A randomized generalized low rank approximations of matrices algorithm for high dimensionality reduction and image compression
Summary High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computation...
Gespeichert in:
| Veröffentlicht in: | Numerical linear algebra with applications Jg. 28; H. 1 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Wiley Subscription Services, Inc
01.01.2021
|
| Schlagworte: | |
| ISSN: | 1070-5325, 1099-1506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Summary
High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms. |
|---|---|
| AbstractList | Summary
High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms. High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of matrices (GLRAM) is a popular technique for dimensionality reduction and image compression. However, it suffers from heavily computational overhead in practice, especially for data with high dimension. In order to reduce the cost of this algorithm, we propose a randomized GLRAM algorithm based on randomized singular value decomposition (RSVD). The theoretical contribution of our work is threefold. First, we discuss the decaying property of singular values of the matrices during iterations of the GLRAM algorithm, and provide a target rank required in the RSVD process from a theoretical point of view. Second, we establish the relationship between the reconstruction errors generated by the standard GLRAM algorithm and the randomized GLRAM algorithm. It is shown that the reconstruction errors generated by the former and the latter are comparable, even if the solutions are computed inaccurately during iterations. Third, the convergence of the randomized GLRAM algorithm is investigated. Numerical experiments on some real‐world data sets illustrate the superiority of our proposed algorithm over its original counterpart and some state‐of‐the‐art GLRAM‐type algorithms. |
| Author | Wu, Gang Li, Ke |
| Author_xml | – sequence: 1 givenname: Ke surname: Li fullname: Li, Ke organization: China University of Mining and Technology – sequence: 2 givenname: Gang orcidid: 0000-0002-4936-437X surname: Wu fullname: Wu, Gang email: gangwu@cumt.edu.cn, gangwu76@126.com organization: China University of Mining and Technology |
| BookMark | eNp1kEtPwzAQhC1UJNqCxE-wxIVLih9NHB-ripdUwaX3yLU3qUsSFztVKQd-O07LCcHJI-03s-sZoUHrWkDompIJJYTdtbWaMM7zMzSkRMqEpiQb9FqQJOUsvUCjEDaEkCyVfIi-Ztir1rjGfoLBFbTgVX3Utdv3ozestlvvPmyjOuvagF2Jo_RWQ8Cqrpy33brBpfN4bas1NraBNkQyxnQH7MHsdG_EcQuOIRVg7Zqth9BDl-i8VHWAq593jJYP98v5U7J4fXyezxaJZpLniZCQybzMQGiWZ4ILDpwrqqaMrpiREnicak1AGJ0ZSldCaw0m01yUwnA-Rjen2PiT9x2Erti4nY8nhoJNszSXXMY9Y3R7orR3IXgoi62PF_tDQUnRl1vEcou-3IhOfqHadseCOq9s_ZchORn2tobDv8HFy2J25L8Bpn-P7w |
| CitedBy_id | crossref_primary_10_1007_s11760_022_02398_7 crossref_primary_10_1007_s00500_023_09189_3 crossref_primary_10_1007_s10489_023_04885_x crossref_primary_10_1016_j_jsv_2023_118092 |
| Cites_doi | 10.1109/TPAMI.2004.1261097 10.1145/1321440.1321544 10.1016/j.patrec.2005.11.013 10.1016/j.acha.2010.02.003 10.1109/ICASSP.2012.6288042 10.1561/0400000060 10.1016/j.neucom.2007.11.046 10.1109/34.41390 10.1137/090771806 10.1109/TNN.2010.2040290 10.1137/1.9781611970739 10.1016/j.patcog.2014.07.024 10.1016/j.patcog.2006.04.038 10.1137/130938700 10.1007/BF01932678 10.1007/s10994-005-3561-6 10.1007/BF01418329 10.1145/502512.502546 10.1016/j.neucom.2005.06.004 10.1109/ISSPIT.2016.7886035 10.1016/j.patcog.2016.08.020 10.1016/j.patcog.2010.04.029 10.1016/j.micpro.2016.06.011 10.1109/TIT.1967.1053964 10.1109/TGRS.2016.2601622 10.1162/jocn.1991.3.1.71 10.1073/pnas.0709640104 10.1109/TPAMI.2003.1251154 10.1137/S0895479898334605 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/nla.2338 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1099-1506 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_nla_2338 NLA2338 |
| Genre | article |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-79e698f6e7c2867373e33a1a421b2d99e398fcc0e7dc6d11b7ccced6c37f7d33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573700100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-5325 |
| IngestDate | Fri Jul 25 11:49:40 EDT 2025 Sat Nov 29 05:31:59 EST 2025 Tue Nov 18 22:07:07 EST 2025 Wed Jan 22 16:31:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-79e698f6e7c2867373e33a1a421b2d99e398fcc0e7dc6d11b7ccced6c37f7d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4936-437X |
| PQID | 2465893929 |
| PQPubID | 2034341 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2465893929 crossref_primary_10_1002_nla_2338 crossref_citationtrail_10_1002_nla_2338 wiley_primary_10_1002_nla_2338_NLA2338 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Numerical linear algebra with applications |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1991; 3 2015; 37 1990; 12 2012 2011 2017; 66 2004; 26 2000; 22 2011; 53 2016; 54 1998 2011; 30 2007 2005; 5779 2005; 61 2008; 72 2005; 69 2010; 21 2010; 43 2015; 48 1990 2001 2006; 27 2003; 25 1983; 41 2016 1967; 13 2017; 18 2015 2007; 40 2014 1972; 12 2016; 47 2014; 10 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Goel N (e_1_2_7_24_1) 2005; 5779 e_1_2_7_3_1 Golub GH (e_1_2_7_26_1) 2014 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Musco C (e_1_2_7_27_1) 2015 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_28_1 e_1_2_7_29_1 Fukunaga K (e_1_2_7_2_1) 1990 Saad Y (e_1_2_7_36_1) 2011 Darnell G (e_1_2_7_23_1) 2017; 18 Song H (e_1_2_7_7_1) 2016; 47 Lu C (e_1_2_7_11_1) 2008; 72 Liu J (e_1_2_7_9_1) 2010; 21 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Sun J (e_1_2_7_32_1) 1983; 41 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Liang Z (e_1_2_7_16_1) 2007; 40 Liu J (e_1_2_7_10_1) 2006; 27 |
| References_xml | – year: 2011 – volume: 72 start-page: 212 year: 2008 end-page: 217 article-title: A simplified GLRAM algorithm for face recognition publication-title: Neurocomputing – volume: 10 start-page: 1 issue: 1‐2 year: 2014 end-page: 157 article-title: Sketching as a tool for numerical linear algebra publication-title: Found Trends Theoret Comput Sci – volume: 27 start-page: 1002 year: 2006 end-page: 1008 article-title: Non‐iterative generalized low rank approximation of matrices publication-title: Pattern Recogn Lett – volume: 41 start-page: 321 year: 1983 end-page: 343 article-title: The perturbation bounds for eigenspaces of a definite matrix‐pair publication-title: Numerische Mathematik – volume: 5779 start-page: 426 year: 2005 end-page: 437 article-title: Face recognition experiments with random projection publication-title: Biometr Technol Human Identificat II – volume: 66 start-page: 328 year: 2017 end-page: 341 article-title: Inexact implementation using Krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems publication-title: Pattern Recognit – year: 2007 – year: 2001 – start-page: 1396 year: 2015 end-page: 1404 – volume: 22 start-page: 602 year: 2000 end-page: 616 article-title: Thick‐restart Lanczos mthod for large symmetric eigenvalue problems publication-title: SIAM J Matrix Anal Appl – volume: 43 start-page: 3742 year: 2010 end-page: 3752 article-title: Bilinear Lanczos components for fast dimensionality reduction and feature extraction publication-title: Pattern Recogn – volume: 30 start-page: 47 year: 2011 end-page: 68 article-title: A randomized algorithm for the decomposition of matrices publication-title: Appl Comput Harmonic Anal – volume: 54 start-page: 7405 year: 2016 end-page: 7415 article-title: Learningrotation‐invariant convolutional neural networks for object detection in VHRoptical remote sensing images publication-title: IEEE Trans Geosci Remotesens – year: 2016 – year: 1990 – volume: 13 start-page: 21 year: 1967 end-page: 27 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inf Theory – year: 2014 – volume: 37 start-page: A1139 year: 2015 end-page: A1173 article-title: Subspace iteration randomization and singular value problems publication-title: SIAM J Sci Comput – year: 1998 – volume: 26 start-page: 131 year: 2004 end-page: 137 article-title: Two‐dimensional PCA: a new approach to appearance based face representation and recognition publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2012 – volume: 53 start-page: 217 year: 2011 end-page: 288 article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Rev – volume: 47 start-page: 170 year: 2016 end-page: 177 article-title: The improved algorithm and its parallel implementation based on image block publication-title: Microprocess Microsyst – volume: 21 start-page: 621 year: 2010 end-page: 632 article-title: Generalized low rank approximations of matrices revisited publication-title: IEEE Trans Neural Netw – volume: 12 start-page: 103 year: 1990 end-page: 108 article-title: Application of the karhunen‐loeve procedure for the characterization of human faces publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 48 start-page: 244 year: 2015 end-page: 263 article-title: Inexact and incremental bilinear Lanczos components algorithm for high dimensionality reduction and image reconstruction publication-title: Pattern Recognit – volume: 40 start-page: 1032 year: 2007 end-page: 1041 article-title: The theoretical analysis of GLRAM and its applications publication-title: Pattern Recognit – volume: 25 start-page: 1615 year: 2003 end-page: 1618 article-title: The CMU pose, illumination, and expression database publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 12 start-page: 99 year: 1972 end-page: 111 article-title: Perturbation bounds in connection with singular value decomposition publication-title: BIT – volume: 69 start-page: 224 year: 2005 end-page: 231 article-title: PCA: 2‐directional 2‐dimensional PCA for efficient face representation and recognition publication-title: Neurocomputing – volume: 3 start-page: 71 year: 1991 end-page: 86 article-title: Eigenfaces for recognition publication-title: J Cognit Neurosci – volume: 18 start-page: 1 year: 2017 end-page: 30 article-title: Adaptive randomized dimension reduction on massive data publication-title: J Mach Learn Res – volume: 61 start-page: 167 year: 2005 end-page: 191 article-title: Generalized low rank approximations of matrices publication-title: Mach Learn – ident: e_1_2_7_20_1 – volume: 5779 start-page: 426 year: 2005 ident: e_1_2_7_24_1 article-title: Face recognition experiments with random projection publication-title: Biometr Technol Human Identificat II – ident: e_1_2_7_4_1 doi: 10.1109/TPAMI.2004.1261097 – ident: e_1_2_7_29_1 – ident: e_1_2_7_39_1 doi: 10.1145/1321440.1321544 – volume: 27 start-page: 1002 year: 2006 ident: e_1_2_7_10_1 article-title: Non‐iterative generalized low rank approximation of matrices publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.11.013 – ident: e_1_2_7_21_1 doi: 10.1016/j.acha.2010.02.003 – ident: e_1_2_7_15_1 doi: 10.1109/ICASSP.2012.6288042 – volume: 18 start-page: 1 year: 2017 ident: e_1_2_7_23_1 article-title: Adaptive randomized dimension reduction on massive data publication-title: J Mach Learn Res – ident: e_1_2_7_28_1 doi: 10.1561/0400000060 – volume: 72 start-page: 212 year: 2008 ident: e_1_2_7_11_1 article-title: A simplified GLRAM algorithm for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.11.046 – ident: e_1_2_7_3_1 doi: 10.1109/34.41390 – ident: e_1_2_7_18_1 doi: 10.1137/090771806 – volume: 21 start-page: 621 year: 2010 ident: e_1_2_7_9_1 article-title: Generalized low rank approximations of matrices revisited publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2040290 – volume-title: Numerical algorithms for large eigenvalus problems year: 2011 ident: e_1_2_7_36_1 doi: 10.1137/1.9781611970739 – volume-title: Introduction to statistical pattern classification year: 1990 ident: e_1_2_7_2_1 – ident: e_1_2_7_13_1 doi: 10.1016/j.patcog.2014.07.024 – volume: 40 start-page: 1032 year: 2007 ident: e_1_2_7_16_1 article-title: The theoretical analysis of GLRAM and its applications publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.04.038 – ident: e_1_2_7_17_1 doi: 10.1137/130938700 – ident: e_1_2_7_33_1 doi: 10.1007/BF01932678 – ident: e_1_2_7_8_1 doi: 10.1007/s10994-005-3561-6 – volume: 41 start-page: 321 year: 1983 ident: e_1_2_7_32_1 article-title: The perturbation bounds for eigenspaces of a definite matrix‐pair publication-title: Numerische Mathematik doi: 10.1007/BF01418329 – ident: e_1_2_7_30_1 – ident: e_1_2_7_22_1 doi: 10.1145/502512.502546 – ident: e_1_2_7_6_1 doi: 10.1016/j.neucom.2005.06.004 – ident: e_1_2_7_14_1 doi: 10.1109/ISSPIT.2016.7886035 – ident: e_1_2_7_35_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.patcog.2016.08.020 – ident: e_1_2_7_12_1 doi: 10.1016/j.patcog.2010.04.029 – start-page: 1396 volume-title: Advances in neural information processing systems, Neural Information Processing Systems (NIPS), 10010 North Torrey Pines RD year: 2015 ident: e_1_2_7_27_1 – volume: 47 start-page: 170 year: 2016 ident: e_1_2_7_7_1 article-title: The improved (2D)2PCA algorithm and its parallel implementation based on image block publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2016.06.011 – ident: e_1_2_7_38_1 doi: 10.1109/TIT.1967.1053964 – ident: e_1_2_7_34_1 doi: 10.1109/TGRS.2016.2601622 – ident: e_1_2_7_5_1 doi: 10.1162/jocn.1991.3.1.71 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0709640104 – volume-title: Matrix computations year: 2014 ident: e_1_2_7_26_1 – ident: e_1_2_7_37_1 doi: 10.1109/TPAMI.2003.1251154 – ident: e_1_2_7_25_1 doi: 10.1137/S0895479898334605 |
| SSID | ssj0006593 |
| Score | 2.2711904 |
| Snippet | Summary
High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank... High‐dimensionality reduction techniques are very important tools in machine learning and data mining. The method of generalized low rank approximations of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Data mining generalized low rank approximations of matrices high dimensionality reduction Image compression Machine learning randomized singular value decomposition Reconstruction Singular value decomposition |
| Title | A randomized generalized low rank approximations of matrices algorithm for high dimensionality reduction and image compression |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2338 https://www.proquest.com/docview/2465893929 |
| Volume | 28 |
| WOSCitedRecordID | wos000573700100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006593 issn: 1070-5325 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMct1nHYDgPGEB0dMhLaTqGOncTxsYJVHEqF0JB6ixL7patoG9R0MO2wv31-dhKGNKRJnBLJdhLl-cfX1nufR8h7a3JtVQgLotiUQZRHYVDoWAaQJgyYAFWUztITOZ2ms5n62nhVYiyM50N0B244Mtx8jQM8L-rhPWjoMv_A7QZrh-xiTJXt0bufvo2_T7p5OPHIXbu_YUEseNyiZxkftm3_Xoz-KMz7OtUtNONn__OJz8lBIy_pyPeHF-QJrA_J_peOzVq_JLcjatcnU60WN2Do3GOn3f2y-o1FP6gDjV8vfFRjTauSrhzJH2qaL-fVZrG9XFGrdinCjqnBBAEe7mElPd0gDBYbUvsWah8yB4qO697hdn1ELsbnFx8_B00WhkBbKZAGUkGi0jIBqXmKWW0ECJGHecTDghulQNhSrRlIoxMThoXUWoNJtJClNEK8Ir11tYbXhCYQAsSsRAxexFmuEqk0LxQ3WrIylX1y1loj0w2hHBNlLDPPVuaOgI0_tE_edTV_eirHA3UGrUGzZlzWGY-s4lKoCfvk1Jnun-2z6WSE1-PHVnxD9jg6vLjzmQHpbTdXcEKe6l_bRb152_TOO41g66U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ba9swFIcPXTpY99DdOpq22zQY25NbWbItiz6FtqFjbhgjg74ZWzpOw5J4xNmFPuxvny522sEGhT3ZoCPb-Ojy00H6DsAb43JlVAgNolhXQVREYVCqWASYJhQpR1lWztOZGI3Sy0v5cQOOu7Mwng-xDrjZnuHGa9vBbUD66BY1dFYcMrPCugebkWlFtAebp5-Gn7P1QJx45q5Z4NAg5izu2LOUHXV1_5yNbiTmbaHqZprho__6xsew3QpMMvAt4gls4OIpPLxY01mbZ_BrQMwMpev59Bo1mXjwtLuf1T9s0RfiUOM_p_5cY0Pqiswdyx8bUswm9XK6upoTo3eJxR0TbVMEeLyHEfVkaXGwtiIxbyHmIRMkduu633K72IHx8Gx8ch60eRgCZcRAGgiJiUyrBIViqc1rw5HzIiwiFpZMS4nclCpFUWiV6DAshVIKdaK4qITm_Dn0FvUCd4EkGCLGtLIgvIjRQiZCKlZKppWgVSr68K5zR65aRrlNlTHLPV2ZOQa2_aF9eL22_Oq5HH-xOeg8mrc9s8lZZDSXtKqwD2-d7_5ZPx9lA3vdu6vhK3hwPr7I8uz96MM-bDG7_cVFaw6gt1p-wxdwX31fTZvly7ap_gaIIu-M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bS9xAFIcPuhZpH2yrLV21dgpin1InM0kmg0-LdmnpdpGi4FtIZk62S3c3stle8MG_3bkkWwULgk8JzDlJyJnLb4aZ7wDsm5Aro0JoEMW6DKI8CoNCxSLANKFIOcqidJEeiOEwvbiQpytw1J6F8XyI5YKbbRmuv7YNHC91eXiLGjrJPzIzw1qFtSg2Mr8Dayff--eDZUeceOaumeDQIOYsbtmzlB22vndHo38S87ZQdSNN__mjvvEFbDQCk_R8jXgJKzjbhGfflnTWeguue8SMULqajq9Qk5EHT7v7SfXHFv0kDjX-d-zPNdakKsnUsfyxJvlkVM3Hix9TYvQusbhjom2KAI_3MKKezC0O1joS8xZiHjJCYreu-y23s1dw1v90dvw5aPIwBMqIgTQQEhOZlgkKxVKb14Yj53mYRywsmJYSuSlViqLQKtFhWAilFOpEcVEKzflr6MyqGb4BkmCIGNPSgvAiRnOZCKlYIZlWgpap6MKHNhyZahjlNlXGJPN0ZeYY2PaHduH90vLScznusdltI5o1LbPOWGQ0l7SqsAsHLnb_9c-Gg569bj_U8B2sn570s8GX4dcdeMrs7he3WLMLncX8F76FJ-r3YlzP95qaegNFQe8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+randomized+generalized+low+rank+approximations+of+matrices+algorithm+for+high+dimensionality+reduction+and+image+compression&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Li%2C+Ke&rft.au=Wu%2C+Gang&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1506&rft.volume=28&rft.issue=1&rft_id=info:doi/10.1002%2Fnla.2338&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon |