A novel three sub‐step explicit time integration method for wave propagation and dynamic problems

A novel explicit time integration method is formulated with sub‐step strategy and Cubic B‐spline interpolation method. Theoretical and numerical analysis are conducted to obtain optimized algorithm properties including algorithm accuracy, spectral stability and numerical dissipation/dispersion. A de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 124; číslo 15; s. 3299 - 3328
Hlavní autoři: Wen, Weibin, Wu, Lang, Liu, Tianhao, Deng, Shanyao, Duan, Shengyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.08.2023
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A novel explicit time integration method is formulated with sub‐step strategy and Cubic B‐spline interpolation method. Theoretical and numerical analysis are conducted to obtain optimized algorithm properties including algorithm accuracy, spectral stability and numerical dissipation/dispersion. A demonstrative dispersion analysis for wave propagation is presented to acquire optimal algorithm parameter value for finite element analysis of wave propagation problems. Numerical tests demonstrate that new method show desirable algorithm accuracy and convergence for dynamic problems. Especially, for highly nonlinear problems, the new method can provide very accurate and stable solutions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.7248