), and Genetic Algorithm (GA). The performance efficiency of the proposed QOGSHO algorithm had been compared with various scheduling algorithms using uniform datasets by varying the data instance sizes in a simulated cloud environment. The obtained results clearly justify the task scheduling efficiency of the proposed algorithm with respect to the QoS parameters namely makespan, resource utilization and SLA violation. |
| Author | Natesan, Gobalakrishnan Nanjappan, Manikandan Chidambaram, Raman Krishnadoss, Pradeep Ali, Javid |
| Author_xml | – sequence: 1 givenname: Gobalakrishnan orcidid: 0000-0003-3820-6744 surname: Natesan fullname: Natesan, Gobalakrishnan email: gobalakrishnanse@gmail.com organization: Sri Venkateswara College of Engineering – sequence: 2 givenname: Javid surname: Ali fullname: Ali, Javid organization: St. Joseph's Institute of Technology – sequence: 3 givenname: Pradeep orcidid: 0000-0002-6430-5650 surname: Krishnadoss fullname: Krishnadoss, Pradeep organization: Vellore Institute of Technology – sequence: 4 givenname: Raman surname: Chidambaram fullname: Chidambaram, Raman organization: St. Joseph's College of Engineering – sequence: 5 givenname: Manikandan orcidid: 0000-0001-7406-1242 surname: Nanjappan fullname: Nanjappan, Manikandan organization: SRM Institute of Science and Technology, Kattankulathur |
| BookMark | eNp1kFtLwzAYhoNMcJuCPyHgjTedOWxtdylj6mCgoF6HNE3WzDaJSYrMf-K_td1ERPTqO_B8h_cdgYGxRgJwjtEEI0SuhJOTjJD8CAzxjJIEpXQ6-M5JegJGIWwRwhhRPAQf9y7qRr_zqK2BUYrK6NdWBqish5GHFxhEJcu21mYDhddRes2hNnDF-SMUtW1LKGzj2tgDPDY2uEp6CdvQNwyPbVdoE5z2soTVrvC6hMHZGPelNBzany_wemO7M1VzCo4Vr4M8-4pj8HyzfFrcJev729Xiep0IMqd5UlCe0jwXWCKeyhmeYjXPCkyzeS6QmHGlcFGQTj1GJUEFzSQvqSpRD2AlBB2Di8Ne522vPLKtbb3pTjKSEZTOcJaTjro8UMLbELxUzHndcL9jGLHeeNYZz3rjO3TyCxU67sVFz3X910ByGHjTtdz9u5gtHpZ7_hOWYZpN |
| CitedBy_id | crossref_primary_10_3390_s23188009 crossref_primary_10_1016_j_susoc_2024_07_001 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_32604_cmc_2024_046304 crossref_primary_10_1038_s41598_023_46284_9 crossref_primary_10_1016_j_simpat_2024_103014 |
| Cites_doi | 10.1016/j.swevo.2017.09.010 10.1016/j.future.2015.08.006 10.24200/sci.2018.50766.1855 10.1016/j.jss.2019.110405 10.1109/ACCESS.2015.2508940 10.1016/j.eij.2015.07.001 10.1016/j.future.2019.04.029 10.1016/j.advengsoft.2017.05.014 10.1109/ACCESS.2016.2633288 10.1007/s13174-010-0007-6 10.1007/s10922-014-9307-7 10.1007/s00521-019-04067-2 10.1007/s00521-019-04118-8 10.1016/j.simpat.2018.10.004 10.1007/s13319-019-0222-2 10.1109/4235.797971 10.1007/s11277-019-06566-w 10.1016/j.simpat.2018.09.001 10.1109/TASE.2013.2272758 10.1016/j.jestch.2018.11.003 10.1016/j.future.2018.10.037 10.1016/j.icte.2018.07.002 10.1016/j.future.2008.12.001 10.1007/s11277-018-5816-0 10.1007/s40998-019-00260-0 10.1016/j.asoc.2019.105627 10.1016/j.asej.2020.07.003 10.1016/j.ins.2019.10.035 10.1016/j.knosys.2018.03.011 10.1016/j.compeleceng.2015.07.021 10.1007/s11277-019-06817-w 10.1007/s00521-018-3610-2 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.7228 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_7228 CPE7228 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AFZJQ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-b3a6388c1e0a6e5141f97b13798c0c5aff1bb253210d20b37ead3fd037981fcc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Fri Jul 25 03:11:04 EDT 2025 Sat Nov 29 01:41:30 EST 2025 Tue Nov 18 22:35:31 EST 2025 Wed Jan 22 16:24:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-b3a6388c1e0a6e5141f97b13798c0c5aff1bb253210d20b37ead3fd037981fcc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3820-6744 0000-0002-6430-5650 0000-0001-7406-1242 |
| PQID | 2720651782 |
| PQPubID | 2045170 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2720651782 crossref_primary_10_1002_cpe_7228 crossref_citationtrail_10_1002_cpe_7228 wiley_primary_10_1002_cpe_7228_CPE7228 |
| PublicationCentury | 2000 |
| PublicationDate | 1 November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 1 November 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2009; 25 2019; 93 2015; 16 2019; 5 2015; 3 2019; 31 2019; 10 2018; 101 2019; 109 1999; 3 2020; 32 2017; 114 2019; 100 2018; 27 2018; J61 2016; 56 2015; 23 2016; 5 2015; 47 2018; 39 2021; 32 2010; 1 2021; 12 2019; 83 2018; 150 2013; 11 2019; 22 2019; 24 2020; 512 2019; 158 2020; 23 2020; 44 2019; 110 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 Sanaj MS (e_1_2_12_17_1) 2020; 23 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_16_1 Chandio AA (e_1_2_12_23_1) 2019; 24 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_28_1 e_1_2_12_29_1 Gobalakrishnan N (e_1_2_12_8_1) 2018; 61 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 Dubey K (e_1_2_12_27_1) 2021; 32 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 5 start-page: 22067 year: 2016 end-page: 22080 article-title: A multi‐objective hybrid cloud resource scheduling method based on deadline and cost constraints publication-title: IEEE Access – volume: 25 start-page: 599 issue: 6 year: 2009 end-page: 616 article-title: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility publication-title: Future Gener Comput Syst – volume: 100 start-page: 98 year: 2019 end-page: 108 article-title: Dynamic multi‐workflow scheduling: a deadline and cost‐aware approach for commercial clouds publication-title: Future Gener Comput Syst – volume: 512 start-page: 1170 year: 2020 end-page: 1191 article-title: A scheduling scheme in the cloud computing environment using deep Q‐learning publication-title: Inform Sci – volume: 27 start-page: 3096 year: 2018 end-page: 3117 article-title: Quasi‐oppositional symbiotic organisms search algorithm for different economic load dispatch problems publication-title: Sci Iran – volume: J61 start-page: 1523 issue: 10 year: 2018 end-page: 1536 article-title: A new multi‐objective optimal programming model for task scheduling using genetic gray wolf optimization in cloud computing publication-title: The Computer – volume: 101 start-page: 2287 issue: 4 year: 2018 end-page: 2311 article-title: A hybrid approach for task scheduling using the cuckoo and harmony search in cloud computing environment publication-title: Wirel Person Commun – volume: 10 issue: 2 year: 2019 article-title: LGSA: hybrid task scheduling in multi objective functionality in cloud computing environment publication-title: 3D Research – volume: 24 year: 2019 article-title: Energy efficient VM scheduling strategies for HPC workloads in cloud data centers publication-title: Sust Comput Inform Syst – volume: 3 start-page: 2687 year: 2015 end-page: 2699 article-title: A multi‐objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access – volume: 83 year: 2019 article-title: Cost optimized hybrid genetic‐gravitational search algorithm for load scheduling in cloud computing publication-title: Appl Soft Comput – volume: 23 start-page: 891 issue: 4 year: 2020 end-page: 902 article-title: Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere publication-title: Eng Sci Tech Int J – volume: 3 start-page: 287 issue: 4 year: 1999 end-page: 297 article-title: The compact genetic algorithm publication-title: IEEE Trans Evol Comput – volume: 47 start-page: 186 year: 2015 end-page: 203 article-title: Resource management in cloud computing: taxonomy, prospects, and challenges publication-title: Comput Elect Eng – volume: 16 start-page: 275 issue: 3 year: 2015 end-page: 295 article-title: A review of metaheuristic scheduling techniques in cloud computing publication-title: Egyp Inform J – volume: 93 start-page: 3 year: 2019 end-page: 20 article-title: GAME‐SCORE: game‐based energy‐aware cloud scheduler and simulator for computational clouds publication-title: Simul Mod Pract Theo – volume: 109 start-page: 315 issue: 1 year: 2019 end-page: 331 article-title: A multi‐objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization publication-title: Wirel Person Commun – volume: 32 start-page: 5901 year: 2020 end-page: 5907 article-title: Amelioration of task scheduling in cloud computing using crow search algorithm publication-title: Neural Comput Appl – volume: 44 start-page: 781 year: 2020 end-page: 804 article-title: Quasi‐oppositional backtracking search algorithm to solve load frequency control problem of interconnected power system publication-title: Iran J Sci Tech Trans Electr Eng – volume: 23 start-page: 567 issue: 3 year: 2015 end-page: 619 article-title: Resource management in clouds: survey and research challenges publication-title: J Netw Syst Manag – volume: 110 start-page: 1887 issue: 4 year: 2019 end-page: 1913 article-title: Multi‐objective task scheduling using hybrid whale genetic optimization algorithm in heterogeneous computing environment publication-title: Wirel Person Commun – volume: 114 start-page: 48 year: 2017 end-page: 70 article-title: Spotted hyena optimizer: a novel bio‐inspired based metaheuristic technique for engineering applications publication-title: Adv Eng Softw – volume: 32 year: 2021 article-title: A novel multi‐objective CR‐PSO task scheduling algorithm with deadline constraint in cloud computing publication-title: Sustain Comput Inform Syst – volume: 56 start-page: 640 year: 2016 end-page: 650 article-title: Symbiotic organism search optimization based task scheduling in cloud computing environment publication-title: Future Gener Comput Syst – volume: 32 start-page: 5553 year: 2020 end-page: 5570 article-title: QL‐HEFT: a novel machine learning scheduling scheme base on cloud computing environment publication-title: Neural Comput Appl – volume: 158 year: 2019 article-title: ECOS: an efficient task‐clustering based cost‐effective aware scheduling algorithm for scientific workflows execution on heterogeneous cloud systems publication-title: J Syst Softw – volume: 11 start-page: 564 issue: 2 year: 2013 end-page: 573 article-title: Self‐adaptive learning PSO‐based deadline constrained task scheduling for hybrid IaaS cloud publication-title: IEEE Trans Autom Sci Eng – volume: 5 start-page: 110 issue: 2 year: 2019 end-page: 114 article-title: Task scheduling in heterogeneous cloud environment using mean grey wolf optimization algorithm publication-title: ICT Express – volume: 39 start-page: 1 year: 2018 end-page: 23 article-title: Opposition based learning: a literature review publication-title: Swarm Evol Comput – volume: 31 start-page: 1353 year: 2019 end-page: 1363 article-title: An efficient cost‐based algorithm for scheduling workflow tasks in cloud computing systems publication-title: Neural Comput Appl – volume: 93 start-page: 119 year: 2019 end-page: 132 article-title: MOWS: multi‐objective workflow scheduling in cloud computing based on heuristic algorithm publication-title: Simul Mod Pract Theo – volume: 12 start-page: 631 issue: 1 year: 2021 end-page: 639 article-title: Hybrid electro search with genetic algorithm for task scheduling in cloud computing publication-title: Ain Shams Eng J – volume: 150 start-page: 175 year: 2018 end-page: 197 article-title: Multi‐objective spotted hyena optimizer: a multi‐objective optimization algorithm for engineering problems publication-title: Knowl‐based Syst – volume: 1 start-page: 7 year: 2010 end-page: 18 article-title: Cloud computing: state‐of‐the‐art and research challenges publication-title: J Inter Serv Appl – volume: 22 start-page: 646 issue: 2 year: 2019 end-page: 655 article-title: A novel resource aware scheduling with multi‐criteria for heterogeneous computing systems publication-title: Eng Sci Tech Int J – volume: 93 start-page: 212 year: 2019 end-page: 223 article-title: A methodological framework for cloud resource provisioning and scheduling of data parallel applications under uncertainty publication-title: Future Gener Comput Syst – ident: e_1_2_12_30_1 doi: 10.1016/j.swevo.2017.09.010 – ident: e_1_2_12_34_1 doi: 10.1016/j.future.2015.08.006 – ident: e_1_2_12_31_1 doi: 10.24200/sci.2018.50766.1855 – ident: e_1_2_12_25_1 doi: 10.1016/j.jss.2019.110405 – ident: e_1_2_12_35_1 doi: 10.1109/ACCESS.2015.2508940 – ident: e_1_2_12_6_1 doi: 10.1016/j.eij.2015.07.001 – ident: e_1_2_12_20_1 doi: 10.1016/j.future.2019.04.029 – ident: e_1_2_12_28_1 doi: 10.1016/j.advengsoft.2017.05.014 – ident: e_1_2_12_37_1 doi: 10.1109/ACCESS.2016.2633288 – ident: e_1_2_12_3_1 doi: 10.1007/s13174-010-0007-6 – ident: e_1_2_12_4_1 doi: 10.1007/s10922-014-9307-7 – ident: e_1_2_12_11_1 doi: 10.1007/s00521-019-04067-2 – ident: e_1_2_12_9_1 doi: 10.1007/s00521-019-04118-8 – ident: e_1_2_12_19_1 doi: 10.1016/j.simpat.2018.10.004 – ident: e_1_2_12_12_1 doi: 10.1007/s13319-019-0222-2 – ident: e_1_2_12_33_1 doi: 10.1109/4235.797971 – ident: e_1_2_12_7_1 doi: 10.1007/s11277-019-06566-w – ident: e_1_2_12_18_1 doi: 10.1016/j.simpat.2018.09.001 – ident: e_1_2_12_36_1 doi: 10.1109/TASE.2013.2272758 – ident: e_1_2_12_21_1 doi: 10.1016/j.jestch.2018.11.003 – ident: e_1_2_12_22_1 doi: 10.1016/j.future.2018.10.037 – ident: e_1_2_12_13_1 doi: 10.1016/j.icte.2018.07.002 – ident: e_1_2_12_2_1 doi: 10.1016/j.future.2008.12.001 – ident: e_1_2_12_15_1 doi: 10.1007/s11277-018-5816-0 – volume: 32 start-page: 100605 year: 2021 ident: e_1_2_12_27_1 article-title: A novel multi‐objective CR‐PSO task scheduling algorithm with deadline constraint in cloud computing publication-title: Sustain Comput Inform Syst – ident: e_1_2_12_32_1 doi: 10.1007/s40998-019-00260-0 – volume: 24 start-page: 100352 year: 2019 ident: e_1_2_12_23_1 article-title: Energy efficient VM scheduling strategies for HPC workloads in cloud data centers publication-title: Sust Comput Inform Syst – ident: e_1_2_12_24_1 doi: 10.1016/j.asoc.2019.105627 – ident: e_1_2_12_26_1 doi: 10.1016/j.asej.2020.07.003 – volume: 61 start-page: 1523 issue: 10 year: 2018 ident: e_1_2_12_8_1 article-title: A new multi‐objective optimal programming model for task scheduling using genetic gray wolf optimization in cloud computing publication-title: The Computer – ident: e_1_2_12_16_1 doi: 10.1016/j.ins.2019.10.035 – volume: 23 start-page: 891 issue: 4 year: 2020 ident: e_1_2_12_17_1 article-title: Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere publication-title: Eng Sci Tech Int J – ident: e_1_2_12_29_1 doi: 10.1016/j.knosys.2018.03.011 – ident: e_1_2_12_5_1 doi: 10.1016/j.compeleceng.2015.07.021 – ident: e_1_2_12_10_1 doi: 10.1007/s11277-019-06817-w – ident: e_1_2_12_14_1 doi: 10.1007/s00521-018-3610-2 |
| SSID | ssj0011031 |
| Score | 2.3611913 |
| Snippet | Summary
Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance... Cloud computing has garnered unprecedented growth in recent years in the field of Information Technology. It has emerged as a high‐performance computing option... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Cloud computing Computer architecture Genetic algorithms Heuristic Heuristic methods Heuristic scheduling Machine learning meta‐heuristic Optimization optimization and scheduling Optimization techniques Parameters QoS parameters Resource utilization Scheduling Task scheduling |
| Title | Optimization techniques for task scheduling criteria in IaaS cloud computing atmosphere using nature inspired hybrid spotted hyena optimization algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7228 https://www.proquest.com/docview/2720651782 |
| Volume | 34 |
| WOSCitedRecordID | wos000831095900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i-uLEURP1TZpbXoUdVEQFV94K0maruJuK7YK_hT_rTN9rAoKgqfSMmlDkpl8afJ9w9gmBkA_0aF2pEl9x0f45khrpKNMwFMbqNBW6d5uT8OzM3l3F100pyqJC1PrQwx_uJFnVPGaHFzpYvdTNNQ82Z2QcznKxolThQuv8cPL7s3pcA-BEhjUaqnccRG3t9KzLt9ty36fjD4R5lecWk003en_VHGGTTXwEvbr8TDLRmw2x6bb1A3QePI8ez_HUDFoOJgwFHItADEslKp4BFz14ixEZHXAwEKKzgoeMjhR6gpMP39JwFRvJQNVDvKC9Aks0Dn6HtRyoWhP-_g2gfs3IoYBLqHLsrq1mYL8axVUv5fjZ-4HC-yme3R9cOw0WRocg1BBOloo9GFpPOuqPYv4y0ujUHsijKRxTaDS1NOaB8QVSrirRYhjV6SJSwZeaoxYZGNZntklBkIkWkQmkqFFoOOnSgTWR7yn8VmiErfDttvuik0jYU6ZNPpxLb7MY2zxmFq8wzaGlk-1bMcPNqttj8eN4xYxbUvvBR7ipg7bqvr21_LxwcURXZf_arjCJjmRJyom4yobK59f7BqbMK_lQ_G83gzfD1Yx-Jk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VLRJcKF8VCwUGCcEpNLGTtSNOqHTVimWpoEW9RbbjtBW7SdWkSPwU_i0z-dgWCSQkTlGicWLZnvGznfcG4CUFwDi3ygbaFXEQE3wLtHc6MC4RhU-M8m26t68zNZ_r4-P0YA3eDlyYTh9iteHGntHGa3Zw3pDevlINdef-jRJC34D1eCKVHsH6-8_To9nqEIEzGHRyqSIICbgP2rOh2B7K_j4bXUHM60C1nWmmG_9Vx7twpweY-K4bEfdgzZf3YWNI3oC9Lz-An58oWCx7FiaupFxrJBSLjam_Ia17aR5iujpSaGFNZ4NnJe4b8wXdorrM0bVvZQPTLKuaFQo88p_0J9gJhpI9n-T7HE9_MDUMaRHdNO2tLw1W16tgFicVfeZ0-RCOpruHO3tBn6chcAQWdGClIS_WLvKhmXhCYFGRKhtJlWoXusQURWStSJgtlIvQSkWjVxZ5yAZR4ZzchFFZlf4RoJS5lalLtfIEdeLCyMTHhPgsPctNHo7h9dBfmetFzDmXxiLr5JdFRi2ecYuP4cXK8rwT7viDzdbQ5VnvunXGB9OTJCLkNIZXbef-tXy2c7DL18f_avgcbu0dfpxls_35hydwWzCVouU1bsGoubj0T-Gm-96c1RfP-rH8CydI_Ik |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL3UbRFfrK0WV6u9BdGn2GQmaSb4JG0XS5d1aa30LcxnW9xNliYV_Cn-W-_kY1tBQfApJNxJhpm5d87M5JwL8IYCYGxUqgKhXRzEBN8CYbUIpE6Ys4lMbZPu7es4nUzExUU2XYEPPRem1YdYbrh5z2jitXdwuzBu7041VC_s-5Qx8QBW4yRL4gGsHp6OzsfLQwSfwaCVS2VBSMC9154N2V5f9vfZ6A5i3geqzUwzWv-vOj6Bxx3AxI_tiNiAFVtswnqfvAE7X34KPz9TsJh3LExcSrlWSCgWa1l9Q1r30jzk6epIocVrOku8LvBYyjPUs_LWoG7e6g1kPS8rr1Bg0f9Jf4mtYCjZ-5N8a_Dqh6eGIS2i67q5tYXE8n4V5OyypM9czZ_B-ejoy8GnoMvTEGgCCyJQXJIXCx3ZUO5bQmCRy1IV8TQTOtSJdC5SiiWeLWRYqHhKo5c7E3qDyGnNt2BQlIV9Dsi5UTzTmUgtQZ3YSZ7YmBCfomdGmnAI7_r-ynUnYu5zaczyVn6Z5dTiuW_xIewuLRetcMcfbLb7Ls87161yfzC9n0SEnIbwtuncv5bPD6ZH_vriXw134OH0cJSPjycnL-ER80yKhta4DYP65ta-gjX9vb6ubl53Q_kXucr8BA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+techniques+for+task+scheduling+criteria+in+IaaS+cloud+computing+atmosphere+using+nature+inspired+hybrid+spotted+hyena+optimization+algorithm&rft.jtitle=Concurrency+and+computation&rft.au=Natesan%2C+Gobalakrishnan&rft.au=Javid%2C+Ali&rft.au=Krishnadoss%2C+Pradeep&rft.au=Chidambaram%2C+Raman&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=24&rft_id=info:doi/10.1002%2Fcpe.7228&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |