Extension of luminance component based demosaicking algorithm to 4- and 5-band multispectral images

Multispectral imaging systems are currently expanding with a variety of multispectral demosaicking algorithms. But these algorithms have limitations due to the remarkable presence of artifacts in the reconstructed image. In this paper, we propose a powerful multispectral image demosaicking method th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Array (New York) Jg. 12; S. 100088
Hauptverfasser: Hounsou, Norbert, Sanda Mahama, Amadou T., Gouton, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.12.2021
Elsevier
Schlagworte:
ISSN:2590-0056, 2590-0056
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multispectral imaging systems are currently expanding with a variety of multispectral demosaicking algorithms. But these algorithms have limitations due to the remarkable presence of artifacts in the reconstructed image. In this paper, we propose a powerful multispectral image demosaicking method that focuses on the G band and luminance component. We've first identified a relevant 4-and 5-band multispectral filter array (MSFA) with the dominant G band and then proposed an algorithm that consistently estimates the missing G values and other missing components using a convolution operator and a weighted bilinear interpolation algorithm based on the luminance component. Using the considered MSFA patterns, we've also demonstrated that our algorithm outperforms existing approaches both visually and quantitatively in terms of the PSNR and SSIM.
ISSN:2590-0056
2590-0056
DOI:10.1016/j.array.2021.100088