A modified lattice Boltzmann approach based on radial basis function approximation for the non‐uniform rectangular mesh

We have presented a novel lattice Boltzmann approach for the non‐uniform rectangular mesh based on the radial basis function approximation (RBF‐LBM). The non‐uniform rectangular mesh is a good option for local grid refinement, especially for the wall boundaries and flow areas with intensive change o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in fluids Ročník 96; číslo 11; s. 1695 - 1714
Hlavní autori: Hu, X., Bergadà, J. M., Li, D., Sang, W. M., An, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.11.2024
Wiley Subscription Services, Inc
Predmet:
ISSN:0271-2091, 1097-0363
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We have presented a novel lattice Boltzmann approach for the non‐uniform rectangular mesh based on the radial basis function approximation (RBF‐LBM). The non‐uniform rectangular mesh is a good option for local grid refinement, especially for the wall boundaries and flow areas with intensive change of flow quantities. Which allows, the total number of grid cells to be reduced and so the computational cost, therefore improving the computational efficiency. But the grid structure of the non‐uniform rectangular mesh is no longer applicable to the classic lattice Boltzmann method (CLBM), which is based on the famous BGK collision‐streaming evolution. This is why the present study is inspired by the idea of the interpolation‐supplemented LBM (ISLBM) methodology. The ISLBM algorithm is improved in the present manuscript and developed into a novel LBM approach through the radial basis function approximation instead of the Lagrangian interpolation scheme. The new approach is validated for both steady states and unsteady periodic solutions. The comparison between the radial basis function approximation and the Lagrangian interpolation is discussed. It is found that the novel approach has a good performance on computational accuracy and efficiency. Proving that the non‐uniform rectangular mesh allows grid refinement while obtaining precise flow predictions. When compared with the classic lattice Boltzmann method, the convergence speed of the present RBF‐LBM is highly accelerated. The modified algorithm is trustable for both steady and unsteady solutions. Numerical results have a good agreement with that of the classic LBM and are more accurate than that of the Lagrangian interpolation schemes.
AbstractList We have presented a novel lattice Boltzmann approach for the non‐uniform rectangular mesh based on the radial basis function approximation (RBF‐LBM). The non‐uniform rectangular mesh is a good option for local grid refinement, especially for the wall boundaries and flow areas with intensive change of flow quantities. Which allows, the total number of grid cells to be reduced and so the computational cost, therefore improving the computational efficiency. But the grid structure of the non‐uniform rectangular mesh is no longer applicable to the classic lattice Boltzmann method (CLBM), which is based on the famous BGK collision‐streaming evolution. This is why the present study is inspired by the idea of the interpolation‐supplemented LBM (ISLBM) methodology. The ISLBM algorithm is improved in the present manuscript and developed into a novel LBM approach through the radial basis function approximation instead of the Lagrangian interpolation scheme. The new approach is validated for both steady states and unsteady periodic solutions. The comparison between the radial basis function approximation and the Lagrangian interpolation is discussed. It is found that the novel approach has a good performance on computational accuracy and efficiency. Proving that the non‐uniform rectangular mesh allows grid refinement while obtaining precise flow predictions.
We have presented a novel lattice Boltzmann approach for the non‐uniform rectangular mesh based on the radial basis function approximation (RBF‐LBM). The non‐uniform rectangular mesh is a good option for local grid refinement, especially for the wall boundaries and flow areas with intensive change of flow quantities. Which allows, the total number of grid cells to be reduced and so the computational cost, therefore improving the computational efficiency. But the grid structure of the non‐uniform rectangular mesh is no longer applicable to the classic lattice Boltzmann method (CLBM), which is based on the famous BGK collision‐streaming evolution. This is why the present study is inspired by the idea of the interpolation‐supplemented LBM (ISLBM) methodology. The ISLBM algorithm is improved in the present manuscript and developed into a novel LBM approach through the radial basis function approximation instead of the Lagrangian interpolation scheme. The new approach is validated for both steady states and unsteady periodic solutions. The comparison between the radial basis function approximation and the Lagrangian interpolation is discussed. It is found that the novel approach has a good performance on computational accuracy and efficiency. Proving that the non‐uniform rectangular mesh allows grid refinement while obtaining precise flow predictions. When compared with the classic lattice Boltzmann method, the convergence speed of the present RBF‐LBM is highly accelerated. The modified algorithm is trustable for both steady and unsteady solutions. Numerical results have a good agreement with that of the classic LBM and are more accurate than that of the Lagrangian interpolation schemes.
Author An, B.
Sang, W. M.
Hu, X.
Li, D.
Bergadà, J. M.
Author_xml – sequence: 1
  givenname: X.
  orcidid: 0000-0002-5182-2560
  surname: Hu
  fullname: Hu, X.
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: J. M.
  surname: Bergadà
  fullname: Bergadà, J. M.
  organization: Universitat Politécnica de Catalunya
– sequence: 3
  givenname: D.
  surname: Li
  fullname: Li, D.
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: W. M.
  surname: Sang
  fullname: Sang, W. M.
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: B.
  orcidid: 0000-0001-8738-2504
  surname: An
  fullname: An, B.
  email: bo_alan_an@163.com
  organization: The Youth Innovation Team of Shaanxi Universities
BookMark eNp1kEtuGzEMhoUiBeo4AXIEAd10M44oeTyjpeM2D8BAN-l6IGuoWsaM5EgaNO4qR8gZc5LIj1WRLgiCxEfy539Ozpx3SMgVsAkwxq9N105KAfUnMgImq4KJmTgjI8YrKDiT8IWcx7hhjEleixHZzWnvW2sstrRTKVmN9MZ36W-vnKNquw1e6TVdqZgB72hQrVXdvraRmsHpZP2Je7a9OlTGB5rWSLOyt5fXwdnc6GlAnZT7PXQq0B7j-oJ8NqqLeHnKY_Lr9sfj4r5Y_rx7WMyXheZS1IWssK0BK9nydgUauGBKAqxQAWiGNWpsK6NygJ6WJQq-KqVAM2XMcK5KMSZfj3uzxKcBY2o2fggun2wEAMxkJdksU9-OlA4-xoCm2Yb8T9g1wJq9sU02ttkbm9HJP6i26fB5Csp2Hw0Ux4E_tsPdfxc3t8vvB_4dHReOeg
CitedBy_id crossref_primary_10_3390_math13172861
Cites_doi 10.1006/jcph.1995.1103
10.1103/PhysRevE.93.063302
10.1016/j.apm.2016.10.016
10.1016/j.camwa.2023.06.020
10.1016/j.jcp.2012.03.015
10.1017/jfm.2014.238
10.1017/jfm.2019.512
10.1002/fld.4749
10.1093/oso/9780198503989.001.0001
10.1016/j.ijheatmasstransfer.2017.08.005
10.4208/cicp.211015.040316a
10.1209/0295-5075/17/6/001
10.1631/jzus.A2200447
10.1017/CBO9780511543241
10.1108/HFF-11-2022-0673
10.1002/fld.280
10.1016/0370-1573(92)90090-M
10.3390/math10030501
10.1017/jfm.2012.83
10.1006/jcph.1996.0255
10.1145/3355089.3356506
10.3390/e25050804
10.2514/1.15993
10.1007/s00707-022-03177-8
10.1017/jfm.2015.9
10.1103/PhysRevE.108.015304
10.1007/s40789-023-00588-3
10.1103/PhysRevE.67.066709
10.1103/PhysRevE.98.013306
10.1006/jcph.1998.5984
10.1016/j.jcp.2023.112127
10.1103/PhysRevE.89.053317
10.1016/j.jcp.2016.09.031
10.1142/S0129183107010462
10.1002/elps.202100155
10.1016/j.aml.2023.108634
10.1002/num.22825
10.1016/0021-9991(82)90058-4
10.1002/fld.4402
10.1080/00207160.2020.1814261
10.1002/fld.1140
10.1088/1009-1963/11/4/310
10.1016/j.camwa.2019.10.002
10.1016/j.compfluid.2023.106122
10.1103/PhysRevE.94.053311
10.1016/j.jcp.2014.01.049
10.1103/PhysRev.94.511
10.1088/1751-8121/acce83
10.1146/annurev.fluid.30.1.329
10.1002/fld.1061
10.1016/j.padiff.2022.100288
10.1007/s00500-022-07529-3
10.1016/j.camwa.2023.04.026
10.1103/PhysRevE.72.046711
10.1016/j.apm.2020.01.057
10.4208/aamm.10-m11146
10.1016/j.camwa.2023.01.013
10.1016/j.jcp.2022.111453
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.5318
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 1714
ExternalDocumentID 10_1002_fld_5318
FLD5318
Genre researchArticle
GrantInformation_xml – fundername: Aeronautical Science Foundation of China
  funderid: 20230013053008
– fundername: Northwestern Polytechnical University
  funderid: G2021KY05103
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-97ed81e79d2db1c1230a911bea11c0e8eced7fad7f1c455e32b593ef400f22a53
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253893000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Fri Jul 25 12:18:18 EDT 2025
Tue Nov 18 19:39:44 EST 2025
Sat Nov 29 03:28:01 EST 2025
Wed Jan 22 17:16:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-97ed81e79d2db1c1230a911bea11c0e8eced7fad7f1c455e32b593ef400f22a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5182-2560
0000-0001-8738-2504
PQID 3111697906
PQPubID 996375
PageCount 20
ParticipantIDs proquest_journals_3111697906
crossref_primary_10_1002_fld_5318
crossref_citationtrail_10_1002_fld_5318
wiley_primary_10_1002_fld_5318_FLD5318
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 91
2017; 85
2023; 33
2024; 269
2023; 141
2023; 146
2023; 143
2002; 11
1992; 17
2023; 108
2017; 115
1954; 94
2001
2023; 27
2023; 135
2023; 451
2016; 42
2005; 72
2023; 25, 5
2012; 698
2007; 21
2022; 38
2022; 233
2002; 39
2023; 10
2021; 42
2006; 50
2023; 56
2006; 51
2013; 45
1992; 222
2020; 82
2023; 486
2009
1995; 118
2019; 38
2016; 94
2020; 79
2016; 326
2016; 93
2003
2019; 865
2015; 766
2014; 89
1996; 129
1982; 48
2007; 118
2014; 749
2012; 231
2021; 98
2022; 5
2006; 44
2016; 20
1992; 24
2022; 10
1998; 30
1998; 143
2014; 265
2012; 4
2018; 98
2022; 467
2003; 67
2012; 84
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Zhou JG (e_1_2_8_25_1) 2007; 21
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
Zheng SP (e_1_2_8_43_1) 2023; 451
e_1_2_8_53_1
e_1_2_8_30_1
Shokri A (e_1_2_8_39_1) 2012; 84
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
An B (e_1_2_8_24_1) 2013; 45
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
He YL (e_1_2_8_51_1) 2009
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2009
– volume: 72
  issue: 4
  year: 2005
  article-title: Least‐square finite‐element scheme for the lattice Boltzmann method on an unstructured mesh
  publication-title: Phys Rev E
– volume: 33
  start-page: 2593
  issue: 7
  year: 2023
  end-page: 2616
  article-title: An effective high‐order five‐point stencil, based on integrated‐RBF approximations, for the first biharmonic equation and its applications in fluid dynamics
  publication-title: Int J Numer Method Heat Fluid Flow
– volume: 94
  issue: 5
  year: 2016
  article-title: Grid refinement for entropic lattice Boltzmann models
  publication-title: Phys Rev E
– volume: 51
  start-page: 439
  issue: 4
  year: 2006
  end-page: 468
  article-title: A generic, mass conservative local grid refinement technique for lattice Boltzmann schemes
  publication-title: Int J Numer Methods Fluids
– volume: 10
  start-page: 501
  issue: 3
  year: 2022
  article-title: Integrating a stabilized radial basis function method with lattice Boltzmann method
  publication-title: Mathematics
– volume: 467
  year: 2022
  article-title: Three kinds of novel multi‐symplectic methods for stochastic Hamiltonian partial differential equations
  publication-title: J Comput Phys
– volume: 56
  year: 2023
  article-title: Quantum radial basis function method for the Poisson equation
  publication-title: J Phys A: Math Theor
– volume: 98
  issue: 1
  year: 2018
  article-title: Three‐dimensional multidomain lattice Boltzmann grid refinement for passive scalar transport
  publication-title: Phys Rev E
– year: 2001
– volume: 135
  start-page: 102
  year: 2023
  end-page: 110
  article-title: A simplified new multigrid algorithm of lattice Boltzmann method for steady states
  publication-title: Comput Math Appl
– volume: 5
  year: 2022
  article-title: RBF‐PS method for approximation and eventual periodicity of fractional and integer type KdV equations
  publication-title: Partial Differ Equ Appl Math
– volume: 11
  start-page: 366
  issue: 4
  year: 2002
  end-page: 374
  article-title: Non‐equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method
  publication-title: Chinese Phys
– volume: 91
  start-page: 198
  issue: 4
  year: 2019
  end-page: 211
  article-title: A mesh‐free radial basis function‐based semi‐Lagrangian lattice Boltzmann method for incompressible flows
  publication-title: Int J Numer Methods Fluids
– volume: 115
  start-page: 500
  year: 2017
  end-page: 512
  article-title: Lattice Boltzmann simulation of forced condensation flow on a horizontal cold surface in the presence of a non‐condensable gas
  publication-title: Int J Heat Mass Transf
– volume: 222
  start-page: 145
  issue: 3
  year: 1992
  end-page: 197
  article-title: The lattice Boltzmann equation: theory and applications
  publication-title: Phys Rep
– volume: 451
  year: 2023
  article-title: A variable projection method for the general radial basis function neural network
  publication-title: Appl Math Comput
– volume: 143
  year: 2023
  article-title: A radial basis function approximation method for conservative Allen‐Cahn equations on surfaces
  publication-title: Appl Math Lett
– volume: 67
  issue: 6
  year: 2003
  article-title: Explicit finite‐difference lattice Boltzmann method for curvilinear coordinates
  publication-title: Phys Rev E
– volume: 4
  start-page: 454
  issue: 4
  year: 2012
  end-page: 472
  article-title: Development and comparative studies of three non‐free parameter lattice Boltzmann models for simulation of compressible flows
  publication-title: Adv Appl Math Mech
– volume: 44
  start-page: 78
  issue: 1
  year: 2006
  end-page: 89
  article-title: One‐step aeroacoustics simulation using lattice Boltzmann method
  publication-title: AIAA Journal
– volume: 326
  start-page: 893
  year: 2016
  end-page: 912
  article-title: A hydrodynamically‐consistent MRT lattice Boltzmann model on a 2D rectangular grid
  publication-title: J Comput Phys
– volume: 89
  issue: 5
  year: 2014
  article-title: Regularized lattice Bhatnagar‐Gross‐Krook model for two‐ and three‐dimensional cavity flow simulations
  publication-title: Phys Rev E
– volume: 84
  start-page: 333
  issue: 4
  year: 2012
  end-page: 358
  article-title: A meshless method using radial basis functions for the numerical solution of two‐dimensional complex Ginzburg‐Landau equation
  publication-title: CMES
– volume: 143
  start-page: 426
  issue: 2
  year: 1998
  end-page: 448
  article-title: On the finite difference‐based lattice Boltzmann method in curvilinear coordinates
  publication-title: J Comput Phys
– volume: 265
  start-page: 172
  year: 2014
  end-page: 194
  article-title: Multigrid lattice Boltzmann method for accelerated solution of elliptic equations
  publication-title: J Comput Phys
– volume: 129
  start-page: 357
  issue: 2
  year: 1996
  end-page: 363
  article-title: Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids
  publication-title: J Comput Phys
– volume: 38
  start-page: 1595
  issue: 6
  year: 2022
  end-page: 1617
  article-title: Using radial basis function‐generated quadrature rules to solve nonlocal continuum models
  publication-title: Numer Methods Partial Differ Equ
– volume: 27
  start-page: 3955
  issue: 7
  year: 2023
  end-page: 3964
  article-title: Radial basis function neural network with extreme learning machine algorithm for solving ordinary differential equations
  publication-title: Soft Comput
– volume: 118
  start-page: 329
  issue: 2
  year: 1995
  end-page: 347
  article-title: Simulation of cavity flow by the lattice Boltzmann method
  publication-title: J Comput Phys
– volume: 98
  start-page: 1233
  issue: 6
  year: 2021
  end-page: 1253
  article-title: Numerical simulation for a time‐fractional coupled nonlinear Schrödinger equations
  publication-title: Int J Comput Math
– volume: 233
  start-page: 1467
  issue: 4
  year: 2022
  end-page: 1483
  article-title: The meshless local Petrov‐Galerkin cumulant lattice Boltzmann method: strengths and weaknesses in aeroacoustic analysis
  publication-title: ACTA Mechanica
– volume: 486
  year: 2023
  article-title: A hybrid projection/data‐driven reduced order model for the Navier‐stokes equations with nonlinear filtering stabilization
  publication-title: J Comput Phys
– volume: 42
  start-page: 363
  year: 2016
  end-page: 381
  article-title: A 8‐neighbor model lattice Boltzmann method applied to mathematical‐physical equations
  publication-title: App Math Model
– volume: 20
  start-page: 301
  issue: 2
  year: 2016
  end-page: 324
  article-title: Finite volume lattice Boltzmann method for nearly incompressible flows on arbitrary unstructured meshes
  publication-title: Commun Comput Phys
– volume: 93
  issue: 6
  year: 2016
  article-title: Entropic lattice Boltzmann model for gas dynamics: theory, boundary conditions and implementation
  publication-title: Phys Rev E
– volume: 21
  start-page: 531
  issue: 9
  year: 2007
  end-page: 542
  article-title: A rectangular lattice Boltzmann method for groundwater flows
  publication-title: Procedia Comput Sci
– volume: 79
  start-page: 1718
  issue: 6
  year: 2020
  end-page: 1741
  article-title: New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers
  publication-title: Comput Math Appl
– volume: 85
  start-page: 641
  issue: 11
  year: 2017
  end-page: 661
  article-title: A hybrid algorithm of lattice Boltzmann method and finite difference‐based lattice Boltzmann method for viscous flows
  publication-title: Int J Numer Method Fluids
– year: 2003
– volume: 45
  start-page: 699
  issue: 5
  year: 2013
  end-page: 706
  article-title: The numerical study of lattice Boltzmann method based on different grid structure
  publication-title: Chinese J Theor Appl Mech
– volume: 108
  issue: 1
  year: 2023
  article-title: Rectangular multiple‐relaxation‐time lattice Boltzmann method for the Navier‐stokes and nonlinear convection‐diffusion equations: general equilibrium and some important issues
  publication-title: Phys Rev E
– volume: 141
  start-page: 129
  year: 2023
  end-page: 144
  article-title: Radial basis function neural network (RBFNN) approximation of Cauchy inverse problems of the Laplace equation
  publication-title: Comput Math Appl
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  end-page: 16
  article-title: Taichi: a language for high‐performance computation on spatially sparse data syrcutures
  publication-title: ACM Trans Graphics
– volume: 766
  start-page: 76
  year: 2015
  end-page: 103
  article-title: Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study
  publication-title: J Fluid Mech
– volume: 749
  start-page: 431
  year: 2014
  end-page: 459
  article-title: Microstructure and rheology of finite inertia neutrally buoyant suspensions
  publication-title: J Fluid Mech
– volume: 118
  start-page: 187
  issue: 2
  year: 2007
  end-page: 202
  article-title: A new numerical approach for fire simulation
  publication-title: Int J Mod Phys C
– volume: 17
  start-page: 479
  issue: 6
  year: 1992
  end-page: 484
  article-title: Lattice BGK models for Navier‐stokes equation
  publication-title: Europhys Lett
– volume: 48
  start-page: 387
  issue: 3
  year: 1982
  end-page: 411
  article-title: High‐Re solutions for incompressible flow using the Navier‐stokes equations and a multigrid method
  publication-title: J Comput Phys
– volume: 146
  start-page: 71
  year: 2023
  end-page: 83
  article-title: Modified algorithms for curved and virtual boundaries in lattice Boltzmann method applications based on tree grid
  publication-title: Comput Math Appl
– volume: 269
  year: 2024
  article-title: Study of the convergence of the meshless lattice Boltzmann method in Taylor‐green, annular channel and a porous medium flows
  publication-title: Comput Fluids
– volume: 698
  start-page: 282
  year: 2012
  end-page: 303
  article-title: First‐ and second‐order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form
  publication-title: J Fluid Mech
– volume: 25, 5
  start-page: 804
  year: 2023
  article-title: Radial basis function finite difference method based on Oseen iteration for solving two‐dimensional Navier‐stokes equations
  publication-title: Entropy
– volume: 50
  start-page: 421
  issue: 4
  year: 2006
  end-page: 436
  article-title: Fourth‐order compact formulation of Navier‐stokes equations and driven cavity flow at high Reynolds numbers
  publication-title: Int J Numer Methods Fluids
– volume: 39
  start-page: 99
  issue: 2
  year: 2002
  end-page: 120
  article-title: A multi‐block lattice Boltzmann method for viscous fluid flows
  publication-title: Int J Numer Methods Fluids
– volume: 42
  start-page: 2171
  issue: 21–22
  year: 2021
  end-page: 2181
  article-title: Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel
  publication-title: Electrophoresis
– volume: 231
  start-page: 4808
  year: 2012
  end-page: 4822
  article-title: Advances in multi‐domain lattice Boltzmann grid refinement
  publication-title: J Comput Phys
– volume: 10
  start-page: 30
  issue: 1
  year: 2023
  article-title: Spatial prediction of soil organic carbon in coal mining subsidence areas based on RBF neural network
  publication-title: Int J Coal Sci Technol
– volume: 865
  start-page: 476
  year: 2019
  end-page: 519
  article-title: The lid driven right‐angled isosceles triangular cavity flow
  publication-title: J Fluid Mech
– volume: 24
  start-page: 612
  issue: 7
  year: 1992
  end-page: 624
  article-title: Square cavity flow driven by two mutually facing sliding walls
  publication-title: J Zhejiang Univ‐Sci A
– volume: 94
  start-page: 511
  issue: 3
  year: 1954
  end-page: 525
  article-title: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one‐component systems
  publication-title: Phys Rev
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu Rev Fluid Mech
– volume: 82
  start-page: 469
  year: 2020
  end-page: 486
  article-title: Towards a better understanding of wall‐driven square cavity flows using lattice Boltzmann method
  publication-title: App Math Model
– ident: e_1_2_8_58_1
  doi: 10.1006/jcph.1995.1103
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevE.93.063302
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apm.2016.10.016
– ident: e_1_2_8_54_1
  doi: 10.1016/j.camwa.2023.06.020
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jcp.2012.03.015
– ident: e_1_2_8_9_1
  doi: 10.1017/jfm.2014.238
– ident: e_1_2_8_63_1
  doi: 10.1017/jfm.2019.512
– ident: e_1_2_8_31_1
  doi: 10.1002/fld.4749
– ident: e_1_2_8_56_1
  doi: 10.1093/oso/9780198503989.001.0001
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ijheatmasstransfer.2017.08.005
– ident: e_1_2_8_13_1
  doi: 10.4208/cicp.211015.040316a
– ident: e_1_2_8_52_1
  doi: 10.1209/0295-5075/17/6/001
– ident: e_1_2_8_53_1
  doi: 10.1631/jzus.A2200447
– ident: e_1_2_8_32_1
  doi: 10.1017/CBO9780511543241
– volume: 451
  year: 2023
  ident: e_1_2_8_43_1
  article-title: A variable projection method for the general radial basis function neural network
  publication-title: Appl Math Comput
– ident: e_1_2_8_45_1
  doi: 10.1108/HFF-11-2022-0673
– ident: e_1_2_8_20_1
  doi: 10.1002/fld.280
– ident: e_1_2_8_50_1
  doi: 10.1016/0370-1573(92)90090-M
– ident: e_1_2_8_30_1
  doi: 10.3390/math10030501
– ident: e_1_2_8_3_1
  doi: 10.1017/jfm.2012.83
– ident: e_1_2_8_28_1
  doi: 10.1006/jcph.1996.0255
– ident: e_1_2_8_62_1
  doi: 10.1145/3355089.3356506
– ident: e_1_2_8_46_1
  doi: 10.3390/e25050804
– ident: e_1_2_8_5_1
  doi: 10.2514/1.15993
– ident: e_1_2_8_17_1
  doi: 10.1007/s00707-022-03177-8
– ident: e_1_2_8_4_1
  doi: 10.1017/jfm.2015.9
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevE.108.015304
– ident: e_1_2_8_41_1
  doi: 10.1007/s40789-023-00588-3
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevE.67.066709
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevE.98.013306
– ident: e_1_2_8_10_1
  doi: 10.1006/jcph.1998.5984
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jcp.2023.112127
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevE.89.053317
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jcp.2016.09.031
– ident: e_1_2_8_8_1
  doi: 10.1142/S0129183107010462
– volume-title: Lattice Boltzmann Method: Theory and Applications
  year: 2009
  ident: e_1_2_8_51_1
– ident: e_1_2_8_29_1
  doi: 10.1002/elps.202100155
– ident: e_1_2_8_40_1
  doi: 10.1016/j.aml.2023.108634
– ident: e_1_2_8_36_1
  doi: 10.1002/num.22825
– ident: e_1_2_8_57_1
  doi: 10.1016/0021-9991(82)90058-4
– ident: e_1_2_8_61_1
  doi: 10.1002/fld.4402
– ident: e_1_2_8_37_1
  doi: 10.1080/00207160.2020.1814261
– ident: e_1_2_8_60_1
  doi: 10.1002/fld.1140
– ident: e_1_2_8_55_1
  doi: 10.1088/1009-1963/11/4/310
– ident: e_1_2_8_23_1
  doi: 10.1016/j.camwa.2019.10.002
– volume: 45
  start-page: 699
  issue: 5
  year: 2013
  ident: e_1_2_8_24_1
  article-title: The numerical study of lattice Boltzmann method based on different grid structure
  publication-title: Chinese J Theor Appl Mech
– ident: e_1_2_8_48_1
  doi: 10.1016/j.compfluid.2023.106122
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevE.94.053311
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jcp.2014.01.049
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRev.94.511
– ident: e_1_2_8_35_1
  doi: 10.1088/1751-8121/acce83
– volume: 84
  start-page: 333
  issue: 4
  year: 2012
  ident: e_1_2_8_39_1
  article-title: A meshless method using radial basis functions for the numerical solution of two‐dimensional complex Ginzburg‐Landau equation
  publication-title: CMES
– ident: e_1_2_8_49_1
  doi: 10.1146/annurev.fluid.30.1.329
– ident: e_1_2_8_59_1
  doi: 10.1002/fld.1061
– ident: e_1_2_8_38_1
  doi: 10.1016/j.padiff.2022.100288
– ident: e_1_2_8_44_1
  doi: 10.1007/s00500-022-07529-3
– volume: 21
  start-page: 531
  issue: 9
  year: 2007
  ident: e_1_2_8_25_1
  article-title: A rectangular lattice Boltzmann method for groundwater flows
  publication-title: Procedia Comput Sci
– ident: e_1_2_8_42_1
  doi: 10.1016/j.camwa.2023.04.026
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevE.72.046711
– ident: e_1_2_8_64_1
  doi: 10.1016/j.apm.2020.01.057
– ident: e_1_2_8_6_1
  doi: 10.4208/aamm.10-m11146
– ident: e_1_2_8_19_1
  doi: 10.1016/j.camwa.2023.01.013
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jcp.2022.111453
SSID ssj0009283
Score 2.439614
Snippet We have presented a novel lattice Boltzmann approach for the non‐uniform rectangular mesh based on the radial basis function approximation (RBF‐LBM). The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1695
SubjectTerms Algorithms
Approximation
Computational efficiency
Computer applications
Computing costs
Grid refinement (mathematics)
Interpolation
LBM
non‐uniform rectangular mesh
Radial basis function
radial basis function approximation
steady and unsteady solutions
Streaming
Title A modified lattice Boltzmann approach based on radial basis function approximation for the non‐uniform rectangular mesh
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.5318
https://www.proquest.com/docview/3111697906
Volume 96
WOSCitedRecordID wos001253893000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFD7oeBe68C2OLyJc7l312qTppFn6GlyIiCi4K2ma4kCnI9NR1JU_wd_oL_GcaesoeEFwUUrhpC05r--EnC8Avy2hdkS-XmAi60ltfS-hYkVKrA2EVK7D7fiwCXV2Fl1f6_N6VyX1wlT8EO8LbuQZ43hNDm6Scm9CGprl6T80oGgaZgSarWzBzNFF9-p0QrkrKhJOoTjaguYN9awv9pqxn5PRBGF-xKnjRNNd-MkvLsJ8DS_ZfmUPSzDlimVYqKEmqx25XIa5DzyEK_C4z_qDtJeRTG5GtB-OHQzy0VPfFAVraMcZZbyUDQo2JEKDnJ57JaPMSNqt5B56VS8kQzDMEFyyYlC8Pr_cFdQB1mcUX2mFFOtp1nflzSpcdY8vD0-8-kwGzyIwwNioXBpxp3Qq0oRbzHu-wXiZOMO59V3krEtVZvDiVoahC0QS6sBlGCoyIUwYrEELP-zWgUksLSN8S4AFugyVMFp2hAsN184qm6Vt-NsoJ7Y1YTmdm5HHFdWyiHF-Y5rfNuy-S95WJB1fyGw1-o1rNy3jACN9Ryvtd9rwZ6zJ_46Pu6dHdN_4ruAmzAoEQFXf4ha0RsM7tw2_7P2oVw53amN9AxZr75A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dStxAFD7oWlAv1FqL61-nUPQqbmYy2cngla0uSrdLKQrehdnJhC5ks7JZS9srH8Fn9Ek8Z5O4CgqFXoQQOJMMc_6-M-R8A_DJEmpH5OsFJrKe1Nb3-lSsSIm1gZDKtbmdHjaher3o6kp_n4Ojuhem5Id43HAjz5jGa3Jw2pBuzVhD0yw5RAuK5mFBohWFDVg4-dG57M44d0XJwikUR2PQvOae9UWrHvs8G80g5lOgOs00ndX_muMarFQAkx2XFvEW5ly-DqsV2GSVKxfrsPyEifAd_Dlmw1EySEkmMxP6I459HmWTv0OT56wmHmeU8xI2ytmYKA0yeh4UjHIj6beU-z0ouyEZwmGG8JLlo_z-9u4mpx6wIaMIS3ukWFGzoSt-bsBl5_Tiy5lXncrgWYQGGB2VSyLulE5E0ucWM59vMGL2neHc-i5y1iUqNXhxK8PQBaIf6sClGCxSIUwYvIcGfthtApNYXEb4lgBLdBkqYbRsCxcarp1VNk2acFBrJ7YVZTmdnJHFJdmyiHF9Y1rfJnx8lLwuaTpekNmpFRxXjlrEAcb6tlbabzdhf6rKV8fHne4J3bf-VfADLJ5dfOvG3fPe121YEgiHyi7GHWhMxjduF97YX5NBMd6rLPcBZibzgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qK6IPba0Vz1a7guhT2uxmk83Sp7ZnUDyOIhb6FvZ2N_QglyuXq6hPfoR-xn6SzlySXgUFwYcQArPJsvPvN0vmtwBvLaF2RL5BZFIbSG3DYETFipRYGwipfMLt4rAJNRym5-f6dAUOu16Yhh_ibsONPGMRr8nB_aUrDpasoUXp9tGC0gewJmOdoFeu9b9kZ4Ml565oWDiF4mgMmnfcs6E46Mb-no2WEPM-UF1kmmzjv-a4CestwGRHjUU8hRVfbcFGCzZZ68r1Fjy5x0T4DH4cscnUjQuSKc2c_ohjx9Ny_nNiqop1xOOMcp5j04rNiNKgpOdxzSg3kn4bue_jphuSIRxmCC9ZNa1ufl1fVdQDNmEUYWmPFCtqNvH1xTacZR--nnwM2lMZAovQAKOj8i7lXmkn3IhbzHyhwYg58oZzG_rUW-9UYfDiVsaxj8Qo1pEvMFgUQpg4eg6r-GH_ApjE4jLFt0RYostYCaNlInxsuPZW2cL14H2nndy2lOV0ckaZN2TLIsf1zWl9e_DmTvKyoen4g8xup-C8ddQ6jzDWJ1rpMOnBu4Uq_zo-zwZ9ur_8V8E9eHTaz_LBp-HnHXgsEA01TYy7sDqfXflX8NB-m4_r2evWcG8BBKTy-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+lattice+Boltzmann+approach+based+on+radial+basis+function+approximation+for+the+non%E2%80%90uniform+rectangular+mesh&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Hu%2C+X.&rft.au=Bergad%C3%A0%2C+J.+M.&rft.au=Li%2C+D.&rft.au=Sang%2C+W.+M.&rft.date=2024-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=96&rft.issue=11&rft.spage=1695&rft.epage=1714&rft_id=info:doi/10.1002%2Ffld.5318&rft.externalDBID=10.1002%252Ffld.5318&rft.externalDocID=FLD5318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon