Solution of time‐fractional stochastic nonlinear sine‐Gordon equation via finite difference and meshfree techniques
In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equatio...
Saved in:
| Published in: | Mathematical methods in the applied sciences Vol. 45; no. 7; pp. 3426 - 3438 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Freiburg
Wiley Subscription Services, Inc
15.05.2022
|
| Subjects: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equation is converted to elliptic stochastic differential equations. Then, the meshfree method based on radial basis functions (RBFs) is used to approximate the obtained equation. In fact, the finite difference method is used to approximate the unknown function in the time direction and generalized Gaussian RBF is applied to estimate the obtained equation in the space direction. The most important advantage of this method is that the noise terms are simulated directly at the collocation points at each time step. By employing this method, the equation decreased to a nonlinear system of algebraic equations which can be solved simply. The obtained results of solving three examples confirm the validity and capability of the proposed solution. |
|---|---|
| AbstractList | In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite difference method and radial basis functions interpolation. By using this algorithm, first time‐fractional stochastic nonlinear sine‐Gordon equation is converted to elliptic stochastic differential equations. Then, the meshfree method based on radial basis functions (RBFs) is used to approximate the obtained equation. In fact, the finite difference method is used to approximate the unknown function in the time direction and generalized Gaussian RBF is applied to estimate the obtained equation in the space direction. The most important advantage of this method is that the noise terms are simulated directly at the collocation points at each time step. By employing this method, the equation decreased to a nonlinear system of algebraic equations which can be solved simply. The obtained results of solving three examples confirm the validity and capability of the proposed solution. |
| Author | Mirzaee, Farshid Rezaei, Shadi Samadyar, Nasrin |
| Author_xml | – sequence: 1 givenname: Farshid orcidid: 0000-0002-1429-2548 surname: Mirzaee fullname: Mirzaee, Farshid email: f.mirzaee@malayeru.ac.ir organization: Malayer University – sequence: 2 givenname: Shadi orcidid: 0000-0001-7945-7406 surname: Rezaei fullname: Rezaei, Shadi organization: Malayer University – sequence: 3 givenname: Nasrin orcidid: 0000-0001-8556-8508 surname: Samadyar fullname: Samadyar, Nasrin organization: Malayer University |
| BookMark | eNp1kM1KAzEUhYMoWH_ARwi4cTM1yaSZmaWIVkFxoa6H29sbGpmZaJIq7nwEn9EnMW1dia4OXL5zDvfsse3BD8TYkRRjKYQ67XsYV01db7GRFE1TSF2ZbTYSshKFVlLvsr0Yn4QQtZRqxN7ufbdMzg_cW55cT18fnzYArk7Q8Zg8LiAmhzz3dG4gCDxmydjUh3n20csS1gGvDrh1g0vE585aCjQgcRjmvKe4sIGIJ8LF4F6WFA_YjoUu0uGP7rPHy4uH86vi5m56fX52U6BqyrrQJZrSmFKpCdkKKwQARFlCOUNrFNY1oQGtSzKq0gQ4adQMQQkljdTGlvvseJP7HPyqN7VPfhnya7FVRudkqbTI1MmGwuBjDGTb5-B6CO-tFO1q1jbP2q5mzej4F4ourQdIAVz3l6HYGN5cR-__Bre3t2dr_hsguI8w |
| CitedBy_id | crossref_primary_10_1007_s40435_025_01842_z crossref_primary_10_1016_j_ijleo_2024_172076 crossref_primary_10_1007_s40819_023_01489_4 crossref_primary_10_1155_2024_3328977 crossref_primary_10_1007_s40819_022_01469_0 crossref_primary_10_1002_mma_10273 crossref_primary_10_1016_j_matcom_2023_04_003 crossref_primary_10_1016_j_padiff_2025_101138 crossref_primary_10_1007_s12190_025_02414_2 crossref_primary_10_1186_s13661_022_01647_5 crossref_primary_10_1002_mma_10798 crossref_primary_10_1002_mma_11005 crossref_primary_10_1016_j_ijleo_2023_170888 crossref_primary_10_1016_j_enganabound_2024_105823 crossref_primary_10_1007_s11071_024_10075_2 crossref_primary_10_1007_s40995_024_01659_z crossref_primary_10_1016_j_padiff_2025_101190 crossref_primary_10_1016_j_asej_2025_103532 crossref_primary_10_1177_14727978251366495 crossref_primary_10_1016_j_chaos_2024_115816 crossref_primary_10_1007_s12648_022_02517_7 crossref_primary_10_1016_j_enganabound_2025_106400 crossref_primary_10_3390_fractalfract8120708 crossref_primary_10_1063_5_0179155 crossref_primary_10_1016_j_jocs_2022_101777 crossref_primary_10_1007_s40314_022_01981_5 crossref_primary_10_1002_mma_8522 crossref_primary_10_1007_s40995_025_01789_y crossref_primary_10_1007_s11082_023_04923_5 crossref_primary_10_3390_fractalfract8080476 crossref_primary_10_1002_mma_8607 crossref_primary_10_1016_j_chaos_2024_115625 crossref_primary_10_1016_j_cjph_2025_03_007 crossref_primary_10_1007_s12190_024_02329_4 crossref_primary_10_1016_j_anucene_2024_111176 |
| Cites_doi | 10.1006/jcph.1996.0139 10.1137/1.9781611972016 10.1007/BF02820622 10.1016/j.ijleo.2016.12.029 10.1016/j.chaos.2005.05.017 10.1002/num.22608 10.1016/j.enganabound.2012.04.011 10.1016/j.physleta.2004.09.023 10.1016/S0096-3003(02)00363-6 10.1016/S0167-2789(99)00186-4 10.1016/j.enganabound.2021.03.009 10.1016/j.jcp.2019.109120 10.1137/S106482750342684X 10.1007/978-3-642-32979-1_10 10.1016/j.physleta.2005.10.054 10.1016/j.physa.2019.122578 10.1080/00207160.2015.1067311 10.1002/num.20289 10.1016/j.enganabound.2018.12.008 10.1016/j.enganabound.2011.02.008 10.1016/S0045-7825(01)00237-7 10.1016/j.physa.2020.124525 10.1007/s00366-019-00789-y 10.1016/j.enganabound.2018.05.006 10.1142/S1793524520500102 10.1080/00207160.2012.688111 10.1016/j.enganabound.2014.11.011 10.1142/6437 10.3390/math8040558 10.1016/j.enganabound.2017.12.017 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
| DOI | 10.1002/mma.7988 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-1476 |
| EndPage | 3438 |
| ExternalDocumentID | 10_1002_mma_7988 MMA7988 |
| Genre | article |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AMVHM CITATION O8X 7TB 8FD FR3 JQ2 KR7 |
| ID | FETCH-LOGICAL-c2938-43c63663225ef7c7caaacc13a3bcf62c88ec6a443e6274eac592bca20216146f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000726317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0170-4214 |
| IngestDate | Fri Jul 25 12:11:12 EDT 2025 Sat Nov 29 01:34:07 EST 2025 Tue Nov 18 21:48:59 EST 2025 Wed Jan 22 16:25:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-43c63663225ef7c7caaacc13a3bcf62c88ec6a443e6274eac592bca20216146f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8556-8508 0000-0002-1429-2548 0000-0001-7945-7406 |
| PQID | 2646631240 |
| PQPubID | 1016386 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2646631240 crossref_primary_10_1002_mma_7988 crossref_citationtrail_10_1002_mma_7988 wiley_primary_10_1002_mma_7988_MMA7988 |
| PublicationCentury | 2000 |
| PublicationDate | 15 May 2022 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 15 May 2022 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Freiburg |
| PublicationPlace_xml | – name: Freiburg |
| PublicationTitle | Mathematical methods in the applied sciences |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011 2000; 137 2020; 84 2013; 89 2015; 53 2021; 127 2004; 26 2020; 404 2007 2006; 351 2020; 36 2008; 32 2020; 13 2011; 35 2016; 93 2017; 132 1996; 126 2019; 100 2019; 101 2004; 331 2012; 3611 2021; 37 2020; 2021 2020; 174 2001; 190 2006; 28 2018; 92 2020; 555 1982 1971; 1 2012; 89 2003; 143 2020; 537 e_1_2_9_30_1 e_1_2_9_31_1 Mirzaee F (e_1_2_9_20_1) 2020; 2021 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 Dodd RK (e_1_2_9_2_1) 1982 e_1_2_9_18_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Wendland H (e_1_2_9_35_1) e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Veeresha P (e_1_2_9_15_1) 2020; 174 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 331 start-page: 378 year: 2004 end-page: 386 article-title: An ultradiscretization of the sine Gordon equation publication-title: Phys Lett, A – year: 2011 – volume: 143 start-page: 309 year: 2003 end-page: 317 article-title: A numerical solution of the sine‐Gordon equation using the modified decomposition method publication-title: Appl Math Comput – volume: 13 issue: 2 year: 2020 article-title: A new analysis of fractional fish farm model associated with Mittag–Leffler‐type kernel publication-title: Int J Biomath – volume: 2021 year: 2020 article-title: Solving one‐dimensional nonlinear stochastic sine‐Gordon equation with a new meshfree technique publication-title: Int J Numer Model – volume: 37 start-page: 1781 issue: 2 year: 2021 end-page: 1799 article-title: Implicit meshless method to solve 2D fractional stochastic Tricomi‐type equation defined on irregular domain occurring in fractal transonic flow publication-title: Numer Methods Partial Differ Eq – volume: 92 start-page: 180 year: 2018 end-page: 195 article-title: Using radial basis functions to solve two dimensional linear stochastic integral equations on non‐rectangular domains publication-title: Eng Anal Bound Elem – start-page: 2005 – volume: 28 start-page: 127 year: 2006 end-page: 35 article-title: Exact solutions for the generalized sine‐Gordon and the generalized sinh‐Gordon equations publication-title: Chaos Solitons Frac – volume: 84 start-page: 558 year: 2020 article-title: An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets publication-title: Mathematics – volume: 1 start-page: 227 year: 1971 end-page: 267 article-title: Theory and applications of sine Gordon equation publication-title: Rivista Nuovo Cimento – volume: 137 start-page: 247 year: 2000 end-page: 259 article-title: Discrete singular convolution for the sine‐Gordon equation publication-title: Physica D – volume: 537 start-page: 122578 year: 2020 article-title: A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory publication-title: Phys A, Stat Mech Appl – year: 2007 – volume: 404 start-page: 109120 year: 2020 article-title: Simulator‐free solution of high‐dimensional stochastic elliptic partial differential equations using deep neural networks publication-title: J Comput Phys – volume: 35 start-page: 1075 issue: 9 year: 2011 end-page: 1084 article-title: Computing the survival probability density function in jump‐diffusion models: a new approach based on radial basis functions publication-title: Eng Anal Bound Elem – volume: 174 start-page: 1 year: 2020 end-page: 17 article-title: Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag–Leffler kernel publication-title: Adv Differ Equ – volume: 32 start-page: 687 year: 2008 end-page: 698 article-title: A numerical method for one‐dimensional nonlinear sine Gordon equation using collocation and radial basis functions publication-title: Numer Methods Partial Differ Eq – volume: 351 start-page: 59 year: 2006 end-page: 63 article-title: Exact solutions to sine‐Gordon‐type equations publication-title: Phys Lett, A – year: 1982 – volume: 89 start-page: 155 year: 2013 end-page: 170 article-title: Kernel‐based collocation methods versus Galerkin finite element methods for approximating elliptic stochastic partial differential equations, meshfree methods for partial differential equations VI publication-title: Lect Notes Comput Sci Eng – volume: 3611 start-page: 1546 year: 2012 end-page: 1154 article-title: A radial basis function approach to compute the first‐passage probability density function in two‐dimensional jump‐diffusion models for financial and other applications publication-title: Eng Anal Bound Elem – volume: 132 start-page: 262 year: 2017 end-page: 273 article-title: Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro‐differential equation publication-title: Optik Int J Light Electron Opt – volume: 101 start-page: 27 year: 2019 end-page: 36 article-title: Numerical solution of two‐dimensional weakly singular stochastic integral equations on non‐rectangular domains via radial basis functions publication-title: Eng Anal Bound Elem – volume: 26 start-page: 578 year: 2004 end-page: 590 article-title: Stochastic solutions for the two‐dimensional advection‐diffusion equation publication-title: SIAM J Sci Comput – volume: 127 start-page: 53 year: 2021 end-page: 63 article-title: Numerical solution of two‐dimensional stochastic time‐fractional sine‐Gordon equation on non‐rectangular domains using finite difference and meshfree methods publication-title: Eng Anal Bound Elem – volume: 190 start-page: 6359 year: 2001 end-page: 6372 article-title: Solution of stochastic partial differential equations using Galerk infinite element techniques publication-title: Comput Methods Appl Mech Eng – volume: 53 start-page: 18 year: 2015 end-page: 26 article-title: Meshless simulation of stochastic advection‐diffusion equations based on radial basis functions publication-title: Eng Anal Bound Elem – volume: 126 start-page: 299 year: 1996 end-page: 314 article-title: Constance on the numerical solution of the sine‐Gordon equation. I: Integrable discretizations and homoclinic manifolds publication-title: J Comput Phys – volume: 36 start-page: 1673 year: 2020 end-page: 1686 article-title: Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection‐diffusion equations publication-title: Eng Comput – volume: 555 start-page: 124525 year: 2020 article-title: An efficient computational technique for local fractional Fokker Planck equation publication-title: Phys A, Stat Mech Appl – volume: 100 start-page: 246 year: 2019 end-page: 255 article-title: On the numerical solution of fractional stochastic integro‐differential equations via meshless discrete collocation method based on radial basis functions publication-title: Eng Anal Bound Elem – volume: 93 start-page: 1579 issue: 9 year: 2016 end-page: 1596 article-title: Wavelets Galerkin method for solving stochastic heat equation publication-title: Int J Comput Math – volume: 89 start-page: 2543 issue: 18 year: 2012 end-page: 2561 article-title: Approximation of stochastic partial differential equations by a kernel‐based collocation method publication-title: Int J Comput Math – ident: e_1_2_9_10_1 doi: 10.1006/jcph.1996.0139 – ident: e_1_2_9_16_1 doi: 10.1137/1.9781611972016 – ident: e_1_2_9_3_1 doi: 10.1007/BF02820622 – ident: e_1_2_9_33_1 doi: 10.1016/j.ijleo.2016.12.029 – ident: e_1_2_9_7_1 doi: 10.1016/j.chaos.2005.05.017 – volume-title: Solitons and Nonlinear Wave Equations year: 1982 ident: e_1_2_9_2_1 – volume: 174 start-page: 1 year: 2020 ident: e_1_2_9_15_1 article-title: Analytical approach for fractional extended Fisher–Kolmogorov equation with Mittag–Leffler kernel publication-title: Adv Differ Equ – ident: e_1_2_9_23_1 doi: 10.1002/num.22608 – ident: e_1_2_9_28_1 doi: 10.1016/j.enganabound.2012.04.011 – ident: e_1_2_9_9_1 doi: 10.1016/j.physleta.2004.09.023 – ident: e_1_2_9_5_1 doi: 10.1016/S0096-3003(02)00363-6 – ident: e_1_2_9_6_1 doi: 10.1016/S0167-2789(99)00186-4 – ident: e_1_2_9_21_1 doi: 10.1016/j.enganabound.2021.03.009 – ident: e_1_2_9_22_1 doi: 10.1016/j.jcp.2019.109120 – ident: e_1_2_9_25_1 doi: 10.1137/S106482750342684X – ident: e_1_2_9_31_1 doi: 10.1007/978-3-642-32979-1_10 – ident: e_1_2_9_8_1 doi: 10.1016/j.physleta.2005.10.054 – ident: e_1_2_9_13_1 doi: 10.1016/j.physa.2019.122578 – ident: e_1_2_9_19_1 doi: 10.1080/00207160.2015.1067311 – ident: e_1_2_9_4_1 doi: 10.1002/num.20289 – ident: e_1_2_9_27_1 doi: 10.1016/j.enganabound.2018.12.008 – ident: e_1_2_9_29_1 doi: 10.1016/j.enganabound.2011.02.008 – ident: e_1_2_9_24_1 doi: 10.1016/S0045-7825(01)00237-7 – ident: e_1_2_9_11_1 doi: 10.1016/j.physa.2020.124525 – ident: e_1_2_9_17_1 doi: 10.1007/s00366-019-00789-y – ident: e_1_2_9_32_1 doi: 10.1016/j.enganabound.2018.05.006 – ident: e_1_2_9_12_1 doi: 10.1142/S1793524520500102 – ident: e_1_2_9_30_1 doi: 10.1080/00207160.2012.688111 – volume: 2021 year: 2020 ident: e_1_2_9_20_1 article-title: Solving one‐dimensional nonlinear stochastic sine‐Gordon equation with a new meshfree technique publication-title: Int J Numer Model – ident: e_1_2_9_18_1 doi: 10.1016/j.enganabound.2014.11.011 – ident: e_1_2_9_34_1 doi: 10.1142/6437 – start-page: 2005 volume-title: Cambridge monographs on applied and computational mathematics ident: e_1_2_9_35_1 – ident: e_1_2_9_14_1 doi: 10.3390/math8040558 – ident: e_1_2_9_26_1 doi: 10.1016/j.enganabound.2017.12.017 |
| SSID | ssj0008112 |
| Score | 2.4895833 |
| Snippet | In this article, we introduce a numerical procedure to solve time‐fractional stochastic sine‐Gordon equation. The suggested technique is based on finite... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3426 |
| SubjectTerms | Algorithms Approximation Brownian motion process Differential equations Elliptic functions Finite difference method Interpolation Mathematical analysis Meshless methods Nonlinear systems Radial basis function radial basis functions stochastic partial differential equations time‐fractional stochastic sine‐Gordon equation Trigonometric functions |
| Title | Solution of time‐fractional stochastic nonlinear sine‐Gordon equation via finite difference and meshfree techniques |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7988 https://www.proquest.com/docview/2646631240 |
| Volume | 45 |
| WOSCitedRecordID | wos000726317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008112 issn: 0170-4214 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9NAEMdHNOXQHgppqZqSokVCQA9u7fX7GBUCB1IhRKXerPF4V4nUpGCXcO1H6GfkkzDjV0ECCYmTL7PWendn9u99_AbgRexqFtGEDkV54QSB9Z3EUuyw33kpivu5RZ1sIj4_Ty4v04_tqUq5C9PwIfoFN_GMOl6Lg2Nend5DQ5dLPBHY1gZsah624QA233yaXnzo43Di1XudAohxAu0FHXrW1add2d8no3uF-atOrSea6aP_qeJj2GnlpZo042EID8xqF7ZnPZu12oVh686Vet0yp4_34Hu3PKaurZJ88z9u72zZXHrg97FCpDkK0lmtmophqeTEPJu9499XLme-NtBwtV6gsguRsqrLvkJG4apQS1PNbWmM6sGx1RO4mL79fPbeaXMyOMTCIHECnyKfVQqHAWNjigkRiTwf_ZxspClJDEUYBL6RpD4c1cNU54SapQQLgcj6-zDgipoDUGzG8jGyKYZxgDnmqfUNugWlkvwsTEbwquucjFpgueTNuMoa1LLOuH0zad8RPO8tvzSQjj_YjLv-zVo3rTJWg_wtLHHcEbyse_Kv5bPZbCLPw381fApbWq5KCOk1HMPgpvxmjuAhrW8WVfmsHaw_Abqf8eY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHPCpBD7wRWx51paqUQyCbePNQTwhYqLq7qiqQuEWTWVusxC40oXDlI_Qz9pN0Ji9aiUpIPeUyjhx7ZvyPE_8G4H3oeiyiCR0K0qGjtfWdyFLocNy1Y5Twc4dFsYlwMIguL-OvU_CpPgtT8iGaDTeJjCJfS4DLhvTBEzV0PMZ9oW1Nw6xmL2L3nj3-1r3oNYk4ahcfO4UQ42ivrWv2rOsd1G3_Xo2eJOafQrVYabqL_9XHJVioBKY6LD1iGabMZAVe9xs6a74Cy1VA5-pjRZ3eW4WHeoNM3VglFed_Pf60WXnsge_HGpGuUKDOalL2DDMl_8yz2Sm_wHI7873Ehqv7ESo7EjGr6vorZBROhmps8iubGaMadGy-Bhfdk_OjM6eqyuAQS4PI0T4FPusUTgTGhhQSIhK1ffRTsoFHUWQoQK19I2V9OK93Yi8l9FhMsBQIrL8OM9xRswGKzVhABjbGTqgxxTS2vkF3SLGUP-tELditZyehClkulTOukxK27CU8vomMbwveNZa3JabjGZuteoKTKlDzhPUgPwuLHLcFH4qp_Gf7pN8_lOublxq-hbmz834v6X0efNmEeU8OTgj3tbMFM3fZD7MNr-j-bpRnO5Xn_gYng_XW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1dT9RAFIZPcDEGLlRQ4irikBjQi0K3ne1HuCLCqoHdEAIJd83p6Ux2E3aFFvHWn8Bv5JdwTr-ARBMTr3pzppnOzJl5O-08L8DH0PVYRBM6FKSZo7X1nchS6HDe9WKU9HOz0mwiHI2is7P4aA52mrMwFR-i3XCTzCjna0lwc5HZ7Xtq6HSKW0LbegLzWjxkOjC_dzw4PWwn4qhXfuwUQoyjvZ5u2LOut92Ufbwa3UvMh0K1XGkGL_6rji_heS0w1W41IpZgzsyWYXHY0lmLZViqE7pQn2rq9OdX8KvZIFM_rBLH-dvfNzavjj3w_Vgj0hgF6qxmVc0wV_LPPId95RdYLmcuK2y4up6gshMRs6rxXyGjcJapqSnGNjdGtejY4jWcDvZPvnxzalcGh1gaRI72KfBZp_BEYGxIISEiUc9HPyUbeBRFhgLU2jdi68Pzej_2UkKPxQRLgcD6K9Dhipo3oDiMBWRgY-yHGlNMY-sbdDOKxf6sH3Vhs-mdhGpkuThnnCcVbNlLuH0Tad8urLeRFxWm4w8xq00HJ3WiFgnrQX4WFjluFzbKrvxr-WQ43JXr238N_ADPjvYGyeH30cE7WPDk3IRgX_ur0LnKf5r38JSuryZFvlYP3DvDovVR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+of+time%E2%80%90fractional+stochastic+nonlinear+sine%E2%80%90Gordon+equation+via+finite+difference+and+meshfree+techniques&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Mirzaee%2C+Farshid&rft.au=Rezaei%2C+Shadi&rft.au=Samadyar%2C+Nasrin&rft.date=2022-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=7&rft.spage=3426&rft.epage=3438&rft_id=info:doi/10.1002%2Fmma.7988&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |