Application programming interface recommendation for smart contract using deep learning from augmented code representation

Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of software : evolution and process Ročník 36; číslo 8
Hlavní autoři: Cai, Jie, Cai, Qian, Li, Bin, Zhang, Jiale, Sun, Xiaobing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester Wiley Subscription Services, Inc 01.08.2024
Témata:
ISSN:2047-7473, 2047-7481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results. This paper proposes a learning‐based approach for API recommendation in smart contracts. We propose a code graph named pruned and augmented AST (pa‐AST) with the API sequence to capture the semantic features surrounding recommendation points. Meanwhile, we utilize a GAT‐based model for code feature learning and API recommendation.
AbstractList Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results. This paper proposes a learning‐based approach for API recommendation in smart contracts. We propose a code graph named pruned and augmented AST (pa‐AST) with the API sequence to capture the semantic features surrounding recommendation points. Meanwhile, we utilize a GAT‐based model for code feature learning and API recommendation.
Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked list of candidate APIs for specific recommendation points. Deep learning‐based approaches have shown promising results in this field. However, existing approaches mainly rely on token sequences or abstract syntax trees (ASTs) for learning recommendation point‐related features, which may overlook the essential knowledge implied in the relations between or within statements and may include task‐irrelevant components during feature learning. To address these limitations, we propose a novel code graph called pruned and augmented AST (pa‐AST). Our approach enhances the AST by incorporating additional knowledge derived from the control and data flow relations between and within statements in the smart contract code. Through this augmentation, the pa‐AST can better represent the semantic features of the code. Furthermore, we conduct AST pruning to eliminate task‐irrelevant components based on the identified flow relations. This step helps mitigate the interference caused by these irrelevant parts during the model feature learning process. Additionally, we extract the API sequence surrounding the recommendation point to provide supplementary knowledge for the model learning. The experimental results demonstrate our proposed approach achieving an average mean reciprocal rank (MRR) of 68.02%, outperforming the baselines' performance. Furthermore, through ablation experiments, we explore the effectiveness of our proposed code representation approach. The results indicate that combining pa‐AST with the API sequence yields improved performance compared with using them individually. Moreover, our AST augmentation and pruning techniques significantly contribute to the overall results.
Author Zhang, Jiale
Cai, Qian
Cai, Jie
Li, Bin
Sun, Xiaobing
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0009-0000-9578-8985
  surname: Cai
  fullname: Cai, Jie
  organization: Yangzhou University
– sequence: 2
  givenname: Qian
  surname: Cai
  fullname: Cai, Qian
  organization: Yangzhou University
– sequence: 3
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  email: lb@yzu.edu.cn
  organization: Yangzhou University
– sequence: 4
  givenname: Jiale
  surname: Zhang
  fullname: Zhang, Jiale
  organization: Yangzhou University
– sequence: 5
  givenname: Xiaobing
  surname: Sun
  fullname: Sun, Xiaobing
  organization: Yangzhou University
BookMark eNp1kF1LwzAYhYMoOOfAnxDwxpvONGmb9nIMv2Ai-HEdsvTNyGiTmnTI_PWmq3ghmpt88Jzz5pwzdGydBYQuUjJPCaHXofVzWuTlEZpQkvGEZ2V6_HPm7BTNQtiSuApK8iyfoM9F1zVGyd44izvvNl62rbEbbGwPXksF2INybQu2HiHtPA6t9D1WzvZeqh7vwqCoATrcgPR2uGnvWix3myjsoY5sPTh1HkJ8ODidoxMtmwCz732K3m5vXpf3yerp7mG5WCWKVqxM1oykOWW8yCQHRqGglGmVMwY1VbmSaaWzNWQp11VelpTIoqh1neuYjwPINZuiy9E3xnvfQejF1u28jSMFI2VFonXJIzUfKeVdCB60UGb8Z8xoGpESMVQsYsViqDgKrn4JOm9iL_u_0GREP0wD-3858fL4fOC_ABTUj40
CitedBy_id crossref_primary_10_3390_computers14040119
Cites_doi 10.1145/3468264.3473929
10.1145/3212695
10.1109/ICSE43902.2021.00025
10.1109/SANER50967.2021.00050
10.1145/3460319.3469078
10.1145/3238147.3238216
10.1109/ICSE43902.2021.00145
10.1109/ICSE.2012.6227205
10.1007/978-1-4842-2535-6
10.1109/QRS54544.2021.00082
10.1109/SCAM.2016.22
10.1080/00207543.2019.1627439
10.1109/ICSS55994.2022.00046
10.1007/978-1-4842-8975-4_5
10.1145/2950290.2950333
10.1109/ISSRE.2019.00044
10.1049/cje.2020.10.010
10.1017/S0962492900002919
10.1145/3190508.3190538
10.1016/j.jnca.2020.102857
10.1109/ICSE.2019.00109
10.1109/ICSE.2015.336
10.1109/JIOT.2018.2847705
10.18653/v1/2020.findings-emnlp.139
10.1109/ICPC.2019.00045
10.1007/s10664-021-10040-2
10.4249/scholarpedia.1888
10.1007/s11432-018-9821-9
10.1109/ICSE-Companion.2019.00053
10.1007/s11432-021-3529-9
10.1109/ICSE.2017.47
10.1109/TSE.2021.3074309
10.1109/TSE.2023.3252259
10.1109/SANER56733.2023.00034
10.1109/TSE.2019.2942301
10.1016/j.jss.2018.04.060
10.1108/IJIUS-07-2021-0055
10.1162/neco_a_01199
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.2658
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage n/a
ExternalDocumentID 10_1002_smr_2658
SMR2658
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62206238; 61972335
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-b301523764a7e32e6223fc533ed2c5ca19f4be417f958820a66dfd5f0547eeab3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177053200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2047-7473
IngestDate Sat Jul 26 02:51:50 EDT 2025
Sat Nov 29 03:00:25 EST 2025
Tue Nov 18 22:04:13 EST 2025
Wed Jun 11 08:24:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-b301523764a7e32e6223fc533ed2c5ca19f4be417f958820a66dfd5f0547eeab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-9578-8985
PQID 3089037687
PQPubID 2034650
PageCount 19
ParticipantIDs proquest_journals_3089037687
crossref_citationtrail_10_1002_smr_2658
crossref_primary_10_1002_smr_2658
wiley_primary_10_1002_smr_2658_SMR2658
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 142
2021; 48
2023; 11
2019; 31
2012
2011
2021; 103
2023; 16
2020; 58
1999; 8
2013; 8
2021; 30
2022; 27
2018; 6
2019; 62
2023; 66
2023
2022
2021
2020
2023; 49
2019; 47
2019
2018
2017
2016
2018; 51
2015
2021; 177
2014
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
Schär F (e_1_2_11_6_1) 2021; 103
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
Jiang Z (e_1_2_11_8_1) 2023; 16
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_5_1
Krochmalski J (e_1_2_11_34_1) 2014
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
JoranHonig (e_1_2_11_28_1) 2022
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 48
  start-page: 2987
  issue: 8
  year: 2021
  end-page: 3009
  article-title: Holistic combination of structural and textual code information for context based API recommendation
  publication-title: IEEE Trans Softw Eng
– volume: 58
  start-page: 2184
  issue: 7
  year: 2020
  end-page: 2199
  article-title: Blockchain‐oriented dynamic modelling of smart contract design and execution in the supply chain
  publication-title: Int J Prod Res
– start-page: 858
  year: 2015
  end-page: 868
– volume: 8
  start-page: 1888
  issue: 2
  year: 2013
  article-title: Recurrent neural networks
  publication-title: Scholarpedia
– volume: 142
  start-page: 195
  year: 2018
  end-page: 205
  article-title: MULAPI: improving API method recommendation with API usage location
  publication-title: J Syst Softw
– volume: 16
  start-page: 1822
  issue: 3
  year: 2023
  end-page: 1832
  article-title: Exploring smart contract recommendation: towards efficient blockchain development
  publication-title: IEEE Trans Serv Comput
– start-page: 438
  year: 2017
  end-page: 449
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  end-page: 1270
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput
– volume: 6
  start-page: 1594
  issue: 2
  year: 2018
  end-page: 1605
  article-title: Smart contract‐based access control for the Internet of Things
  publication-title: IEEE Int Things J
– volume: 51
  start-page: 1
  issue: 4
  year: 2018
  end-page: 37
  article-title: A survey of machine learning for big code and naturalness
  publication-title: ACM Comput Surv (CSUR)
– start-page: 89
  year: 2023
  end-page: 126
– volume: 62
  start-page: 1
  year: 2019
  end-page: 22
  article-title: Generative API usage code recommendation with parameter concretization
  publication-title: Sci China Inform Sci
– volume: 66
  issue: 2
  year: 2023
  article-title: Context‐aware API recommendation using tensor factorization
  publication-title: Sci China Inform Sci
– start-page: 726
  year: 2021
  end-page: 737
– start-page: 69
  year: 2012
  end-page: 79
– year: 2014
– start-page: 272
  year: 2023
  end-page: 283
– start-page: 1050
  year: 2019
  end-page: 1060
– volume: 30
  start-page: 55
  issue: 1
  year: 2021
  end-page: 63
  article-title: Are similar bugs fixed with similar change operations? An empirical study
  publication-title: Chinese J Electron
– volume: 47
  start-page: 2084
  issue: 10
  year: 2019
  end-page: 2106
  article-title: Smart contract development: challenges and opportunities
  publication-title: IEEE Trans Softw Eng
– start-page: 470
  year: 2021
  end-page: 479
– start-page: 666
  year: 2021
  end-page: 669
– start-page: 248
  year: 2022
  end-page: 254
– volume: 177
  year: 2021
  article-title: Survey on blockchain based smart contracts: applications, opportunities and challenges
  publication-title: J Netw Comput Appl
– start-page: 260
  year: 2019
  end-page: 270
– volume: 11
  start-page: 75
  issue: 1
  year: 2023
  end-page: 87
  article-title: Context‐based intelligent recommendation by code reuse for smart decision support and cognitive adaptive systems
  publication-title: Int J Intell Unmanned Syst
– volume: 8
  start-page: 143
  year: 1999
  end-page: 195
  article-title: Approximation theory of the MLP model in neural networks
  publication-title: Acta Numer
– start-page: 119
  year: 2019
  end-page: 122
– volume: 49
  start-page: 3289
  issue: 5
  year: 2023
  end-page: 3304
  article-title: API usage recommendation via multi‐view heterogeneous graph representation learning
  publication-title: IEEE Trans Softw Eng
– start-page: 1360
  year: 2021
  end-page: 1370
– year: 2022
– volume: 103
  start-page: 153
  issue: 2
  year: 2021
  end-page: 174
  article-title: Decentralized finance: on blockchain‐ and smart contract‐based financial markets
  publication-title: FRB St Louis Rev
– year: 2020
– year: 2023
– volume: 27
  start-page: 1
  year: 2022
  end-page: 32
  article-title: “More than deep learning”: post‐processing for API sequence recommendation
  publication-title: Empir Softw Eng
– start-page: 51
  year: 2016
  end-page: 60
– start-page: 511
  year: 2016
  end-page: 522
– start-page: 30:1
  year: 2018
  end-page: 30:15
– year: 2017
– start-page: 1017
  year: 2011
  end-page: 1024
– start-page: 369
  year: 2019
  end-page: 379
– start-page: 138
  year: 2021
  end-page: 149
– year: 2019
– start-page: 282
  year: 2018
  end-page: 292
– start-page: 1634
  year: 2021
  end-page: 1645
– ident: e_1_2_11_12_1
  doi: 10.1145/3468264.3473929
– ident: e_1_2_11_14_1
  doi: 10.1145/3212695
– ident: e_1_2_11_44_1
  doi: 10.1109/ICSE43902.2021.00025
– volume-title: IntelliJ Idea Essentials
  year: 2014
  ident: e_1_2_11_34_1
– ident: e_1_2_11_21_1
  doi: 10.1109/SANER50967.2021.00050
– ident: e_1_2_11_10_1
  doi: 10.1145/3460319.3469078
– ident: e_1_2_11_56_1
  doi: 10.1145/3238147.3238216
– ident: e_1_2_11_50_1
  doi: 10.1109/ICSE43902.2021.00145
– ident: e_1_2_11_40_1
  doi: 10.1109/ICSE.2012.6227205
– ident: e_1_2_11_2_1
  doi: 10.1007/978-1-4842-2535-6
– ident: e_1_2_11_27_1
  doi: 10.1109/QRS54544.2021.00082
– ident: e_1_2_11_41_1
  doi: 10.1109/SCAM.2016.22
– ident: e_1_2_11_7_1
  doi: 10.1080/00207543.2019.1627439
– ident: e_1_2_11_32_1
– ident: e_1_2_11_13_1
  doi: 10.1109/ICSS55994.2022.00046
– ident: e_1_2_11_38_1
– ident: e_1_2_11_9_1
  doi: 10.1007/978-1-4842-8975-4_5
– volume-title: tree‐sitter‐solidity
  year: 2022
  ident: e_1_2_11_28_1
– ident: e_1_2_11_54_1
  doi: 10.1145/2950290.2950333
– ident: e_1_2_11_43_1
  doi: 10.1109/ISSRE.2019.00044
– ident: e_1_2_11_45_1
  doi: 10.1049/cje.2020.10.010
– ident: e_1_2_11_30_1
  doi: 10.1017/S0962492900002919
– ident: e_1_2_11_39_1
  doi: 10.1145/3190508.3190538
– ident: e_1_2_11_36_1
– ident: e_1_2_11_33_1
– ident: e_1_2_11_17_1
– ident: e_1_2_11_4_1
  doi: 10.1016/j.jnca.2020.102857
– ident: e_1_2_11_22_1
– ident: e_1_2_11_42_1
  doi: 10.1109/ICSE.2019.00109
– ident: e_1_2_11_19_1
– ident: e_1_2_11_53_1
  doi: 10.1109/ICSE.2015.336
– ident: e_1_2_11_5_1
  doi: 10.1109/JIOT.2018.2847705
– ident: e_1_2_11_31_1
  doi: 10.18653/v1/2020.findings-emnlp.139
– volume: 16
  start-page: 1822
  issue: 3
  year: 2023
  ident: e_1_2_11_8_1
  article-title: Exploring smart contract recommendation: towards efficient blockchain development
  publication-title: IEEE Trans Serv Comput
– ident: e_1_2_11_11_1
  doi: 10.1109/ICPC.2019.00045
– ident: e_1_2_11_25_1
  doi: 10.1007/s10664-021-10040-2
– ident: e_1_2_11_16_1
  doi: 10.4249/scholarpedia.1888
– ident: e_1_2_11_24_1
  doi: 10.1007/s11432-018-9821-9
– ident: e_1_2_11_46_1
  doi: 10.1109/ICSE-Companion.2019.00053
– ident: e_1_2_11_49_1
  doi: 10.1007/s11432-021-3529-9
– ident: e_1_2_11_55_1
  doi: 10.1109/ICSE.2017.47
– ident: e_1_2_11_23_1
  doi: 10.1109/TSE.2021.3074309
– ident: e_1_2_11_52_1
  doi: 10.1109/TSE.2023.3252259
– ident: e_1_2_11_37_1
– ident: e_1_2_11_51_1
  doi: 10.1109/SANER56733.2023.00034
– ident: e_1_2_11_48_1
– ident: e_1_2_11_3_1
  doi: 10.1109/TSE.2019.2942301
– ident: e_1_2_11_20_1
– ident: e_1_2_11_29_1
– ident: e_1_2_11_15_1
– ident: e_1_2_11_18_1
– ident: e_1_2_11_47_1
  doi: 10.1016/j.jss.2018.04.060
– volume: 103
  start-page: 153
  issue: 2
  year: 2021
  ident: e_1_2_11_6_1
  article-title: Decentralized finance: on blockchain‐ and smart contract‐based financial markets
  publication-title: FRB St Louis Rev
– ident: e_1_2_11_26_1
  doi: 10.1108/IJIUS-07-2021-0055
– ident: e_1_2_11_35_1
  doi: 10.1162/neco_a_01199
SSID ssj0000620545
Score 2.3074467
Snippet Application programming interface (API) recommendation plays a crucial role in facilitating smart contract development by providing developers with a ranked...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
API recommendation
Application programming interface
Data augmentation
Deep learning
Pruning
Representations
smart contract
static analysis
Title Application programming interface recommendation for smart contract using deep learning from augmented code representation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.2658
https://www.proquest.com/docview/3089037687
Volume 36
WOSCitedRecordID wos001177053200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2047-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000620545
  issn: 2047-7473
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB109eDFb3F1lQiip2o3bdP2uKiLBxXxA7yVJJ0sgl2X7erBX--kTXcVFARPvUwgTWYyr-mbNwCHcRrnUinpRSLXXqjSrqeixHi8K3yuJCbCV1WzifjmJnl6Sm8dq9LWwtT6ENMLNxsZ1XltA1yq8nQmGloW4xNO-XMeFji5bdiChfO7_uPV9IbFF5zwiOUwcitHQLg5aNRnfX7aDP-ej2Yg8ytUrXJNf-U_s1yFZYcwWa92iTWYw-E6rDTdG5gL5g346M3-XTNH0yookTGrIDE2UiOzX8tFga7vEiN8y8qCfI1VBHepJ8zS5gcsRxwx139iwGzFCpNvg0ruM2e2aJ5V2plNndNwEx77Fw9nl57rxOBpggOJp-gYiCx_JpQxBhwFgQqjCSliznWkZTc1ocKwG5s0IsjuSyFyk0eG1j9GlCrYgtbwdYjbwIIwwMgQDtGUGBUGKom1FhiqQJjU5Gkbjpv9yLSTKbfdMl6yWmCZZ7SkmV3SNhxMLUe1NMcPNp1mSzMXnGUW-Enq08skcRuOqs37dXx2f31nnzt_NdyFJU6wp6YIdqA1Gb_hHizq98lzOd53LvoJcQjuog
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED6ypLC-NFu3sazdpkHpnrw4si3b7ClsCxlLQkkTyJuR5FMYzGlI0j301_dky0kLGwz25JcTyLo73efz3XcAF3Ea51Ip6UUi116o0p6nosR4vCd8riQmwlflsIl4MkkWi_SqAZ_rXpiKH2KfcLOeUd7X1sFtQrp7YA3dFptPnALoE2iFZEVRE1pfp4P5aJ9i8QUnQGKLGLnlIyDgHNT0sz7v1ssfB6QDynyIVctgM2j_1zafwYnDmKxfGcVzaODqFNr1_Abm3PkF3PUPf6-ZK9QqKJQxyyGxMVIjs9_LRYFu8hIjhMu2BVkbK0vcpd4xWzi_ZDnimrkJFEtme1aYvF2WhJ85s23zrGTPrDudVi9hPvg2-zL03CwGTxMgSDxFF0FkK2hCGWPAURCsMJqwIuZcR1r2UhMqDHuxSSMC7b4UIjd5ZEgBMaJUwStorm5W-BpYEAYYGUIimkKjwkAlsdYCQxUIk5o87cDHWiGZdkTldl7Gr6yiWOYZHWlmj7QDH_aS64qc4w8y57VOM-ee2yzwk9Snl0niDlyW2vvr-ux6PLXPN_8q-B6eDmfjUTb6PvlxBsecQFBVMHgOzd3mFt_Ckf69-7ndvHP2eg-tEvKS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB7yKCGXuG0a4tRtNxCSk2p5Ja209BSamoakJuQBuYl9zJpC5Rrb6aG_vrPSyk4ghUJPuuzCamdm59Pqm28AjnKZW6W1ijJhTZRqOYh0VriID0TMtcJCxLpuNpGPRsX9vbxag09tLUyjD7G8cPORUZ_XPsBxal1_pRo6r2YfOSXQddhMMykoKjfProd3l8srllhwAiSexMi9HgEB56SVn415v53-NCGtUOZjrFonm2Hnv5b5EnYCxmSnjVO8gjWcvIZO27-BhXDehd-nq7_XLBC1KkplzGtIzJwyyPz3clVh6LzECOGyeUXexmqKuzIL5onzY2YRpyx0oBgzX7PC1MO4Fvy0zJfNs1o9s610mryBu-GX289fo9CLITIECIpI00GQeQZNqnJMOAqCFc4QVkTLTWbUQLpUYzrIncwItMdKCOts5sgAOaLSyR5sTH5OcB9YkiaYOUIihlKjxkQXuTECU50IJ52VXThpDVKaIFTu-2X8KBuJZV7SlpZ-S7twuBw5bcQ5nhnTa21ahvCcl0lcyJhepsi7cFxb76_zy5tv1_558K8DP8DW1dmwvDwfXbyFbU4YqOEL9mBjMXvAd_DC_Fp8n8_eB3f9A05a8g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+programming+interface+recommendation+for+smart+contract+using+deep+learning+from+augmented+code+representation&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Cai%2C+Jie&rft.au=Cai%2C+Qian&rft.au=Li%2C+Bin&rft.au=Zhang%2C+Jiale&rft.date=2024-08-01&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=36&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmr.2658&rft.externalDBID=10.1002%252Fsmr.2658&rft.externalDocID=SMR2658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon