Implementation of differential evolution algorithm and its variants for optimal scheduling of distributed generations
Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of...
Saved in:
| Published in: | International journal of communication systems Vol. 34; no. 6 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester
Wiley Subscription Services, Inc
01.04.2021
|
| Subjects: | |
| ISSN: | 1074-5351, 1099-1131 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate.
Optimal operating schedule fog DGs with RES have been evaluated for standard distribution systems. An objection function has been formulated to solve cost minimization problem.
Differential evolution (DE) algorithm and its variants have been employed to solve optimal scheduling problem.
IEEE 14, IEEE 30, and IEEE 57 bus systems and 62 bus Indian utility system have been investigated. The economic impact of integrating RES‐based DGs in distribution systems has been studied. |
|---|---|
| AbstractList | Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate. Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate. Optimal operating schedule fog DGs with RES have been evaluated for standard distribution systems. An objection function has been formulated to solve cost minimization problem. Differential evolution (DE) algorithm and its variants have been employed to solve optimal scheduling problem. IEEE 14, IEEE 30, and IEEE 57 bus systems and 62 bus Indian utility system have been investigated. The economic impact of integrating RES‐based DGs in distribution systems has been studied. |
| Author | Shilaja, C. |
| Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0003-3157-3007 surname: Shilaja fullname: Shilaja, C. email: shilaja.research@gmail.com organization: Kalasalingam Academy of Research and Education |
| BookMark | eNp1kMtOwzAQRS1UJNqCxCdYYsMmxY6Txl5W5VWpEhtYW64fravEDrZT1L8nbVghWM1o5tw7mjsBI-edBuAWoxlGKH9QQs4KgukFGGPEWIYxwaNTXxVZSUp8BSYx7hFCNJ-XY9CtmrbWjXZJJOsd9AYqa4wO_cSKGuqDr7vzRtRbH2zaNVA4BW2K8CCCFa5vjA_Qt8k2vSDKnVZdbd128Iop2E2XtIJb7XQ4X4nX4NKIOuqbnzoFH89P78vXbP32slou1pnMGaEZZSUumFRIESpFZeYVUkjgUppiXlBGRV6QDUIVplQzQ7REFSkwMUptECMsJ1NwN_i2wX92Oia-911w_UmeF6xiOWas6qn7gZLBxxi04W3ofwlHjhE_hcr7UPkp1B6d_UKlHZJLQdj6L0E2CL5srY__GvPHxfLMfwOjq4tw |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04416_4 crossref_primary_10_1016_j_compeleceng_2024_109404 crossref_primary_10_1016_j_est_2023_109373 crossref_primary_10_1002_ett_4579 crossref_primary_10_1007_s10878_020_00681_2 |
| Cites_doi | 10.1137/040603371 10.1016/j.egypro.2018.04.055 10.1109/APPEEC.2013.6837181 10.1016/j.ijepes.2014.07.003 10.1002/0470012684 10.1109/tevc.2008.927706 10.1016/j.ijepes.2019.01.005 10.3233/JIFS-169681 10.1049/iet-gtd.2011.0682 10.1016/j.ijepes.2019.03.022 10.1145/321062.321069 10.1016/j.asoc.2015.10.022 10.1016/j.apenergy.2008.09.008 10.1016/j.ijepes.2013.04.021 10.1109/WICT.2011.6141289 10.1023/a:1008202821328 10.1016/j.epsr.2019.02.011 10.1002/tee.21881 10.1109/tpwrs.2013.2245925 10.1109/CEC.2006.1688285 10.1002/tee.21761 10.1016/j.enconman.2012.02.024 10.1080/15325000590474708 10.1016/j.asoc.2019.04.012 10.1016/j.epsr.2016.09.025 10.1109/tevc.2007.894200 10.1080/15325008.2015.1041625 10.1109/tec.2008.2008957 10.1109/IPEMC.2009.5157547 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/dac.4318 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1131 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_dac_4318 DAC4318 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SP 8FD JQ2 L7M |
| ID | FETCH-LOGICAL-c2938-895149cd0d38ca7f670d0a15cf464898a243b007188e9f3ec073413fddb093923 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506075900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1074-5351 |
| IngestDate | Tue Dec 02 01:41:07 EST 2025 Sat Nov 29 03:54:53 EST 2025 Tue Nov 18 22:16:50 EST 2025 Wed Jan 22 16:30:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-895149cd0d38ca7f670d0a15cf464898a243b007188e9f3ec073413fddb093923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3157-3007 |
| PQID | 2497921997 |
| PQPubID | 996367 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2497921997 crossref_primary_10_1002_dac_4318 crossref_citationtrail_10_1002_dac_4318 wiley_primary_10_1002_dac_4318_DAC4318 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | International journal of communication systems |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 24 2013; 28 2009; 86 2012 2006; 17 2018; 145 2007 2008; 12 2019; 108 2005 1994 2012; 59 2014; 63 2013; 8 2016; 38 2004; 33 2019; 80 2009; 13 2012; 2 1997; 11 2013; 53 2015; 43 1961; 8 2008; 44 2017; 142 2012; 6 2012; 7 2019; 171 2019; 110 2018; 35 e_1_2_6_10_1 e_1_2_6_31_1 Deng ZX (e_1_2_6_34_1) 2008; 44 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Cain M (e_1_2_6_22_1) 2012 Kundur P (e_1_2_6_19_1) 1994 e_1_2_6_9_1 e_1_2_6_8_1 Rahnamayan S (e_1_2_6_32_1) 2007 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 Kumar C (e_1_2_6_23_1) 2012; 2 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 17 start-page: 188 issue: 1 year: 2006 end-page: 217 article-title: Mesh adaptive direct search algorithms for constrained optimization publication-title: SIAM J Opt – volume: 8 start-page: 212 year: 1961 end-page: 229 article-title: Direct search solution of numerical and statistical problems publication-title: J Assoc Comp Machinery – volume: 7 start-page: 478 issue: 5 year: 2012 end-page: 486 article-title: A fuzzy binary clustered particle swarm optimization strategy for thermal unit commitment problem with wind power integration publication-title: IEEJ Trans Electric Electron Eng – volume: 28 start-page: 3226 issue: 3 year: 2013 end-page: 3234 article-title: Optimal power flow in microgrids with energy storage publication-title: IEEE Trans Power Syst – volume: 110 start-page: 713 year: 2019 end-page: 724 article-title: Affine arithmetic for efficient and reliable resolution of weather‐based uncertainties in optimal power flow problems publication-title: Int J Electric Power Energy Syst – year: 2005 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Opt – volume: 24 start-page: 661 issue: 3 year: 2009 end-page: 672 article-title: Wind farms as reactive power ancillary service providers—technical and economic issues publication-title: IEEE Trans Energy Conv – volume: 59 start-page: 86 year: 2012 end-page: 95 article-title: Optimal power flow using gravitational search algorithm publication-title: Energ Conver Manage – year: 2007 – volume: 6 start-page: 503 issue: 6 year: 2012 end-page: 514 article-title: Distribution system planning considering reliable feeder routing publication-title: IET Gen, Trans Distrib – volume: 2 start-page: 235 issue: 2 year: 2012 end-page: 241 article-title: Constrained optimal power flow using particle swarm optimization publication-title: Int J Emerging Technol Adv Eng – volume: 33 start-page: 349 issue: 3 year: 2004 end-page: 361 article-title: Evolutionary programming based optimal power flow for units with non‐smooth fuel cost functions publication-title: Electric Power Comp Syst – volume: 53 start-page: 219 year: 2013 end-page: 230 article-title: Artificial bee colony algorithm for solving multi‐objective optimal power flow problem publication-title: Int J Electric Power Energy Syst – start-page: 1092 end-page: 1098 – volume: 8 start-page: 463 issue: 5 year: 2013 end-page: 469 article-title: Stochastic unit commitment problem considering risk constraints and its improved GA‐based solution method publication-title: IEEJ Trans Electric Electron Eng – start-page: 17 end-page: 24 – volume: 145 start-page: 301 year: 2018 end-page: 306 article-title: Optimal power flow using a novel metamodel based global optimization method publication-title: Energy Procedia – year: 1994 – volume: 35 start-page: 1387 issue: 2 year: 2018 end-page: 1398 article-title: Application of optimization algorithms to generation expansion planning problem publication-title: J Intelligent Fuzzy Syst – volume: 142 start-page: 190 year: 2017 end-page: 206 article-title: Optimal power flow using moth swarm algorithm publication-title: Electr Pow Syst Res – year: 2012 – volume: 63 start-page: 855 year: 2014 end-page: 861 article-title: Improved differential evolution for economic dispatch publication-title: Int J Electric Power Energy Syst – volume: 44 start-page: 33 issue: 27 year: 2008 end-page: 36 article-title: Study on strategy of increasing cross rate in differential evolution algorithm publication-title: Comput Eng Appl – volume: 86 start-page: 977 issue: 7 year: 2009 end-page: 984 article-title: A multi‐objective evolutionary algorithm for reactive power compensation in distribution networks publication-title: Appl Energy – volume: 171 start-page: 66 year: 2019 end-page: 73 article-title: Optimal power flow considering predictability of power systems publication-title: Electr Pow Syst Res – volume: 12 start-page: 64 issue: 1 year: 2008 end-page: 79 article-title: Opposition‐based differential evolution publication-title: IEEE Trans Evol Comp – start-page: 1 end-page: 6 – volume: 43 start-page: 1548 issue: 13 year: 2015 end-page: 1559 article-title: Single and multi‐objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Comp Syst – volume: 38 start-page: 501 year: 2016 end-page: 517 article-title: A memory based differential evolution algorithm for unconstrained optimization publication-title: Appl Soft Comput – volume: 108 start-page: 232 year: 2019 end-page: 239 article-title: Linearized voltage stability incorporation with line‐wise optimal power flow publication-title: Int J Electric Power Energy Syst – volume: 80 start-page: 243 year: 2019 end-page: 262 article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices publication-title: Appl Soft Comput – start-page: 462 end-page: 466 – volume: 13 start-page: 398 issue: 2 year: 2009 end-page: 417 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans Evol Comp – ident: e_1_2_6_4_1 doi: 10.1137/040603371 – ident: e_1_2_6_14_1 doi: 10.1016/j.egypro.2018.04.055 – ident: e_1_2_6_8_1 doi: 10.1109/APPEEC.2013.6837181 – ident: e_1_2_6_15_1 doi: 10.1016/j.ijepes.2014.07.003 – ident: e_1_2_6_18_1 doi: 10.1002/0470012684 – volume-title: Power System Stability and Control year: 1994 ident: e_1_2_6_19_1 – ident: e_1_2_6_30_1 doi: 10.1109/tevc.2008.927706 – ident: e_1_2_6_10_1 doi: 10.1016/j.ijepes.2019.01.005 – ident: e_1_2_6_17_1 doi: 10.3233/JIFS-169681 – ident: e_1_2_6_6_1 doi: 10.1049/iet-gtd.2011.0682 – ident: e_1_2_6_12_1 doi: 10.1016/j.ijepes.2019.03.022 – ident: e_1_2_6_5_1 doi: 10.1145/321062.321069 – volume-title: Opposition‐Based Differential Evolution year: 2007 ident: e_1_2_6_32_1 – ident: e_1_2_6_16_1 doi: 10.1016/j.asoc.2015.10.022 – ident: e_1_2_6_2_1 doi: 10.1016/j.apenergy.2008.09.008 – ident: e_1_2_6_26_1 doi: 10.1016/j.ijepes.2013.04.021 – ident: e_1_2_6_35_1 doi: 10.1109/WICT.2011.6141289 – ident: e_1_2_6_29_1 doi: 10.1023/a:1008202821328 – ident: e_1_2_6_11_1 doi: 10.1016/j.epsr.2019.02.011 – ident: e_1_2_6_3_1 doi: 10.1002/tee.21881 – ident: e_1_2_6_9_1 doi: 10.1109/tpwrs.2013.2245925 – ident: e_1_2_6_31_1 doi: 10.1109/CEC.2006.1688285 – ident: e_1_2_6_7_1 doi: 10.1002/tee.21761 – ident: e_1_2_6_27_1 doi: 10.1016/j.enconman.2012.02.024 – ident: e_1_2_6_28_1 doi: 10.1080/15325000590474708 – ident: e_1_2_6_13_1 doi: 10.1016/j.asoc.2019.04.012 – ident: e_1_2_6_24_1 doi: 10.1016/j.epsr.2016.09.025 – ident: e_1_2_6_33_1 doi: 10.1109/tevc.2007.894200 – ident: e_1_2_6_25_1 doi: 10.1080/15325008.2015.1041625 – volume: 44 start-page: 33 issue: 27 year: 2008 ident: e_1_2_6_34_1 article-title: Study on strategy of increasing cross rate in differential evolution algorithm publication-title: Comput Eng Appl – ident: e_1_2_6_20_1 doi: 10.1109/tec.2008.2008957 – volume: 2 start-page: 235 issue: 2 year: 2012 ident: e_1_2_6_23_1 article-title: Constrained optimal power flow using particle swarm optimization publication-title: Int J Emerging Technol Adv Eng – ident: e_1_2_6_21_1 doi: 10.1109/IPEMC.2009.5157547 – volume-title: History of Optimal Power Flow and Formulations year: 2012 ident: e_1_2_6_22_1 |
| SSID | ssj0008265 |
| Score | 2.2655108 |
| Snippet | Summary
Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity... Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Alternative energy sources DGs Electric power distribution Energy resources Evolutionary algorithms Evolutionary computation IEEE bus systems Operation scheduling optimal scheduling Optimization Photovoltaic cells Renewable energy sources Schedules Scheduling Wind power |
| Title | Implementation of differential evolution algorithm and its variants for optimal scheduling of distributed generations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4318 https://www.proquest.com/docview/2497921997 |
| Volume | 34 |
| WOSCitedRecordID | wos000506075900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 issn: 1074-5351 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0SgTRU1nXpk1yHJvDgwwRB7uVLEnnYGtl7fb3-5K22wQFwVMvSVvyvn4vvPd7CN2zGGyGhLHTpu7YIfaiSUliemWEFzDBBVV22AQdDNhoxF_LqkrTC1PwQ6wv3IxlWH9tDFyMs9aGNFTB9yD6sV1UNz1VkHjVe2_94cvaDwNwDqqKw8AP2hX1rOu1qr3fg9EGYW7jVBto-kf_-cVjdFjCS9wp9OEE7ejkFB1skQ6eoaUlBJ6XPUcJTmNcTUkBa59hvSq1EYvZJF1M8485FonC0zzDK8isTeEMBqiLU_A2c9gA-THEK9PWXrwrK4ZoaYUnltPaavY5Gvaf3rvPTjl8wZGAAJjDAHoRLpWrfCYFjUPqKle0AxmTkDDOhEf8sQEojGke-1qCr4CACKIfuxxAl3-Bakma6EtTPSW4JcrzqCSUUi4FUWFMmKd9SbVqoMdKCpEsmcnNgIxZVHAqexEcZGQOsoHu1is_CzaOH9Y0K0FGpT1mESSZlHumqKaBHqzIft0f9Tpd87z668JrtO-ZQhdbztNEtXyx1DdoT67yaba4LbXyC1CD5y8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mFNQHv8X5GUH0qaxr0ybBp6EOxTlEFHwrWZLqYOtkm_v7vaTtVFAQfOrLpS25r1_C3e8ATniKPkPj1Gswv-tRd9GkFbW9MjKIuBSSaTdsgnU6_PlZ3FfgvOyFyfkhZhdu1jNcvLYObi-k65-soRo_iOmPz8E8jUPGqzB_-dB6as8CMSLnqCw5jMKoUXLP-kG9XPs9G31CzK9A1WWa1uq__nENVgqASZq5RaxDxWQbsPyFdnAT3h0l8KDoOsrIMCXlnBT09z4x08Ieiey_DEe9yeuAyEyT3mRMpni2tqUzBMEuGWK8GeACPCFjxrKN7fm7xvkYLaPJi2O1dra9BU-tq8eLa68Yv-ApxADc4wi-qFDa1yFXkqUx87UvG5FKaUy54DKgYddCFM6NSEOjMFpgSkTld32BsCvchmo2zMyOrZ-SwlHlBUxRxphQkuo4pTwwoWJG1-CsVEOiCm5yOyKjn-SsykGCG5nYjazB8UzyLefj-EFmv9RkUnjkOMFjJhOBLaupwanT2a_rk8vmhX3u_lXwCBavH-_aSfumc7sHS4Ete3HFPftQnYzezQEsqOmkNx4dFib6ASYd6x8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90E9EHv8Xp1AiiT8WuTZcEn8Q5FGUMUfCtZEmqg60b-_r7vaTtpqAg-NSXS1tyX7-Eu98BnPMEfYbWE6_G_I5H3UWTVtT2ysgg4lJIpt2wCdZq8bc30V6C66IXJuOHmF-4Wc9w8do6uBnq5GrBGqrxg5j--DKUaSQiWoJy47n5-jQPxIico6LkMAqjWsE96wdXxdrv2WgBMb8CVZdpmpv_-sct2MgBJrnJLGIblky6A-tfaAd3Yeoogft511FKBgkp5qSgv_eImeX2SGTvfTDqTj76RKaadCdjMsOztS2dIQh2yQDjTR8X4AkZM5ZtbM_eNc7GaBlN3h2rtbPtPXht3r3c3nv5-AVPIQbgHkfwRYXSvg65kiypM1_7shaphNYpF1wGNOxYiMK5EUloFEYLTImo_I4vEHaF-1BKB6k5sPVTUjiqvIApyhgTSlJdTygPTKiY0RW4LNQQq5yb3I7I6MUZq3IQ40bGdiMrcDaXHGZ8HD_IVAtNxrlHjmM8ZjIR2LKaClw4nf26Pm7c3Nrn4V8FT2G13WjGTw-txyNYC2zVi6vtqUJpMpqaY1hRs0l3PDrJLfQT0Jvqmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+differential+evolution+algorithm+and+its+variants+for+optimal+scheduling+of+distributed+generations&rft.jtitle=International+journal+of+communication+systems&rft.au=Shilaja%2C+C.&rft.date=2021-04-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1002%2Fdac.4318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_4318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |