A novel minimum weight formulation of topology optimization implemented with reanalysis approach

Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 120; no. 5; pp. 567 - 579
Main Authors: Long, Kai, Gu, Chunlu, Wang, Xuan, Liu, Jie, Du, Yixian, Chen, Zhuo, Saeed, Nouman
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 02.11.2019
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.
AbstractList Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.
Author Liu, Jie
Du, Yixian
Saeed, Nouman
Chen, Zhuo
Wang, Xuan
Long, Kai
Gu, Chunlu
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0001-7921-0497
  surname: Long
  fullname: Long, Kai
  email: longkai1978@163.com
  organization: North China Electric Power University
– sequence: 2
  givenname: Chunlu
  surname: Gu
  fullname: Gu, Chunlu
  organization: North China Electric Power University
– sequence: 3
  givenname: Xuan
  orcidid: 0000-0003-2485-7095
  surname: Wang
  fullname: Wang, Xuan
  organization: Hefei University of Technology
– sequence: 4
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: Guangzhou University
– sequence: 5
  givenname: Yixian
  surname: Du
  fullname: Du, Yixian
  organization: China Three Gorges University
– sequence: 6
  givenname: Zhuo
  surname: Chen
  fullname: Chen, Zhuo
  organization: North China Electric Power University
– sequence: 7
  givenname: Nouman
  surname: Saeed
  fullname: Saeed, Nouman
  organization: North China Electric Power University
BookMark eNp1kDtPwzAUhS0EEm1B4idYYmFJsR03sceqKg-pwAKzcROndRXbwXaowq8nbZgQTFe65zv3ccbg1DqrALjCaIoRIrfWqGmGKTsBI4x4niCC8lMw6iWezDjD52Acwg4hjGcoHYH3ObTuU9XQaKtNa-Be6c02wsp509Yyamehq2B0javdpoOuidror0HQpqmVUTaqEu513EKvpJV1F3SAsmm8k8X2ApxVsg7q8qdOwNvd8nXxkKxe7h8X81VSEJ6yRNIZ5QVFKCOU0YxxRNeKswIVZclTzGTfKGVOVK5QRas1IyUhOeWYpFVWUpxOwPUwt1_70aoQxc61vr8mCEI4p304WdpT04EqvAvBq0oUOh6fiV7qWmAkDimKPkVxSLE33PwyNF4b6bu_0GRA97pW3b-ceH5aHvlvbwODqA
CitedBy_id crossref_primary_10_1007_s00158_023_03675_w
crossref_primary_10_1016_j_oceaneng_2022_112974
crossref_primary_10_1016_j_cma_2025_117995
crossref_primary_10_3390_ma14195726
crossref_primary_10_1002_nme_6514
crossref_primary_10_1016_j_advengsoft_2020_102890
crossref_primary_10_1007_s00366_020_01209_2
crossref_primary_10_1007_s11465_020_0614_2
crossref_primary_10_3390_app13074627
crossref_primary_10_1016_j_istruc_2023_04_120
crossref_primary_10_1002_nme_7160
crossref_primary_10_1007_s00158_020_02536_0
crossref_primary_10_1016_j_advengsoft_2020_102924
crossref_primary_10_1007_s11081_022_09769_6
crossref_primary_10_1016_j_istruc_2023_06_063
crossref_primary_10_1007_s00366_023_01783_1
crossref_primary_10_1155_2021_8603046
crossref_primary_10_1016_j_advengsoft_2024_103712
crossref_primary_10_1016_j_advengsoft_2023_103478
crossref_primary_10_32604_cmes_2023_031538
crossref_primary_10_1007_s11081_024_09906_3
Cites_doi 10.1007/s00158-013-0978-6
10.1016/j.cma.2014.10.011
10.1002/nme.2536
10.1016/j.enganabound.2018.07.010
10.1016/S0020-7683(03)00417-7
10.1016/S0045-7825(01)00216-X
10.1007/s001580050141
10.1007/s00158-015-1381-2
10.1080/0305215X.2017.1417401
10.1080/0305215X.2018.1497613
10.1002/nme.2774
10.1002/nme.5432
10.1002/nme.3072
10.1007/s00158-010-0586-7
10.1002/nme.5575
10.1007/s00158-015-1309-x
10.1007/BF01214002
10.1016/j.cma.2018.08.028
10.1002/nme.2778
10.1007/s00158-017-1811-4
10.1007/BF01650949
10.1002/nme.1620240207
10.1038/nature23911
10.1007/s00158-009-0443-8
10.1007/s00158-009-0406-0
10.1007/s00158-013-0956-z
10.1016/j.cma.2012.07.008
10.1007/s00158-014-1098-7
10.1007/s00158-018-2048-6
10.1007/s00158-018-2159-0
10.1002/nme.5593
10.1016/j.cma.2017.05.009
10.1007/s00158-009-0463-4
10.1007/s00158-013-1015-5
10.1016/j.cma.2016.10.029
10.1002/nme.4344
10.1007/s00158-010-0610-y
10.1016/0045-7825(88)90086-2
10.1016/S0020-7683(99)00251-6
10.1016/j.ijsolstr.2003.11.027
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6148
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 579
ExternalDocumentID 10_1002_nme_6148
NME6148
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2017MS077; 2018ZD09; JZ2019HGBZ0127
– fundername: Natural Science Foundation of China
  funderid: 51775308
– fundername: National Natural Science Foundation of Beijing
  funderid: 2182067
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413
IEDL.DBID DRFUL
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476010600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:26:10 EDT 2025
Tue Nov 18 22:31:41 EST 2025
Sat Nov 29 06:43:56 EST 2025
Wed Jan 22 16:38:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-a4549c4006248468904be98c0cdd9318a904da72e7e0f4fb82d22749123f6d413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2485-7095
0000-0001-7921-0497
PQID 2299410063
PQPubID 996376
PageCount 13
ParticipantIDs proquest_journals_2299410063
crossref_citationtrail_10_1002_nme_6148
crossref_primary_10_1002_nme_6148
wiley_primary_10_1002_nme_6148_NME6148
PublicationCentury 2000
PublicationDate 2 November 2019
PublicationDateYYYYMMDD 2019-11-02
PublicationDate_xml – month: 11
  year: 2019
  text: 2 November 2019
  day: 02
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 41
2013; 48
2019; 51
1989; 1
2015; 51
2019; 59
2015; 285
2000; 20
2014; 49
2016; 53
2012; 245‐246
2003
2017; 110
2017; 550
2017; 112
2017; 113
1988; 71
2010; 41
2017; 313
2019; 343
2010; 82
2009; 78
1987; 24
1998; 16
2012; 92
2010; 42
2000; 37
2001; 190
2017; 57
2011; 86
2011; 44
2011; 43
2018; 95
2018; 50
2003; 40
2017; 323
2018; 58
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
Bendsøe MP (e_1_2_8_3_1) 2003
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 40
  start-page: 6473
  issue: 23
  year: 2003
  end-page: 6496
  article-title: Adaptive multiscale wavelet‐Galerkin analysis for plane elasticity problem and its applications to multiscale topology design optimization
  publication-title: Int J Solids Struct
– volume: 53
  start-page: 673
  year: 2016
  end-page: 694
  article-title: Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics
  publication-title: Struct Multidiscip Optim
– volume: 43
  start-page: 799
  issue: 6
  year: 2011
  end-page: 810
  article-title: Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods
  publication-title: Struct Multidiscip Optim
– volume: 190
  start-page: 6201
  year: 2001
  end-page: 6229
  article-title: Large‐scale topology optimization in 3D using parallel computing
  publication-title: Comput Methods Appl Mech Eng
– volume: 41
  start-page: 2623
  year: 2004
  end-page: 2641
  article-title: Parellelized structural topology optimization for eigenvalue problems
  publication-title: Int J Solids Struct
– volume: 343
  start-page: 186
  year: 2019
  end-page: 206
  article-title: Large‐scale stochastic topology optimization using adaptive mesh refinement and coarsening through a two‐level parallelization scheme
  publication-title: Comput Methods Appl Mech Eng
– volume: 86
  start-page: 765
  issue: 6
  year: 2011
  end-page: 781
  article-title: Filters in topology optimization based on Helmholtz‐type differential equations
  publication-title: Int J Numer Methods Eng
– volume: 95
  start-page: 142
  year: 2018
  end-page: 153
  article-title: Update‐grid reanalysis method based on NS‐FEM for 3D heat transfer problems
  publication-title: Eng Anal Bound Elem
– volume: 78
  start-page: 1474
  issue: 12
  year: 2009
  end-page: 1491
  article-title: Approximate reanalysis in topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  end-page: 1055
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 59
  start-page: 1747
  issue: 5
  year: 2019
  end-page: 1759
  article-title: Stress‐constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming
  publication-title: Struct Multidiscip Optim
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  end-page: 224
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Eng
– year: 2003
– volume: 51
  start-page: 41
  issue: 1
  year: 2015
  end-page: 57
  article-title: Revisiting approximate reanalysis in topology optimization: on the advantages of recycled preconditioning in a minimum weight procedure
  publication-title: Struct Multidiscip Optim
– volume: 20
  start-page: 97
  issue: 2
  year: 2000
  end-page: 106
  article-title: Combined approximations–a general reanalysis approach for structural optimization
  publication-title: Struct Multidiscip Optim
– volume: 50
  start-page: 2091
  issue: 12
  year: 2018
  end-page: 2107
  article-title: Multi‐material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm
  publication-title: Engineering Optimization
– volume: 44
  start-page: 25
  issue: 1
  year: 2011
  end-page: 29
  article-title: On reducing computational effort in topology optimization: how far can we go?
  publication-title: Struct Multidiscip Optim
– volume: 313
  start-page: 817
  year: 2017
  end-page: 833
  article-title: A novel multi‐grid assisted reanalysis for re‐meshed finite element models
  publication-title: Comput Methods Appl Mech Eng
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  end-page: 75
  article-title: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards mesh‐dependencies and local minima
  publication-title: Structural Optimization
– volume: 82
  start-page: 617
  issue: 5
  year: 2010
  end-page: 636
  article-title: Topology optimization for free vibrations using combined approximation
  publication-title: Int J Numer Methods Eng
– volume: 57
  start-page: 1283
  issue: 3
  year: 2017
  end-page: 1295
  article-title: Local optimum in multi‐material topology optimization and solution by reciprocal variables
  publication-title: Struct Multidiscip Optim
– volume: 49
  start-page: 1
  issue: 1
  year: 2014
  end-page: 38
  article-title: A survey of structural and multidisciplinary continuum topology optimization: post 2000
  publication-title: Struct Multidiscip Optim
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  article-title: Optimal shape design as a material distribution problem
  publication-title: Structural Optimization
– volume: 550
  start-page: 84
  issue: 7674
  year: 2017
  end-page: 86
  article-title: Giga‐voxel computational morphogenesis for structural design
  publication-title: Nature
– volume: 82
  start-page: 505
  issue: 4
  year: 2010
  end-page: 524
  article-title: A quadratic approximation for structural topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 285
  start-page: 571
  year: 2015
  end-page: 586
  article-title: A multi‐resolution method for 3D multi‐material topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 49
  start-page: 815
  issue: 5
  year: 2014
  end-page: 829
  article-title: On multigrid‐CG for efficient topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 42
  start-page: 55
  issue: 1
  year: 2010
  end-page: 72
  article-title: Efficient use of iterative solvers in nested topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 37
  start-page: 5529
  issue: 39
  year: 2000
  end-page: 5559
  article-title: Multi‐resolution multi‐scale topology optimization—a new paradigm
  publication-title: Int J Solids Struct
– volume: 53
  start-page: 1315
  issue: 6
  year: 2016
  end-page: 1333
  article-title: An efficient second‐order SQP method for structural topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int J Numer Methods Eng
– volume: 112
  start-page: 2025
  issue: 13
  year: 2017
  end-page: 2047
  article-title: Multiresolution topology optimization using isogeometric analysis
  publication-title: Int J Numer Methods Eng
– volume: 245‐246
  start-page: 217
  issue: 12
  year: 2012
  end-page: 231
  article-title: Efficient reanalysis techniques for robust topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 92
  start-page: 507
  issue: 6
  year: 2012
  end-page: 530
  article-title: Improving multiresolution topology optimization via multiple discretizations
  publication-title: Int J Numer Methods Eng
– volume: 41
  start-page: 39
  issue: 1
  year: 2010
  end-page: 56
  article-title: Approximated approximations for SAO
  publication-title: Struct Multidiscip Optim
– volume: 51
  start-page: 796
  issue: 5
  year: 2019
  end-page: 814
  article-title: Conceptual design of efficient heat conductors using multi‐material topology optimization
  publication-title: Engineering Optimization
– volume: 323
  start-page: 272
  year: 2017
  end-page: 302
  article-title: A multi‐resolution approach for multi‐material topology optimization based on isogemetric analysis
  publication-title: Comput Methods Appl Mech Eng
– volume: 113
  start-page: 1148
  issue: 8
  year: 2017
  end-page: 1163
  article-title: Homogenization‐based topology for high‐resolution manufacturable micro‐structures
  publication-title: Int J Numer Methods Eng
– volume: 110
  start-page: 903
  issue: 10
  year: 2017
  end-page: 920
  article-title: High‐order multi‐resolution topology optimization using the finite cell method
  publication-title: Int J Numer Methods Eng
– volume: 41
  start-page: 525
  issue: 4
  year: 2010
  end-page: 539
  article-title: A computational paradigm for multiresolution topology optimization (MTOP)
  publication-title: Struct Multidiscip Optim
– volume: 58
  start-page: 1335
  issue: 4
  year: 2018
  end-page: 1350
  article-title: QR‐patterns: artefacts in multiresolution topology optimization
  publication-title: Struct Multidiscip Optim
– ident: e_1_2_8_4_1
  doi: 10.1007/s00158-013-0978-6
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cma.2014.10.011
– ident: e_1_2_8_23_1
  doi: 10.1002/nme.2536
– ident: e_1_2_8_28_1
  doi: 10.1016/j.enganabound.2018.07.010
– ident: e_1_2_8_7_1
  doi: 10.1016/S0020-7683(03)00417-7
– ident: e_1_2_8_19_1
  doi: 10.1016/S0045-7825(01)00216-X
– ident: e_1_2_8_22_1
  doi: 10.1007/s001580050141
– ident: e_1_2_8_40_1
  doi: 10.1007/s00158-015-1381-2
– ident: e_1_2_8_36_1
  doi: 10.1080/0305215X.2017.1417401
– ident: e_1_2_8_10_1
  doi: 10.1080/0305215X.2018.1497613
– ident: e_1_2_8_38_1
  doi: 10.1002/nme.2774
– ident: e_1_2_8_16_1
  doi: 10.1002/nme.5432
– ident: e_1_2_8_42_1
  doi: 10.1002/nme.3072
– ident: e_1_2_8_27_1
  doi: 10.1007/s00158-010-0586-7
– ident: e_1_2_8_17_1
  doi: 10.1002/nme.5575
– ident: e_1_2_8_12_1
  doi: 10.1007/s00158-015-1309-x
– volume-title: Topology Optimization – Theory, Methods and Applications
  year: 2003
  ident: e_1_2_8_3_1
– ident: e_1_2_8_41_1
  doi: 10.1007/BF01214002
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cma.2018.08.028
– ident: e_1_2_8_24_1
  doi: 10.1002/nme.2778
– ident: e_1_2_8_35_1
  doi: 10.1007/s00158-017-1811-4
– ident: e_1_2_8_34_1
  doi: 10.1007/BF01650949
– ident: e_1_2_8_33_1
  doi: 10.1002/nme.1620240207
– ident: e_1_2_8_18_1
  doi: 10.1038/nature23911
– ident: e_1_2_8_8_1
  doi: 10.1007/s00158-009-0443-8
– ident: e_1_2_8_39_1
  doi: 10.1007/s00158-009-0406-0
– ident: e_1_2_8_5_1
  doi: 10.1007/s00158-013-0956-z
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cma.2012.07.008
– ident: e_1_2_8_32_1
  doi: 10.1007/s00158-014-1098-7
– ident: e_1_2_8_15_1
  doi: 10.1007/s00158-018-2048-6
– ident: e_1_2_8_37_1
  doi: 10.1007/s00158-018-2159-0
– ident: e_1_2_8_13_1
  doi: 10.1002/nme.5593
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cma.2017.05.009
– ident: e_1_2_8_26_1
  doi: 10.1007/s00158-009-0463-4
– ident: e_1_2_8_29_1
  doi: 10.1007/s00158-013-1015-5
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cma.2016.10.029
– ident: e_1_2_8_9_1
  doi: 10.1002/nme.4344
– ident: e_1_2_8_25_1
  doi: 10.1007/s00158-010-0610-y
– ident: e_1_2_8_2_1
  doi: 10.1016/0045-7825(88)90086-2
– ident: e_1_2_8_6_1
  doi: 10.1016/S0020-7683(99)00251-6
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ijsolstr.2003.11.027
SSID ssj0011503
Score 2.4059074
Snippet Summary In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A...
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 567
SubjectTerms approximate reanalysis
Dependence
Design optimization
Hessian matrices
Matrix methods
Minimum weight design
multigrid preconditioned conjugate gradients
Optimization
preconditioned conjugate gradient
Quadratic programming
sequential quadratic programming
Topology optimization
Upper bounds
Weight reduction
Title A novel minimum weight formulation of topology optimization implemented with reanalysis approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6148
https://www.proquest.com/docview/2299410063
Volume 120
WOSCitedRecordID wos000476010600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS8MwED5080EfnE7F6ZQIok91bdZuyeNQhw9uiDjYW03TFAZrK-s28d97adM5QUHwqbRcaElyd1-ud98BXAbUi1gkHYsFgbRcL3IsIZWwaMCk8jzlddpFs4nucMjGY_5ksip1LUzBD7EKuGnNyO21VnARZK010tBY3WgWy02oUty2XgWqd8_90ePqHwJCnXaZ4OFx5pTUszZtlWO_O6MvhLmOU3NH06_95xP3YNfAS9Ir9sM-bKikDjUDNYlR5KwOO2s8hHg3WJG3Zgfw2iNJulRTomlH4kVM3vPwKdHw1jT7ImlE5kV7hQ-SotWJTTknmcQmIR1fp2O8BEGp4T0hJX_5IYz69y-3D5ZpxGBJRAPMEi6eIqWr6y1dxCuM226gOJO2DEOORkHgg1B0qeoqO3KjgNGQ4mmXo1eMOiG6ySOoJGmijoF40hWd0IlsXdKKdlaIQNghE8pxeCiEaMB1uSK-NCzlulnG1C_4lamPk-rrSW3AxUryrWDm-EGmWS6qb3Qz8yl6YNfR2KwBV_ny_TreHw7u9fXkr4KnsI2IiufFirQJlflsoc5gSy7nk2x2bnboJ7_H6-8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MTVAfnFecTo0g-lTXxnRL8WnoxsRtiCjsraZpCoN1k93Ef-9Jm84JCoJPpSWhJef25TTnOwDnAXUjHknH4kEgLeZGjiWkEhYNuFSuq9zqddpsotbt8l7Pe8zBTVYLk_JDLBJu2jISf60NXCekK0usobG60jSWK1BgqEWo3oW7p-ZLe_ETAbHOdXbCw_W4k3HP2rSSzf0ejb4g5jJQTSJNs_ivb9yCTQMwST3ViG3IqeEOFA3YJMaUJzuwscREiHedBX3rZBde62Q4mqsB0cQj8Swm70kClWiAa9p9kVFEpmmDhQ8yQr8Tm4JO0o_NkXR8nc7yEoSlhvmEZAzme_DSbDzftizTisGSiAe4JRjuIyXTFZcMEQv3bBYoj0tbhqGHbkHgg1DUqKopO2JRwGlIcb_rYVyMqiEGyn3ID0dDdQDElUxUQyeydVErelohAmGHXCjH8UIhRAkuM5H40vCU63YZAz9lWKY-LqqvF7UEZ4uRbyk3xw9jyplUfWOdE59iDGaORmcluEjk9-t8v9tp6OvhXweewlrrudP22_fdhyNYR3zlJaWLtAz56XimjmFVzqf9yfjEqOsn2-nv3w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90E9EHP6bi_Iwg-lRts3RL8Wk4h6IOEQe-1TQfINhtuE3xv_fSpnOCguBTabnQksvd_XLN_Q7gMKGh4UYGHk8S6bHQBJ6QWng04VKHoQ7rtbzZRKPT4Y-P0d0MnBW1MDk_xCThZi0j89fWwPVAmdMp1tBUn1gay1koM9tDpgTl1n27ezP5iYBYp1ac8AgjHhTcsz49LcZ-j0ZfEHMaqGaRpr38r29cgSUHMEkzXxGrMKN7FVh2YJM4Ux5WYHGKiRDvbif0rcM1eGqSXv9NvxBLPJKOU_KeJVCJBbiu3RfpGzLKGyx8kD76ndQVdJLn1B1Jx9fZLC9BWOqYT0jBYL4O3fbFw_ml51oxeBLxAPcEw32kZLbikiFi4ZHPEh1x6UulInQLAh8o0aC6oX3DTMKporjfjTAumrrCQLkBpV6_pzeBhJKJugqMb4ta0dMKkQhfcaGDIFJCiCocFyqJpeMpt-0yXuKcYZnGOKmxndQqHEwkBzk3xw8yO4VWY2edw5hiDGaBRWdVOMr09-v4uHN7Ya9bfxXch_m7Vju-uepcb8MCwqsoq1ykO1AavY71LszJt9Hz8HXPrdZPf9DvWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+minimum+weight+formulation+of+topology+optimization+implemented+with+reanalysis+approach&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Long%2C+Kai&rft.au=Gu%2C+Chunlu&rft.au=Wang%2C+Xuan&rft.au=Liu%2C+Jie&rft.date=2019-11-02&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=120&rft.issue=5&rft.spage=567&rft.epage=579&rft_id=info:doi/10.1002%2Fnme.6148&rft.externalDBID=10.1002%252Fnme.6148&rft.externalDocID=NME6148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon