A novel three sub‐step explicit time integration method for wave propagation and dynamic problems

A novel explicit time integration method is formulated with sub‐step strategy and Cubic B‐spline interpolation method. Theoretical and numerical analysis are conducted to obtain optimized algorithm properties including algorithm accuracy, spectral stability and numerical dissipation/dispersion. A de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 124; H. 15; S. 3299 - 3328
Hauptverfasser: Wen, Weibin, Wu, Lang, Liu, Tianhao, Deng, Shanyao, Duan, Shengyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.08.2023
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel explicit time integration method is formulated with sub‐step strategy and Cubic B‐spline interpolation method. Theoretical and numerical analysis are conducted to obtain optimized algorithm properties including algorithm accuracy, spectral stability and numerical dissipation/dispersion. A demonstrative dispersion analysis for wave propagation is presented to acquire optimal algorithm parameter value for finite element analysis of wave propagation problems. Numerical tests demonstrate that new method show desirable algorithm accuracy and convergence for dynamic problems. Especially, for highly nonlinear problems, the new method can provide very accurate and stable solutions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.7248