A randomized generalized low rank approximations of matrices algorithm for high dimensionality reduction and image compression

Summary High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computation...

Full description

Saved in:
Bibliographic Details
Published in:Numerical linear algebra with applications Vol. 28; no. 1
Main Authors: Li, Ke, Wu, Gang
Format: Journal Article
Language:English
Published: Oxford Wiley Subscription Services, Inc 01.01.2021
Subjects:
ISSN:1070-5325, 1099-1506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms.
AbstractList Summary High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms.
High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms.
Author Wu, Gang
Li, Ke
Author_xml – sequence: 1
  givenname: Ke
  surname: Li
  fullname: Li, Ke
  organization: China University of Mining and Technology
– sequence: 2
  givenname: Gang
  orcidid: 0000-0002-4936-437X
  surname: Wu
  fullname: Wu, Gang
  email: gangwu@cumt.edu.cn, gangwu76@126.com
  organization: China University of Mining and Technology
BookMark eNp1kEtPwzAQhC1UJNqCxE-wxIVLih9NHB-ripdUwaX3yLU3qUsSFztVKQd-O07LCcHJI-03s-sZoUHrWkDompIJJYTdtbWaMM7zMzSkRMqEpiQb9FqQJOUsvUCjEDaEkCyVfIi-Ztir1rjGfoLBFbTgVX3Utdv3ozestlvvPmyjOuvagF2Jo_RWQ8Cqrpy33brBpfN4bas1NraBNkQyxnQH7MHsdG_EcQuOIRVg7Zqth9BDl-i8VHWAq593jJYP98v5U7J4fXyezxaJZpLniZCQybzMQGiWZ4ILDpwrqqaMrpiREnicak1AGJ0ZSldCaw0m01yUwnA-Rjen2PiT9x2Erti4nY8nhoJNszSXXMY9Y3R7orR3IXgoi62PF_tDQUnRl1vEcou-3IhOfqHadseCOq9s_ZchORn2tobDv8HFy2J25L8Bpn-P7w
CitedBy_id crossref_primary_10_1007_s11760_022_02398_7
crossref_primary_10_1007_s00500_023_09189_3
crossref_primary_10_1007_s10489_023_04885_x
crossref_primary_10_1016_j_jsv_2023_118092
Cites_doi 10.1109/TPAMI.2004.1261097
10.1145/1321440.1321544
10.1016/j.patrec.2005.11.013
10.1016/j.acha.2010.02.003
10.1109/ICASSP.2012.6288042
10.1561/0400000060
10.1016/j.neucom.2007.11.046
10.1109/34.41390
10.1137/090771806
10.1109/TNN.2010.2040290
10.1137/1.9781611970739
10.1016/j.patcog.2014.07.024
10.1016/j.patcog.2006.04.038
10.1137/130938700
10.1007/BF01932678
10.1007/s10994-005-3561-6
10.1007/BF01418329
10.1145/502512.502546
10.1016/j.neucom.2005.06.004
10.1109/ISSPIT.2016.7886035
10.1016/j.patcog.2016.08.020
10.1016/j.patcog.2010.04.029
10.1016/j.micpro.2016.06.011
10.1109/TIT.1967.1053964
10.1109/TGRS.2016.2601622
10.1162/jocn.1991.3.1.71
10.1073/pnas.0709640104
10.1109/TPAMI.2003.1251154
10.1137/S0895479898334605
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nla.2338
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage n/a
ExternalDocumentID 10_1002_nla_2338
NLA2338
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-79e698f6e7c2867373e33a1a421b2d99e398fcc0e7dc6d11b7ccced6c37f7d33
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573700100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5325
IngestDate Fri Jul 25 11:49:40 EDT 2025
Sat Nov 29 05:31:59 EST 2025
Tue Nov 18 22:07:07 EST 2025
Wed Jan 22 16:31:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-79e698f6e7c2867373e33a1a421b2d99e398fcc0e7dc6d11b7ccced6c37f7d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4936-437X
PQID 2465893929
PQPubID 2034341
PageCount 24
ParticipantIDs proquest_journals_2465893929
crossref_primary_10_1002_nla_2338
crossref_citationtrail_10_1002_nla_2338
wiley_primary_10_1002_nla_2338_NLA2338
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 3
2015; 37
1990; 12
2012
2011
2017; 66
2004; 26
2000; 22
2011; 53
2016; 54
1998
2011; 30
2007
2005; 5779
2005; 61
2008; 72
2005; 69
2010; 21
2010; 43
2015; 48
1990
2001
2006; 27
2003; 25
1983; 41
2016
1967; 13
2017; 18
2015
2007; 40
2014
1972; 12
2016; 47
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Goel N (e_1_2_7_24_1) 2005; 5779
e_1_2_7_3_1
Golub GH (e_1_2_7_26_1) 2014
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Musco C (e_1_2_7_27_1) 2015
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_28_1
e_1_2_7_29_1
Fukunaga K (e_1_2_7_2_1) 1990
Saad Y (e_1_2_7_36_1) 2011
Darnell G (e_1_2_7_23_1) 2017; 18
Song H (e_1_2_7_7_1) 2016; 47
Lu C (e_1_2_7_11_1) 2008; 72
Liu J (e_1_2_7_9_1) 2010; 21
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Sun J (e_1_2_7_32_1) 1983; 41
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Liang Z (e_1_2_7_16_1) 2007; 40
Liu J (e_1_2_7_10_1) 2006; 27
References_xml – year: 2011
– volume: 72
  start-page: 212
  year: 2008
  end-page: 217
  article-title: A simplified GLRAM algorithm for face recognition
  publication-title: Neurocomputing
– volume: 10
  start-page: 1
  issue: 1‐2
  year: 2014
  end-page: 157
  article-title: Sketching as a tool for numerical linear algebra
  publication-title: Found Trends Theoret Comput Sci
– volume: 27
  start-page: 1002
  year: 2006
  end-page: 1008
  article-title: Non‐iterative generalized low rank approximation of matrices
  publication-title: Pattern Recogn Lett
– volume: 41
  start-page: 321
  year: 1983
  end-page: 343
  article-title: The perturbation bounds for eigenspaces of a definite matrix‐pair
  publication-title: Numerische Mathematik
– volume: 5779
  start-page: 426
  year: 2005
  end-page: 437
  article-title: Face recognition experiments with random projection
  publication-title: Biometr Technol Human Identificat II
– volume: 66
  start-page: 328
  year: 2017
  end-page: 341
  article-title: Inexact implementation using Krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems
  publication-title: Pattern Recognit
– year: 2007
– year: 2001
– start-page: 1396
  year: 2015
  end-page: 1404
– volume: 22
  start-page: 602
  year: 2000
  end-page: 616
  article-title: Thick‐restart Lanczos mthod for large symmetric eigenvalue problems
  publication-title: SIAM J Matrix Anal Appl
– volume: 43
  start-page: 3742
  year: 2010
  end-page: 3752
  article-title: Bilinear Lanczos components for fast dimensionality reduction and feature extraction
  publication-title: Pattern Recogn
– volume: 30
  start-page: 47
  year: 2011
  end-page: 68
  article-title: A randomized algorithm for the decomposition of matrices
  publication-title: Appl Comput Harmonic Anal
– volume: 54
  start-page: 7405
  year: 2016
  end-page: 7415
  article-title: Learningrotation‐invariant convolutional neural networks for object detection in VHRoptical remote sensing images
  publication-title: IEEE Trans Geosci Remotesens
– year: 2016
– year: 1990
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inf Theory
– year: 2014
– volume: 37
  start-page: A1139
  year: 2015
  end-page: A1173
  article-title: Subspace iteration randomization and singular value problems
  publication-title: SIAM J Sci Comput
– year: 1998
– volume: 26
  start-page: 131
  year: 2004
  end-page: 137
  article-title: Two‐dimensional PCA: a new approach to appearance based face representation and recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2012
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev
– volume: 47
  start-page: 170
  year: 2016
  end-page: 177
  article-title: The improved algorithm and its parallel implementation based on image block
  publication-title: Microprocess Microsyst
– volume: 21
  start-page: 621
  year: 2010
  end-page: 632
  article-title: Generalized low rank approximations of matrices revisited
  publication-title: IEEE Trans Neural Netw
– volume: 12
  start-page: 103
  year: 1990
  end-page: 108
  article-title: Application of the karhunen‐loeve procedure for the characterization of human faces
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 48
  start-page: 244
  year: 2015
  end-page: 263
  article-title: Inexact and incremental bilinear Lanczos components algorithm for high dimensionality reduction and image reconstruction
  publication-title: Pattern Recognit
– volume: 40
  start-page: 1032
  year: 2007
  end-page: 1041
  article-title: The theoretical analysis of GLRAM and its applications
  publication-title: Pattern Recognit
– volume: 25
  start-page: 1615
  year: 2003
  end-page: 1618
  article-title: The CMU pose, illumination, and expression database
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 12
  start-page: 99
  year: 1972
  end-page: 111
  article-title: Perturbation bounds in connection with singular value decomposition
  publication-title: BIT
– volume: 69
  start-page: 224
  year: 2005
  end-page: 231
  article-title: PCA: 2‐directional 2‐dimensional PCA for efficient face representation and recognition
  publication-title: Neurocomputing
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  article-title: Eigenfaces for recognition
  publication-title: J Cognit Neurosci
– volume: 18
  start-page: 1
  year: 2017
  end-page: 30
  article-title: Adaptive randomized dimension reduction on massive data
  publication-title: J Mach Learn Res
– volume: 61
  start-page: 167
  year: 2005
  end-page: 191
  article-title: Generalized low rank approximations of matrices
  publication-title: Mach Learn
– ident: e_1_2_7_20_1
– volume: 5779
  start-page: 426
  year: 2005
  ident: e_1_2_7_24_1
  article-title: Face recognition experiments with random projection
  publication-title: Biometr Technol Human Identificat II
– ident: e_1_2_7_4_1
  doi: 10.1109/TPAMI.2004.1261097
– ident: e_1_2_7_29_1
– ident: e_1_2_7_39_1
  doi: 10.1145/1321440.1321544
– volume: 27
  start-page: 1002
  year: 2006
  ident: e_1_2_7_10_1
  article-title: Non‐iterative generalized low rank approximation of matrices
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.11.013
– ident: e_1_2_7_21_1
  doi: 10.1016/j.acha.2010.02.003
– ident: e_1_2_7_15_1
  doi: 10.1109/ICASSP.2012.6288042
– volume: 18
  start-page: 1
  year: 2017
  ident: e_1_2_7_23_1
  article-title: Adaptive randomized dimension reduction on massive data
  publication-title: J Mach Learn Res
– ident: e_1_2_7_28_1
  doi: 10.1561/0400000060
– volume: 72
  start-page: 212
  year: 2008
  ident: e_1_2_7_11_1
  article-title: A simplified GLRAM algorithm for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.11.046
– ident: e_1_2_7_3_1
  doi: 10.1109/34.41390
– ident: e_1_2_7_18_1
  doi: 10.1137/090771806
– volume: 21
  start-page: 621
  year: 2010
  ident: e_1_2_7_9_1
  article-title: Generalized low rank approximations of matrices revisited
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2040290
– volume-title: Numerical algorithms for large eigenvalus problems
  year: 2011
  ident: e_1_2_7_36_1
  doi: 10.1137/1.9781611970739
– volume-title: Introduction to statistical pattern classification
  year: 1990
  ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
  doi: 10.1016/j.patcog.2014.07.024
– volume: 40
  start-page: 1032
  year: 2007
  ident: e_1_2_7_16_1
  article-title: The theoretical analysis of GLRAM and its applications
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.04.038
– ident: e_1_2_7_17_1
  doi: 10.1137/130938700
– ident: e_1_2_7_33_1
  doi: 10.1007/BF01932678
– ident: e_1_2_7_8_1
  doi: 10.1007/s10994-005-3561-6
– volume: 41
  start-page: 321
  year: 1983
  ident: e_1_2_7_32_1
  article-title: The perturbation bounds for eigenspaces of a definite matrix‐pair
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01418329
– ident: e_1_2_7_30_1
– ident: e_1_2_7_22_1
  doi: 10.1145/502512.502546
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neucom.2005.06.004
– ident: e_1_2_7_14_1
  doi: 10.1109/ISSPIT.2016.7886035
– ident: e_1_2_7_35_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.patcog.2016.08.020
– ident: e_1_2_7_12_1
  doi: 10.1016/j.patcog.2010.04.029
– start-page: 1396
  volume-title: Advances in neural information processing systems, Neural Information Processing Systems (NIPS), 10010 North Torrey Pines RD
  year: 2015
  ident: e_1_2_7_27_1
– volume: 47
  start-page: 170
  year: 2016
  ident: e_1_2_7_7_1
  article-title: The improved (2D)2PCA algorithm and its parallel implementation based on image block
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2016.06.011
– ident: e_1_2_7_38_1
  doi: 10.1109/TIT.1967.1053964
– ident: e_1_2_7_34_1
  doi: 10.1109/TGRS.2016.2601622
– ident: e_1_2_7_5_1
  doi: 10.1162/jocn.1991.3.1.71
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0709640104
– volume-title: Matrix computations
  year: 2014
  ident: e_1_2_7_26_1
– ident: e_1_2_7_37_1
  doi: 10.1109/TPAMI.2003.1251154
– ident: e_1_2_7_25_1
  doi: 10.1137/S0895479898334605
SSID ssj0006593
Score 2.2710924
Snippet Summary High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank...
High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Data mining
generalized low rank approximations of matrices
high dimensionality reduction
Image compression
Machine learning
randomized singular value decomposition
Reconstruction
Singular value decomposition
Title A randomized generalized low rank approximations of matrices algorithm for high dimensionality reduction and image compression
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2338
https://www.proquest.com/docview/2465893929
Volume 28
WOSCitedRecordID wos000573700100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDbh704G9xOiWC6KmuTdomPQ51eJhDZMpuJUvSOdxWWecPPPi3mx9tnaAgeGqhSVv6XpJv0pfPA-A4QkmQUBk6WLi-4wfSdxh1lUGoK0iAqAxMMpj7Nul0aK8X3eRRlXovjOVDlAtuumWY_lo3cNbPGnPQ0BE7Q2qCtQiqSLmt8vHqxW3rrl32w6FF7qr5jesEGAUFetZFjaLu98HoS2HO61Qz0LTW_vOK62A1l5ewaf1hAyzIySZYuS7ZrNkW-GhCNT6JdDx8lwIOLHbanI_SV33pERrQ-NvQ7mrMYJrAsSH5ywyy0SCdDmcPY6jULtSwYyh0ggAL91CSHk41DFZXhOopUN1kIKEOXLcBt5Nt0G1dds-vnDwLg8OVFKAOiWQY0SSUhCOqs9pgiTHzmI-8PhJRJLG6yrkrieCh8Lw-4ZxLEXJMEiIw3gGVSTqRuwD6AUswE5whwn0v8SM1fOrfhpIEnCrtVQOnhTVinhPKdaKMUWzZysgQsPUHrYGjsuSTpXL8UKZeGDTO22UWI18prkhrwho4Mab7tX7caTf1ce-vBffBMtIBL2Z9pg4qs-mzPABL_GU2zKaHuXd-AgUX6xA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefSosEO2zAhlbWgZEQnLImthM72qliq4pIK4QK6i3KbKdUtM3UdBvaYX_7_CMpRQJpEqdEsp1Yebbf1479eQDvYpyHOVeRR6RPPRoq6mXc1wbhvmQh5iq0wWC-J2w04pNJ_KUBp_VZGMeH2Cy4mZ5hx2vTwc2CdHeLGjrPTrCeYT2CFtWtiDahdfa1_y3ZDMSRY-7qCY7vhQSHNXvWx9267J_e6LfE3Baq1tP09_6rjs9gtxKYqOdaxHNoqOUL2Blu6KzlPtz1kPZQsljMbpVEUweetvfz4sYk_UQWNf5r5s41lqjI0cKy_FWJsvm0WM3WPxZI611kcMdImhABDu-hRT1aGRysKYj0W5B-yFQhs3XdbbldHsC4fz7-OPCqOAye0GKAeyxWUczzSDGBuYlrQxQhWZBRHFxgGceK6FQhfMWkiGQQXDAhhJKRICxnkpCX0FwWS3UIiIZZTjIpMswEDXIaawdqfhwqFgqu1VcbPtTmSEXFKDehMuapoytjy8A2H7QNbzc5Lx2X4y95OrVF06pnlimmWnPFRhW24b213T_Lp6OkZ66vHprxDTwZjIdJmnwafT6Cp9hsf7GrNR1orldX6hgei-v1rFy9rprqPRAv7wA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9MwFIePtm6a4GEwBqIwhpHQ9pQt8SV2tKdqoxqiVBPa0N6izD4pFW0zNeUiHvjb8SXphgTSpD0lku3EyrF9fnbs7wC8zWgpSoVpxEzMIy6QR4WKrUFUbKSgCoUPBvN5IIdDdXmZna3AUXsWJvAhlgturmf48dp1cLw25eEtauikOKB2hrUKa1xYId6BtZNP_YvBciBOA3PXTnDiSDAqWvZsTA_bsn97oxuJeVuoek_Tf3SvOj6GzUZgkl5oEVuwgrMn8PDjks5ab8PvHrEeylTT8S80ZBTA0_5-Uv1wSV-JR43_HIdzjTWpSjL1LH-sSTEZVfPx4suUWL1LHO6YGBciIOA9rKgnc4eDdQWJfQuxDxkhcVvXw5bb2VM47787Pz6NmjgMkbZiQEUywzRTZYpSU-Xi2jBkrEgKTpMrarIMmU3VOkZpdGqS5EpqrdGkmslSGsaeQWdWzfA5EC6KkhVGF1RqnpQ8sw7U_ThEKbSy6qsL-605ct0wyl2ojEke6MrUM7DdB-3Cm2XO68Dl-EeendaiedMz65xyq7kypwq7sOdt99_y-XDQc9cXd834GjbOTvr54P3ww0t4QN3uF79YswOdxfwbvoJ1_X0xrue7TUv9A7WB7ns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+randomized+generalized+low+rank+approximations+of+matrices+algorithm+for+high+dimensionality+reduction+and+image+compression&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Li%2C+Ke&rft.au=Wu%2C+Gang&rft.date=2021-01-01&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1002%2Fnla.2338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nla_2338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon