Implementation of differential evolution algorithm and its variants for optimal scheduling of distributed generations

Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of communication systems Vol. 34; no. 6
Main Author: Shilaja, C.
Format: Journal Article
Language:English
Published: Chichester Wiley Subscription Services, Inc 01.04.2021
Subjects:
ISSN:1074-5351, 1099-1131
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate. Optimal operating schedule fog DGs with RES have been evaluated for standard distribution systems. An objection function has been formulated to solve cost minimization problem. Differential evolution (DE) algorithm and its variants have been employed to solve optimal scheduling problem. IEEE 14, IEEE 30, and IEEE 57 bus systems and 62 bus Indian utility system have been investigated. The economic impact of integrating RES‐based DGs in distribution systems has been studied.
AbstractList Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate.
Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with considerable economic profits. To minimize the power generation costs of DGs, day‐to‐day operation scheduling is essential. The role of this study is to offer an optimal operation schedule for DG with several energy sources including renewable energy sources (RES), considering economic facets. In order to achieve the cost minimization along with optimal scheduling, an objection function has been formulated and solved using the optimization algorithms. This study aims to present the applications of differential evolution (DE) algorithm and its variants such as opposition‐based differential evolution (ODE), self‐adaptive differential evolution (SaDE), improved differential evolution (IDE), and cultivated differential evolution (CuDE) for scheduling DG optimally. A scheme for optimal scheduling of thermal, wind power, and solar PV generators has been evaluated. The simulations have been carried out on IEEE 14 bus system, IEEE 30 bus system, IEEE 57 bus system, and Tamil Nadu Generation and Distribution Corporation Limited (TANGEDCO), as a real part of 62 bus Indian utility system (IUS). The novelty of this study lies in simulating a real‐time system for solving optimal scheduling problem, in that way helping decision makers to choose the optimal operation points. The results indicate that the SaDE outperformed other DE variants by giving the best fitness value and convergence rate. Optimal operating schedule fog DGs with RES have been evaluated for standard distribution systems. An objection function has been formulated to solve cost minimization problem. Differential evolution (DE) algorithm and its variants have been employed to solve optimal scheduling problem. IEEE 14, IEEE 30, and IEEE 57 bus systems and 62 bus Indian utility system have been investigated. The economic impact of integrating RES‐based DGs in distribution systems has been studied.
Author Shilaja, C.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0003-3157-3007
  surname: Shilaja
  fullname: Shilaja, C.
  email: shilaja.research@gmail.com
  organization: Kalasalingam Academy of Research and Education
BookMark eNp1kMtOwzAQRS1UJNqCxCdYYsMmxY6Txl5W5VWpEhtYW64fravEDrZT1L8nbVghWM1o5tw7mjsBI-edBuAWoxlGKH9QQs4KgukFGGPEWIYxwaNTXxVZSUp8BSYx7hFCNJ-XY9CtmrbWjXZJJOsd9AYqa4wO_cSKGuqDr7vzRtRbH2zaNVA4BW2K8CCCFa5vjA_Qt8k2vSDKnVZdbd128Iop2E2XtIJb7XQ4X4nX4NKIOuqbnzoFH89P78vXbP32slou1pnMGaEZZSUumFRIESpFZeYVUkjgUppiXlBGRV6QDUIVplQzQ7REFSkwMUptECMsJ1NwN_i2wX92Oia-911w_UmeF6xiOWas6qn7gZLBxxi04W3ofwlHjhE_hcr7UPkp1B6d_UKlHZJLQdj6L0E2CL5srY__GvPHxfLMfwOjq4tw
CitedBy_id crossref_primary_10_1007_s10586_024_04416_4
crossref_primary_10_1016_j_compeleceng_2024_109404
crossref_primary_10_1016_j_est_2023_109373
crossref_primary_10_1002_ett_4579
crossref_primary_10_1007_s10878_020_00681_2
Cites_doi 10.1137/040603371
10.1016/j.egypro.2018.04.055
10.1109/APPEEC.2013.6837181
10.1016/j.ijepes.2014.07.003
10.1002/0470012684
10.1109/tevc.2008.927706
10.1016/j.ijepes.2019.01.005
10.3233/JIFS-169681
10.1049/iet-gtd.2011.0682
10.1016/j.ijepes.2019.03.022
10.1145/321062.321069
10.1016/j.asoc.2015.10.022
10.1016/j.apenergy.2008.09.008
10.1016/j.ijepes.2013.04.021
10.1109/WICT.2011.6141289
10.1023/a:1008202821328
10.1016/j.epsr.2019.02.011
10.1002/tee.21881
10.1109/tpwrs.2013.2245925
10.1109/CEC.2006.1688285
10.1002/tee.21761
10.1016/j.enconman.2012.02.024
10.1080/15325000590474708
10.1016/j.asoc.2019.04.012
10.1016/j.epsr.2016.09.025
10.1109/tevc.2007.894200
10.1080/15325008.2015.1041625
10.1109/tec.2008.2008957
10.1109/IPEMC.2009.5157547
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.4318
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_4318
DAC4318
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c2938-895149cd0d38ca7f670d0a15cf464898a243b007188e9f3ec073413fddb093923
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506075900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1074-5351
IngestDate Tue Dec 02 01:41:07 EST 2025
Sat Nov 29 03:54:53 EST 2025
Tue Nov 18 22:16:50 EST 2025
Wed Jan 22 16:30:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-895149cd0d38ca7f670d0a15cf464898a243b007188e9f3ec073413fddb093923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3157-3007
PQID 2497921997
PQPubID 996367
PageCount 19
ParticipantIDs proquest_journals_2497921997
crossref_primary_10_1002_dac_4318
crossref_citationtrail_10_1002_dac_4318
wiley_primary_10_1002_dac_4318_DAC4318
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 24
2013; 28
2009; 86
2012
2006; 17
2018; 145
2007
2008; 12
2019; 108
2005
1994
2012; 59
2014; 63
2013; 8
2016; 38
2004; 33
2019; 80
2009; 13
2012; 2
1997; 11
2013; 53
2015; 43
1961; 8
2008; 44
2017; 142
2012; 6
2012; 7
2019; 171
2019; 110
2018; 35
e_1_2_6_10_1
e_1_2_6_31_1
Deng ZX (e_1_2_6_34_1) 2008; 44
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Cain M (e_1_2_6_22_1) 2012
Kundur P (e_1_2_6_19_1) 1994
e_1_2_6_9_1
e_1_2_6_8_1
Rahnamayan S (e_1_2_6_32_1) 2007
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
Kumar C (e_1_2_6_23_1) 2012; 2
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 17
  start-page: 188
  issue: 1
  year: 2006
  end-page: 217
  article-title: Mesh adaptive direct search algorithms for constrained optimization
  publication-title: SIAM J Opt
– volume: 8
  start-page: 212
  year: 1961
  end-page: 229
  article-title: Direct search solution of numerical and statistical problems
  publication-title: J Assoc Comp Machinery
– volume: 7
  start-page: 478
  issue: 5
  year: 2012
  end-page: 486
  article-title: A fuzzy binary clustered particle swarm optimization strategy for thermal unit commitment problem with wind power integration
  publication-title: IEEJ Trans Electric Electron Eng
– volume: 28
  start-page: 3226
  issue: 3
  year: 2013
  end-page: 3234
  article-title: Optimal power flow in microgrids with energy storage
  publication-title: IEEE Trans Power Syst
– volume: 110
  start-page: 713
  year: 2019
  end-page: 724
  article-title: Affine arithmetic for efficient and reliable resolution of weather‐based uncertainties in optimal power flow problems
  publication-title: Int J Electric Power Energy Syst
– year: 2005
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Opt
– volume: 24
  start-page: 661
  issue: 3
  year: 2009
  end-page: 672
  article-title: Wind farms as reactive power ancillary service providers—technical and economic issues
  publication-title: IEEE Trans Energy Conv
– volume: 59
  start-page: 86
  year: 2012
  end-page: 95
  article-title: Optimal power flow using gravitational search algorithm
  publication-title: Energ Conver Manage
– year: 2007
– volume: 6
  start-page: 503
  issue: 6
  year: 2012
  end-page: 514
  article-title: Distribution system planning considering reliable feeder routing
  publication-title: IET Gen, Trans Distrib
– volume: 2
  start-page: 235
  issue: 2
  year: 2012
  end-page: 241
  article-title: Constrained optimal power flow using particle swarm optimization
  publication-title: Int J Emerging Technol Adv Eng
– volume: 33
  start-page: 349
  issue: 3
  year: 2004
  end-page: 361
  article-title: Evolutionary programming based optimal power flow for units with non‐smooth fuel cost functions
  publication-title: Electric Power Comp Syst
– volume: 53
  start-page: 219
  year: 2013
  end-page: 230
  article-title: Artificial bee colony algorithm for solving multi‐objective optimal power flow problem
  publication-title: Int J Electric Power Energy Syst
– start-page: 1092
  end-page: 1098
– volume: 8
  start-page: 463
  issue: 5
  year: 2013
  end-page: 469
  article-title: Stochastic unit commitment problem considering risk constraints and its improved GA‐based solution method
  publication-title: IEEJ Trans Electric Electron Eng
– start-page: 17
  end-page: 24
– volume: 145
  start-page: 301
  year: 2018
  end-page: 306
  article-title: Optimal power flow using a novel metamodel based global optimization method
  publication-title: Energy Procedia
– year: 1994
– volume: 35
  start-page: 1387
  issue: 2
  year: 2018
  end-page: 1398
  article-title: Application of optimization algorithms to generation expansion planning problem
  publication-title: J Intelligent Fuzzy Syst
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr Pow Syst Res
– year: 2012
– volume: 63
  start-page: 855
  year: 2014
  end-page: 861
  article-title: Improved differential evolution for economic dispatch
  publication-title: Int J Electric Power Energy Syst
– volume: 44
  start-page: 33
  issue: 27
  year: 2008
  end-page: 36
  article-title: Study on strategy of increasing cross rate in differential evolution algorithm
  publication-title: Comput Eng Appl
– volume: 86
  start-page: 977
  issue: 7
  year: 2009
  end-page: 984
  article-title: A multi‐objective evolutionary algorithm for reactive power compensation in distribution networks
  publication-title: Appl Energy
– volume: 171
  start-page: 66
  year: 2019
  end-page: 73
  article-title: Optimal power flow considering predictability of power systems
  publication-title: Electr Pow Syst Res
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  end-page: 79
  article-title: Opposition‐based differential evolution
  publication-title: IEEE Trans Evol Comp
– start-page: 1
  end-page: 6
– volume: 43
  start-page: 1548
  issue: 13
  year: 2015
  end-page: 1559
  article-title: Single and multi‐objective optimal power flow using grey wolf optimizer and differential evolution algorithms
  publication-title: Electric Power Comp Syst
– volume: 38
  start-page: 501
  year: 2016
  end-page: 517
  article-title: A memory based differential evolution algorithm for unconstrained optimization
  publication-title: Appl Soft Comput
– volume: 108
  start-page: 232
  year: 2019
  end-page: 239
  article-title: Linearized voltage stability incorporation with line‐wise optimal power flow
  publication-title: Int J Electric Power Energy Syst
– volume: 80
  start-page: 243
  year: 2019
  end-page: 262
  article-title: An efficient particle swarm optimization algorithm to solve optimal power flow problem integrated with FACTS devices
  publication-title: Appl Soft Comput
– start-page: 462
  end-page: 466
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  end-page: 417
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evol Comp
– ident: e_1_2_6_4_1
  doi: 10.1137/040603371
– ident: e_1_2_6_14_1
  doi: 10.1016/j.egypro.2018.04.055
– ident: e_1_2_6_8_1
  doi: 10.1109/APPEEC.2013.6837181
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ijepes.2014.07.003
– ident: e_1_2_6_18_1
  doi: 10.1002/0470012684
– volume-title: Power System Stability and Control
  year: 1994
  ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
  doi: 10.1109/tevc.2008.927706
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ijepes.2019.01.005
– ident: e_1_2_6_17_1
  doi: 10.3233/JIFS-169681
– ident: e_1_2_6_6_1
  doi: 10.1049/iet-gtd.2011.0682
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ijepes.2019.03.022
– ident: e_1_2_6_5_1
  doi: 10.1145/321062.321069
– volume-title: Opposition‐Based Differential Evolution
  year: 2007
  ident: e_1_2_6_32_1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.asoc.2015.10.022
– ident: e_1_2_6_2_1
  doi: 10.1016/j.apenergy.2008.09.008
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ijepes.2013.04.021
– ident: e_1_2_6_35_1
  doi: 10.1109/WICT.2011.6141289
– ident: e_1_2_6_29_1
  doi: 10.1023/a:1008202821328
– ident: e_1_2_6_11_1
  doi: 10.1016/j.epsr.2019.02.011
– ident: e_1_2_6_3_1
  doi: 10.1002/tee.21881
– ident: e_1_2_6_9_1
  doi: 10.1109/tpwrs.2013.2245925
– ident: e_1_2_6_31_1
  doi: 10.1109/CEC.2006.1688285
– ident: e_1_2_6_7_1
  doi: 10.1002/tee.21761
– ident: e_1_2_6_27_1
  doi: 10.1016/j.enconman.2012.02.024
– ident: e_1_2_6_28_1
  doi: 10.1080/15325000590474708
– ident: e_1_2_6_13_1
  doi: 10.1016/j.asoc.2019.04.012
– ident: e_1_2_6_24_1
  doi: 10.1016/j.epsr.2016.09.025
– ident: e_1_2_6_33_1
  doi: 10.1109/tevc.2007.894200
– ident: e_1_2_6_25_1
  doi: 10.1080/15325008.2015.1041625
– volume: 44
  start-page: 33
  issue: 27
  year: 2008
  ident: e_1_2_6_34_1
  article-title: Study on strategy of increasing cross rate in differential evolution algorithm
  publication-title: Comput Eng Appl
– ident: e_1_2_6_20_1
  doi: 10.1109/tec.2008.2008957
– volume: 2
  start-page: 235
  issue: 2
  year: 2012
  ident: e_1_2_6_23_1
  article-title: Constrained optimal power flow using particle swarm optimization
  publication-title: Int J Emerging Technol Adv Eng
– ident: e_1_2_6_21_1
  doi: 10.1109/IPEMC.2009.5157547
– volume-title: History of Optimal Power Flow and Formulations
  year: 2012
  ident: e_1_2_6_22_1
SSID ssj0008265
Score 2.2655108
Snippet Summary Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity...
Modern power systems are being shifted its attention towards distributed generations (DGs). DGs have allured more concern as an auspicious opportunity with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alternative energy sources
DGs
Electric power distribution
Energy resources
Evolutionary algorithms
Evolutionary computation
IEEE bus systems
Operation scheduling
optimal scheduling
Optimization
Photovoltaic cells
Renewable energy sources
Schedules
Scheduling
Wind power
Title Implementation of differential evolution algorithm and its variants for optimal scheduling of distributed generations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4318
https://www.proquest.com/docview/2497921997
Volume 34
WOSCitedRecordID wos000506075900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1131
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008265
  issn: 1074-5351
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0SgTRU1nXpk1yHJvDgwwRB7uVLEnnYGtl7fb3-5K22wQFwVMvSVvyvn4vvPd7CN2zGGyGhLHTpu7YIfaiSUliemWEFzDBBVV22AQdDNhoxF_LqkrTC1PwQ6wv3IxlWH9tDFyMs9aGNFTB9yD6sV1UNz1VkHjVe2_94cvaDwNwDqqKw8AP2hX1rOu1qr3fg9EGYW7jVBto-kf_-cVjdFjCS9wp9OEE7ejkFB1skQ6eoaUlBJ6XPUcJTmNcTUkBa59hvSq1EYvZJF1M8485FonC0zzDK8isTeEMBqiLU_A2c9gA-THEK9PWXrwrK4ZoaYUnltPaavY5Gvaf3rvPTjl8wZGAAJjDAHoRLpWrfCYFjUPqKle0AxmTkDDOhEf8sQEojGke-1qCr4CACKIfuxxAl3-Bakma6EtTPSW4JcrzqCSUUi4FUWFMmKd9SbVqoMdKCpEsmcnNgIxZVHAqexEcZGQOsoHu1is_CzaOH9Y0K0FGpT1mESSZlHumqKaBHqzIft0f9Tpd87z668JrtO-ZQhdbztNEtXyx1DdoT67yaba4LbXyC1CD5y8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mFNQHv8X5GUH0qaxr0ybBp6EOxTlEFHwrWZLqYOtkm_v7vaTtVFAQfOrLpS25r1_C3e8ATniKPkPj1Gswv-tRd9GkFbW9MjKIuBSSaTdsgnU6_PlZ3FfgvOyFyfkhZhdu1jNcvLYObi-k65-soRo_iOmPz8E8jUPGqzB_-dB6as8CMSLnqCw5jMKoUXLP-kG9XPs9G31CzK9A1WWa1uq__nENVgqASZq5RaxDxWQbsPyFdnAT3h0l8KDoOsrIMCXlnBT09z4x08Ieiey_DEe9yeuAyEyT3mRMpni2tqUzBMEuGWK8GeACPCFjxrKN7fm7xvkYLaPJi2O1dra9BU-tq8eLa68Yv-ApxADc4wi-qFDa1yFXkqUx87UvG5FKaUy54DKgYddCFM6NSEOjMFpgSkTld32BsCvchmo2zMyOrZ-SwlHlBUxRxphQkuo4pTwwoWJG1-CsVEOiCm5yOyKjn-SsykGCG5nYjazB8UzyLefj-EFmv9RkUnjkOMFjJhOBLaupwanT2a_rk8vmhX3u_lXwCBavH-_aSfumc7sHS4Ete3HFPftQnYzezQEsqOmkNx4dFib6ASYd6x8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90E9EHv8Xp1AiiT8WuTZcEn8Q5FGUMUfCtZEmqg60b-_r7vaTtpqAg-NSXS1tyX7-Eu98BnPMEfYbWE6_G_I5H3UWTVtT2ysgg4lJIpt2wCdZq8bc30V6C66IXJuOHmF-4Wc9w8do6uBnq5GrBGqrxg5j--DKUaSQiWoJy47n5-jQPxIico6LkMAqjWsE96wdXxdrv2WgBMb8CVZdpmpv_-sct2MgBJrnJLGIblky6A-tfaAd3Yeoogft511FKBgkp5qSgv_eImeX2SGTvfTDqTj76RKaadCdjMsOztS2dIQh2yQDjTR8X4AkZM5ZtbM_eNc7GaBlN3h2rtbPtPXht3r3c3nv5-AVPIQbgHkfwRYXSvg65kiypM1_7shaphNYpF1wGNOxYiMK5EUloFEYLTImo_I4vEHaF-1BKB6k5sPVTUjiqvIApyhgTSlJdTygPTKiY0RW4LNQQq5yb3I7I6MUZq3IQ40bGdiMrcDaXHGZ8HD_IVAtNxrlHjmM8ZjIR2LKaClw4nf26Pm7c3Nrn4V8FT2G13WjGTw-txyNYC2zVi6vtqUJpMpqaY1hRs0l3PDrJLfQT0Jvqmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+differential+evolution+algorithm+and+its+variants+for+optimal+scheduling+of+distributed+generations&rft.jtitle=International+journal+of+communication+systems&rft.au=Shilaja%2C+C.&rft.date=2021-04-01&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1002%2Fdac.4318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_dac_4318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon