Solution of time‐fractional stochastic nonlinear sine‐Gordon equation via finite difference and meshfree techniques

In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equatio...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences Vol. 45; no. 7; pp. 3426 - 3438
Main Authors: Mirzaee, Farshid, Rezaei, Shadi, Samadyar, Nasrin
Format: Journal Article
Language:English
Published: Freiburg Wiley Subscription Services, Inc 15.05.2022
Subjects:
ISSN:0170-4214, 1099-1476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equation is converted to elliptic stochastic differential equations. Then, the meshfree method based on radial basis functions (RBFs) is used to approximate the obtained equation. In fact, the finite difference method is used to approximate the unknown function in the time direction and generalized Gaussian RBF is applied to estimate the obtained equation in the space direction. The most important advantage of this method is that the noise terms are simulated directly at the collocation points at each time step. By employing this method, the equation decreased to a nonlinear system of algebraic equations which can be solved simply. The obtained results of solving three examples confirm the validity and capability of the proposed solution.
AbstractList In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equation is converted to elliptic stochastic differential equations. Then, the meshfree method based on radial basis functions (RBFs) is used to approximate the obtained equation. In fact, the finite difference method is used to approximate the unknown function in the time direction and generalized Gaussian RBF is applied to estimate the obtained equation in the space direction. The most important advantage of this method is that the noise terms are simulated directly at the collocation points at each time step. By employing this method, the equation decreased to a nonlinear system of algebraic equations which can be solved simply. The obtained results of solving three examples confirm the validity and capability of the proposed solution.
Author Mirzaee, Farshid
Rezaei, Shadi
Samadyar, Nasrin
Author_xml – sequence: 1
  givenname: Farshid
  orcidid: 0000-0002-1429-2548
  surname: Mirzaee
  fullname: Mirzaee, Farshid
  email: f.mirzaee@malayeru.ac.ir
  organization: Malayer University
– sequence: 2
  givenname: Shadi
  orcidid: 0000-0001-7945-7406
  surname: Rezaei
  fullname: Rezaei, Shadi
  organization: Malayer University
– sequence: 3
  givenname: Nasrin
  orcidid: 0000-0001-8556-8508
  surname: Samadyar
  fullname: Samadyar, Nasrin
  organization: Malayer University
BookMark eNp1kM1KAzEUhYMoWH_ARwi4cTM1yaSZmaWIVkFxoa6H29sbGpmZaJIq7nwEn9EnMW1dia4OXL5zDvfsse3BD8TYkRRjKYQ67XsYV01db7GRFE1TSF2ZbTYSshKFVlLvsr0Yn4QQtZRqxN7ufbdMzg_cW55cT18fnzYArk7Q8Zg8LiAmhzz3dG4gCDxmydjUh3n20csS1gGvDrh1g0vE585aCjQgcRjmvKe4sIGIJ8LF4F6WFA_YjoUu0uGP7rPHy4uH86vi5m56fX52U6BqyrrQJZrSmFKpCdkKKwQARFlCOUNrFNY1oQGtSzKq0gQ4adQMQQkljdTGlvvseJP7HPyqN7VPfhnya7FVRudkqbTI1MmGwuBjDGTb5-B6CO-tFO1q1jbP2q5mzej4F4ourQdIAVz3l6HYGN5cR-__Bre3t2dr_hsguI8w
CitedBy_id crossref_primary_10_1007_s40435_025_01842_z
crossref_primary_10_1016_j_ijleo_2024_172076
crossref_primary_10_1007_s40819_023_01489_4
crossref_primary_10_1155_2024_3328977
crossref_primary_10_1007_s40819_022_01469_0
crossref_primary_10_1002_mma_10273
crossref_primary_10_1016_j_matcom_2023_04_003
crossref_primary_10_1016_j_padiff_2025_101138
crossref_primary_10_1007_s12190_025_02414_2
crossref_primary_10_1186_s13661_022_01647_5
crossref_primary_10_1002_mma_10798
crossref_primary_10_1002_mma_11005
crossref_primary_10_1016_j_ijleo_2023_170888
crossref_primary_10_1016_j_enganabound_2024_105823
crossref_primary_10_1007_s11071_024_10075_2
crossref_primary_10_1007_s40995_024_01659_z
crossref_primary_10_1016_j_padiff_2025_101190
crossref_primary_10_1016_j_asej_2025_103532
crossref_primary_10_1177_14727978251366495
crossref_primary_10_1016_j_chaos_2024_115816
crossref_primary_10_1007_s12648_022_02517_7
crossref_primary_10_1016_j_enganabound_2025_106400
crossref_primary_10_3390_fractalfract8120708
crossref_primary_10_1063_5_0179155
crossref_primary_10_1016_j_jocs_2022_101777
crossref_primary_10_1007_s40314_022_01981_5
crossref_primary_10_1002_mma_8522
crossref_primary_10_1007_s40995_025_01789_y
crossref_primary_10_1007_s11082_023_04923_5
crossref_primary_10_3390_fractalfract8080476
crossref_primary_10_1002_mma_8607
crossref_primary_10_1016_j_chaos_2024_115625
crossref_primary_10_1016_j_cjph_2025_03_007
crossref_primary_10_1007_s12190_024_02329_4
crossref_primary_10_1016_j_anucene_2024_111176
Cites_doi 10.1006/jcph.1996.0139
10.1137/1.9781611972016
10.1007/BF02820622
10.1016/j.ijleo.2016.12.029
10.1016/j.chaos.2005.05.017
10.1002/num.22608
10.1016/j.enganabound.2012.04.011
10.1016/j.physleta.2004.09.023
10.1016/S0096-3003(02)00363-6
10.1016/S0167-2789(99)00186-4
10.1016/j.enganabound.2021.03.009
10.1016/j.jcp.2019.109120
10.1137/S106482750342684X
10.1007/978-3-642-32979-1_10
10.1016/j.physleta.2005.10.054
10.1016/j.physa.2019.122578
10.1080/00207160.2015.1067311
10.1002/num.20289
10.1016/j.enganabound.2018.12.008
10.1016/j.enganabound.2011.02.008
10.1016/S0045-7825(01)00237-7
10.1016/j.physa.2020.124525
10.1007/s00366-019-00789-y
10.1016/j.enganabound.2018.05.006
10.1142/S1793524520500102
10.1080/00207160.2012.688111
10.1016/j.enganabound.2014.11.011
10.1142/6437
10.3390/math8040558
10.1016/j.enganabound.2017.12.017
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7988
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 3438
ExternalDocumentID 10_1002_mma_7988
MMA7988
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2938-43c63663225ef7c7caaacc13a3bcf62c88ec6a443e6274eac592bca20216146f3
IEDL.DBID DRFUL
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000726317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:11:12 EDT 2025
Sat Nov 29 01:34:07 EST 2025
Tue Nov 18 21:48:59 EST 2025
Wed Jan 22 16:25:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-43c63663225ef7c7caaacc13a3bcf62c88ec6a443e6274eac592bca20216146f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8556-8508
0000-0002-1429-2548
0000-0001-7945-7406
PQID 2646631240
PQPubID 1016386
PageCount 13
ParticipantIDs proquest_journals_2646631240
crossref_primary_10_1002_mma_7988
crossref_citationtrail_10_1002_mma_7988
wiley_primary_10_1002_mma_7988_MMA7988
PublicationCentury 2000
PublicationDate 15 May 2022
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 15 May 2022
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011
2000; 137
2020; 84
2013; 89
2015; 53
2021; 127
2004; 26
2020; 404
2007
2006; 351
2020; 36
2008; 32
2020; 13
2011; 35
2016; 93
2017; 132
1996; 126
2019; 100
2019; 101
2004; 331
2012; 3611
2021; 37
2020; 2021
2020; 174
2001; 190
2006; 28
2018; 92
2020; 555
1982
1971; 1
2012; 89
2003; 143
2020; 537
e_1_2_9_30_1
e_1_2_9_31_1
Mirzaee F (e_1_2_9_20_1) 2020; 2021
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
Dodd RK (e_1_2_9_2_1) 1982
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
Wendland H (e_1_2_9_35_1)
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Veeresha P (e_1_2_9_15_1) 2020; 174
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 331
  start-page: 378
  year: 2004
  end-page: 386
  article-title: An ultradiscretization of the sine Gordon equation
  publication-title: Phys Lett, A
– year: 2011
– volume: 143
  start-page: 309
  year: 2003
  end-page: 317
  article-title: A numerical solution of the sine‐Gordon equation using the modified decomposition method
  publication-title: Appl Math Comput
– volume: 13
  issue: 2
  year: 2020
  article-title: A new analysis of fractional fish farm model associated with Mittag–Leffler‐type kernel
  publication-title: Int J Biomath
– volume: 2021
  year: 2020
  article-title: Solving one‐dimensional nonlinear stochastic sine‐Gordon equation with a new meshfree technique
  publication-title: Int J Numer Model
– volume: 37
  start-page: 1781
  issue: 2
  year: 2021
  end-page: 1799
  article-title: Implicit meshless method to solve 2D fractional stochastic Tricomi‐type equation defined on irregular domain occurring in fractal transonic flow
  publication-title: Numer Methods Partial Differ Eq
– volume: 92
  start-page: 180
  year: 2018
  end-page: 195
  article-title: Using radial basis functions to solve two dimensional linear stochastic integral equations on non‐rectangular domains
  publication-title: Eng Anal Bound Elem
– start-page: 2005
– volume: 28
  start-page: 127
  year: 2006
  end-page: 35
  article-title: Exact solutions for the generalized sine‐Gordon and the generalized sinh‐Gordon equations
  publication-title: Chaos Solitons Frac
– volume: 84
  start-page: 558
  year: 2020
  article-title: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets
  publication-title: Mathematics
– volume: 1
  start-page: 227
  year: 1971
  end-page: 267
  article-title: Theory and applications of sine Gordon equation
  publication-title: Rivista Nuovo Cimento
– volume: 137
  start-page: 247
  year: 2000
  end-page: 259
  article-title: Discrete singular convolution for the sine‐Gordon equation
  publication-title: Physica D
– volume: 537
  start-page: 122578
  year: 2020
  article-title: A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory
  publication-title: Phys A, Stat Mech Appl
– year: 2007
– volume: 404
  start-page: 109120
  year: 2020
  article-title: Simulator‐free solution of high‐dimensional stochastic elliptic partial differential equations using deep neural networks
  publication-title: J Comput Phys
– volume: 35
  start-page: 1075
  issue: 9
  year: 2011
  end-page: 1084
  article-title: Computing the survival probability density function in jump‐diffusion models: a new approach based on radial basis functions
  publication-title: Eng Anal Bound Elem
– volume: 174
  start-page: 1
  year: 2020
  end-page: 17
  article-title: Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag–Leffler kernel
  publication-title: Adv Differ Equ
– volume: 32
  start-page: 687
  year: 2008
  end-page: 698
  article-title: A numerical method for one‐dimensional nonlinear sine Gordon equation using collocation and radial basis functions
  publication-title: Numer Methods Partial Differ Eq
– volume: 351
  start-page: 59
  year: 2006
  end-page: 63
  article-title: Exact solutions to sine‐Gordon‐type equations
  publication-title: Phys Lett, A
– year: 1982
– volume: 89
  start-page: 155
  year: 2013
  end-page: 170
  article-title: Kernel‐based collocation methods versus Galerkin finite element methods for approximating elliptic stochastic partial differential equations, meshfree methods for partial differential equations VI
  publication-title: Lect Notes Comput Sci Eng
– volume: 3611
  start-page: 1546
  year: 2012
  end-page: 1154
  article-title: A radial basis function approach to compute the first‐passage probability density function in two‐dimensional jump‐diffusion models for financial and other applications
  publication-title: Eng Anal Bound Elem
– volume: 132
  start-page: 262
  year: 2017
  end-page: 273
  article-title: Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro‐differential equation
  publication-title: Optik Int J Light Electron Opt
– volume: 101
  start-page: 27
  year: 2019
  end-page: 36
  article-title: Numerical solution of two‐dimensional weakly singular stochastic integral equations on non‐rectangular domains via radial basis functions
  publication-title: Eng Anal Bound Elem
– volume: 26
  start-page: 578
  year: 2004
  end-page: 590
  article-title: Stochastic solutions for the two‐dimensional advection‐diffusion equation
  publication-title: SIAM J Sci Comput
– volume: 127
  start-page: 53
  year: 2021
  end-page: 63
  article-title: Numerical solution of two‐dimensional stochastic time‐fractional sine‐Gordon equation on non‐rectangular domains using finite difference and meshfree methods
  publication-title: Eng Anal Bound Elem
– volume: 190
  start-page: 6359
  year: 2001
  end-page: 6372
  article-title: Solution of stochastic partial differential equations using Galerk infinite element techniques
  publication-title: Comput Methods Appl Mech Eng
– volume: 53
  start-page: 18
  year: 2015
  end-page: 26
  article-title: Meshless simulation of stochastic advection‐diffusion equations based on radial basis functions
  publication-title: Eng Anal Bound Elem
– volume: 126
  start-page: 299
  year: 1996
  end-page: 314
  article-title: Constance on the numerical solution of the sine‐Gordon equation. I: Integrable discretizations and homoclinic manifolds
  publication-title: J Comput Phys
– volume: 36
  start-page: 1673
  year: 2020
  end-page: 1686
  article-title: Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection‐diffusion equations
  publication-title: Eng Comput
– volume: 555
  start-page: 124525
  year: 2020
  article-title: An efficient computational technique for local fractional Fokker Planck equation
  publication-title: Phys A, Stat Mech Appl
– volume: 100
  start-page: 246
  year: 2019
  end-page: 255
  article-title: On the numerical solution of fractional stochastic integro‐differential equations via meshless discrete collocation method based on radial basis functions
  publication-title: Eng Anal Bound Elem
– volume: 93
  start-page: 1579
  issue: 9
  year: 2016
  end-page: 1596
  article-title: Wavelets Galerkin method for solving stochastic heat equation
  publication-title: Int J Comput Math
– volume: 89
  start-page: 2543
  issue: 18
  year: 2012
  end-page: 2561
  article-title: Approximation of stochastic partial differential equations by a kernel‐based collocation method
  publication-title: Int J Comput Math
– ident: e_1_2_9_10_1
  doi: 10.1006/jcph.1996.0139
– ident: e_1_2_9_16_1
  doi: 10.1137/1.9781611972016
– ident: e_1_2_9_3_1
  doi: 10.1007/BF02820622
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ijleo.2016.12.029
– ident: e_1_2_9_7_1
  doi: 10.1016/j.chaos.2005.05.017
– volume-title: Solitons and Nonlinear Wave Equations
  year: 1982
  ident: e_1_2_9_2_1
– volume: 174
  start-page: 1
  year: 2020
  ident: e_1_2_9_15_1
  article-title: Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag–Leffler kernel
  publication-title: Adv Differ Equ
– ident: e_1_2_9_23_1
  doi: 10.1002/num.22608
– ident: e_1_2_9_28_1
  doi: 10.1016/j.enganabound.2012.04.011
– ident: e_1_2_9_9_1
  doi: 10.1016/j.physleta.2004.09.023
– ident: e_1_2_9_5_1
  doi: 10.1016/S0096-3003(02)00363-6
– ident: e_1_2_9_6_1
  doi: 10.1016/S0167-2789(99)00186-4
– ident: e_1_2_9_21_1
  doi: 10.1016/j.enganabound.2021.03.009
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jcp.2019.109120
– ident: e_1_2_9_25_1
  doi: 10.1137/S106482750342684X
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-642-32979-1_10
– ident: e_1_2_9_8_1
  doi: 10.1016/j.physleta.2005.10.054
– ident: e_1_2_9_13_1
  doi: 10.1016/j.physa.2019.122578
– ident: e_1_2_9_19_1
  doi: 10.1080/00207160.2015.1067311
– ident: e_1_2_9_4_1
  doi: 10.1002/num.20289
– ident: e_1_2_9_27_1
  doi: 10.1016/j.enganabound.2018.12.008
– ident: e_1_2_9_29_1
  doi: 10.1016/j.enganabound.2011.02.008
– ident: e_1_2_9_24_1
  doi: 10.1016/S0045-7825(01)00237-7
– ident: e_1_2_9_11_1
  doi: 10.1016/j.physa.2020.124525
– ident: e_1_2_9_17_1
  doi: 10.1007/s00366-019-00789-y
– ident: e_1_2_9_32_1
  doi: 10.1016/j.enganabound.2018.05.006
– ident: e_1_2_9_12_1
  doi: 10.1142/S1793524520500102
– ident: e_1_2_9_30_1
  doi: 10.1080/00207160.2012.688111
– volume: 2021
  year: 2020
  ident: e_1_2_9_20_1
  article-title: Solving one‐dimensional nonlinear stochastic sine‐Gordon equation with a new meshfree technique
  publication-title: Int J Numer Model
– ident: e_1_2_9_18_1
  doi: 10.1016/j.enganabound.2014.11.011
– ident: e_1_2_9_34_1
  doi: 10.1142/6437
– start-page: 2005
  volume-title: Cambridge monographs on applied and computational mathematics
  ident: e_1_2_9_35_1
– ident: e_1_2_9_14_1
  doi: 10.3390/math8040558
– ident: e_1_2_9_26_1
  doi: 10.1016/j.enganabound.2017.12.017
SSID ssj0008112
Score 2.4918995
Snippet In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3426
SubjectTerms Algorithms
Approximation
Brownian motion process
Differential equations
Elliptic functions
Finite difference method
Interpolation
Mathematical analysis
Meshless methods
Nonlinear systems
Radial basis function
radial basis functions
stochastic partial differential equations
time‐fractional stochastic sine‐Gordon equation
Trigonometric functions
Title Solution of time‐fractional stochastic nonlinear sine‐Gordon equation via finite difference and meshfree techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7988
https://www.proquest.com/docview/2646631240
Volume 45
WOSCitedRecordID wos000726317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RpIdyAJK2olDQIqHSHtz47c0xAgIHEiFEpNys8XhXidSkYJdy7U_ob-SXMBM_AlKRKnGyLM3Y692d2c_7-D6A13GCbh5pz7FZkDkhRtbJTKQdN8mRRNdhmFRiE8l0qufz4ed6V6Wchan4IdoJN4mMTb6WAMesHGxJQ1crPBeyrR3o-txtow50330Zzz61eVh7m7VOIYhxQt8LG-pZ1x80vn8PRluE-SdO3Qw048f_U8Qn8KiGl2pU9YcePDDrPjyctNysZR96dTiX6rTmnD7bh5_N9Ji6tEr05n_d3NqiOvTAz2OESAsUSme1rgqGhZId82z2gX9f2c98r0jD1fUSlV0KlFWN-goZhetcrUy5sIUxqiWOLQ9gNn7_9e1Hp9ZkcIiBgXbCgOKAUQqnAWMTSggRibwAg4xs7JPWhmIMw8CIqA9n9WjoZ4Q-QwkGArENDqHDBTVPQRmDjI4SyimKQ77RXmQ1MpyR9ebcdY_gTdM4KdWE5aKbcZFWVMt-yvWbSv0ewavW8ltF0nGHzXHTvmkdpmXKaJC_hSEOv-xk05L_9E8nk5Fcn93X8Dns-XJUQpheo2PoXBU_zAvYpeurZVm8rDvrb8hO8jY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bTtwwEB0tF4n2oVxKBZSLkVBbHgK5xyueVi3LInZXCIHEW-RMbLESu9CEyyufwDfyJcxsLlukVqrEUxRpnDj2zPjYjs8B2AkjZaeBdCyTeInlq8BYiQ6kZUepQtZ1aEaF2ETU78vLy-ZpAw6qszAFP0S94MaRMc7XHOC8IL0_YQ0dDtUes21NwYxPXkTuPfPrrH3RrROxdMabncwQY_mu41fcs7a7X5V9OxpNIOafQHU80rTn31XHBfhUAkzRKjxiERp6tAQfezU7a74Ei2VA5-JHyTq9-xkeqwUycWMEK86_PD2brDj2QM8jjIhXikmdxaiomcoE_zNPZkc0gaVy-ndBGy4eBkqYAYNZUemvoBZqlIqhzq9MprWoqWPzZbhoH57_7FilKoOFBA2k5XsYeoRTKBFoE2GESilEx1NegiZ0UUqNofJ9T7OsD-X1oOkmqFwCEwQFQuN9gWmqqF4BobUifBRhikHo0410AiMVARrecU5texW-V70TY0lZzsoZ13FBtuzG1L4xt-8qbNeWtwVNx19s1qsOjstAzWPCg_QtBHLoZd_GXfnP8nGv1-Lr2v8absFc57zXjbvH_ZOv8MHlgxPM-xqsw_Rddq83YBYf7gZ5tll67is5nPYm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0tC0LtgbJQVAoFIyFKD4F8x6ueVsACgl0hVCRukTOxxUrdLU0oXPkJ_EZ-SWc2HwsSSEicokjjxLE942c78x7AZhgpOw2kY5nESyxfBcZKdCAtO0oVsq5DOyrEJqJ-X15ets8a8LPKhSn4IeoNN_aMcbxmB9fXqdmdsIYOh2qH2bamYNpnDZkmTO-fdy9O60AsnfFhJzPEWL7r-BX3rO3uVmWfz0YTiPkUqI5nmu6nd9VxHuZKgCk6xYhoQUOPFuBjr2ZnzRegVTp0LrZL1ukfi3BXbZCJP0aw4vzj_YPJirQHeh5hRLxSTOosRkXNVCb4n3kyO6QFLJXTfwvacHE7UMIMGMyKSn8FtVCjVAx1fmUyrUVNHZt_hovuwa-9I6tUZbCQoIG0fA9Dj3AKBQJtIoxQKYXoeMpL0IQuSqkxVL7vaZb1obgetN0ElUtggqBAaLwlaFJF9RcQWivCRxGmGIQ-3UgnMFIRoOET59S2l-F71TsxlpTlrJzxOy7Ilt2Y2jfm9l2GjdryuqDpeMFmterguHTUPCY8SN9CIIdetjXuylfLx71eh69f32q4DrNn-9349Lh_sgIfXM6bYNrXYBWaN9k__Q1m8PZmkGdr5cD9D9Vr9aE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+time%E2%80%90fractional+stochastic+nonlinear+sine%E2%80%90Gordon+equation+via+finite+difference+and+meshfree+techniques&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Mirzaee%2C+Farshid&rft.au=Rezaei%2C+Shadi&rft.au=Samadyar%2C+Nasrin&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=7&rft.spage=3426&rft.epage=3438&rft_id=info:doi/10.1002%2Fmma.7988&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon