Validation of signal propagation modeling for highly scalable simulations

Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, esp...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 33; no. 14
Main Authors: Paciorek, Mateusz, Bujas, Jakub, Dworak, Dawid, Turek, Wojciech, Byrski, Aleksander
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 25.07.2021
Subjects:
ISSN:1532-0626, 1532-0634
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation.
AbstractList Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation.
Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation.
Author Turek, Wojciech
Bujas, Jakub
Dworak, Dawid
Byrski, Aleksander
Paciorek, Mateusz
Author_xml – sequence: 1
  givenname: Mateusz
  orcidid: 0000-0003-4635-2573
  surname: Paciorek
  fullname: Paciorek, Mateusz
  email: mpaciorek@agh.edu.pl
  organization: AGH University of Science and Technology
– sequence: 2
  givenname: Jakub
  surname: Bujas
  fullname: Bujas, Jakub
  organization: AGH University of Science and Technology
– sequence: 3
  givenname: Dawid
  surname: Dworak
  fullname: Dworak, Dawid
  organization: AGH University of Science and Technology
– sequence: 4
  givenname: Wojciech
  surname: Turek
  fullname: Turek, Wojciech
  organization: AGH University of Science and Technology
– sequence: 5
  givenname: Aleksander
  orcidid: 0000-0001-6317-7012
  surname: Byrski
  fullname: Byrski, Aleksander
  organization: AGH University of Science and Technology
BookMark eNp10F1LwzAUBuAgE9ym4E8oeONNZz76eSlj6mCgF-ptSNPTLiNtatIi_fdmq3ghepVDeM7h5V2gWWtaQOia4BXBmN7JDlZxSrIzNCcxoyFOWDT7mWlygRbOHTAmBDMyR9t3oVUpemXawFSBU3UrdNBZ04l6-m1MCVq1dVAZG-xVvddj4KTQotDgfTPok3OX6LwS2sHV97tEbw-b1_VTuHt-3K7vd6GkOctCKtNEgg-SpSIvpcwLwjJSZhSyWFSsKCCRaZ7LCiABIYqCloQRHEvqTZkDW6Kb6a4P-TGA6_nBDNandpzGUcRwhCn2ajUpaY1zFiouVX8K2luhNCeYH-vivi5-rMsv3P5a6KxqhB3_ouFEP5WG8V_H1y-bk_8Cl6h8Lg
CitedBy_id crossref_primary_10_1016_j_future_2025_108054
Cites_doi 10.1016/j.procs.2013.05.231
10.2307/1940005
10.1007/978-1-84882-285-6_5
10.1177/0037549712462620
10.1109/MMAR.2013.6669968
10.1017/S0094837300013063
10.1109/HPCC.2012.79
10.1126/science.1203060
10.1109/CloudCom.2012.6427498
10.1144/gsjgs.154.2.0295
10.1007/3-540-46043-8_9
10.1360/02tb9327
10.1016/j.jocs.2018.09.004
10.1016/j.cosrev.2017.03.001
10.1038/scientificamerican1070-120
10.1007/3-540-48304-7_33
10.3141/1678-17
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.5718
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_5718
CPE5718
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-2c76ce62687a9dcc9b1381d82e85af3bbe6c799cfee6eaabb2d13105c2d82d9e3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561931400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 30 05:00:04 EST 2025
Sat Nov 29 01:41:23 EST 2025
Tue Nov 18 22:25:55 EST 2025
Wed Jan 22 16:30:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-2c76ce62687a9dcc9b1381d82e85af3bbe6c799cfee6eaabb2d13105c2d82d9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6317-7012
0000-0003-4635-2573
PQID 2544304020
PQPubID 2045170
PageCount 15
ParticipantIDs proquest_journals_2544304020
crossref_citationtrail_10_1002_cpe_5718
crossref_primary_10_1002_cpe_5718
wiley_primary_10_1002_cpe_5718_CPE5718
PublicationCentury 2000
PublicationDate 25 July 2021
PublicationDateYYYYMMDD 2021-07-25
PublicationDate_xml – month: 07
  year: 2021
  text: 25 July 2021
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 18
2002; 47
1970; 223
2012
2001
1999; 1678
2013; 89
1997; 154
2017; 24
1995; 21
1969; 6
2009
2005; 31
2015
2004
1980
1991
2011; 4
2018; 32
2011; 332
1925
1992; 73
1999
e_1_2_7_5_1
e_1_2_7_3_1
Dijkstra J (e_1_2_7_17_1) 2001
e_1_2_7_9_1
Murray J (e_1_2_7_24_1) 1991
e_1_2_7_8_1
Collier N (e_1_2_7_4_1) 2015
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Berger W (e_1_2_7_25_1) 1969; 6
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Kitowski J (e_1_2_7_6_1) 2012
e_1_2_7_26_1
e_1_2_7_28_1
Kiran M (e_1_2_7_10_1) 2011; 4
Tyszka J (e_1_2_7_27_1) 2005; 31
Brasier M. (e_1_2_7_20_1) 1980
e_1_2_7_30_1
e_1_2_7_23_1
e_1_2_7_22_1
Lotka A (e_1_2_7_29_1) 1925
e_1_2_7_21_1
References_xml – volume: 18
  start-page: 671
  year: 2013
  end-page: 681
  article-title: Pdes‐mas: distributed simulation of multi‐agent systems
  publication-title: Proc Comput Sci
– volume: 47
  start-page: 1484
  issue: 17
  year: 2002
  article-title: Occupant evacuation model based on cellular automata in fire
  publication-title: Chin Sci Bull
– start-page: 454
  year: 2015
  end-page: 465
– volume: 154
  start-page: 295
  year: 1997
  end-page: 302
  article-title: Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera)
  publication-title: J Geol Soc
– volume: 6
  start-page: 1369
  year: 1969
  end-page: 1383
  article-title: Planktonic foraminifera: basic morphology and ecologic implications
  publication-title: J Paleontol
– year: 1980
– start-page: 107
  year: 2009
  end-page: 148
– volume: 1678
  start-page: 135
  issue: 1
  year: 1999
  end-page: 141
  article-title: Cellular automata microsimulation of bidirectional pedestrian flows
  publication-title: Trans Res Rec J Trans Res Board
– volume: 332
  start-page: 349
  issue: 6027
  year: 2011
  end-page: 351
  article-title: Interplay between changing climate and species' ecology drives macroevolutionary dynamics
  publication-title: Science
– volume: 89
  start-page: 1215
  issue: 10
  year: 2013
  end-page: 1235
  article-title: Parallel agent‐based simulation with repast for high performance computing
  publication-title: Simulation
– volume: 31
  start-page: 526
  issue: 30
  year: 2005
  end-page: 541
  article-title: A new approach to modeling of foraminiferal shells
  publication-title: Paleobiology
– volume: 21
  start-page: 28
  issue: 1
  year: 1995
  end-page: 51
  article-title: Sympatric speciation and phyletic change in globorotalia truncatuloides
  publication-title: Paleobiology
– start-page: 1
  year: 2012
  end-page: 14
– year: 2004
– start-page: 173
  year: 2001
  end-page: 181
  article-title: A multi‐agent cellular automata model of pedestrian movement
  publication-title: Pedestr Evacuat Dyn
– volume: 24
  start-page: 13
  year: 2017
  end-page: 33
  article-title: Agent based modelling and simulation tools: a review of the state‐of‐art software
  publication-title: Comput Sci Rev
– start-page: 261
  year: 1999
  end-page: 265
– year: 1925
– year: 1991
– volume: 223
  start-page: 120
  issue: 4
  year: 1970
  end-page: 123
  article-title: Mathematical games: the fantastic combinations of John Conway's new solitaire game "life"
  publication-title: Sci Am
– volume: 4
  start-page: 201
  year: 2011
  end-page: 216
  article-title: Flame: a platform for high performance computing of complex systems, applied for three case studies
  publication-title: Acta Phys Pol B
– volume: 32
  start-page: 70
  year: 2018
  end-page: 86
  article-title: High‐performance computing framework with desynchronized information propagation for large‐scale simulations
  publication-title: J Comput Sci
– volume: 73
  start-page: 1530
  issue: 5
  year: 1992
  end-page: 1535
  article-title: The origins and evolution of predator‐prey theory
  publication-title: Ecology
– ident: e_1_2_7_11_1
  doi: 10.1016/j.procs.2013.05.231
– ident: e_1_2_7_28_1
  doi: 10.2307/1940005
– start-page: 1
  volume-title: PL‐Grid: Foundations and Perspectives of National Computing Infrastructure
  year: 2012
  ident: e_1_2_7_6_1
– ident: e_1_2_7_13_1
  doi: 10.1007/978-1-84882-285-6_5
– ident: e_1_2_7_3_1
  doi: 10.1177/0037549712462620
– volume: 31
  start-page: 526
  issue: 30
  year: 2005
  ident: e_1_2_7_27_1
  article-title: A new approach to modeling of foraminiferal shells
  publication-title: Paleobiology
– start-page: 454
  volume-title: Large‐Scale Agent‐Based Modeling with Repast HPC: A Case Study in Parallelizing an Agent‐Based Model
  year: 2015
  ident: e_1_2_7_4_1
– volume-title: Elements of Physical Biology
  year: 1925
  ident: e_1_2_7_29_1
– ident: e_1_2_7_15_1
  doi: 10.1109/MMAR.2013.6669968
– ident: e_1_2_7_22_1
  doi: 10.1017/S0094837300013063
– volume-title: Ecology and Palaeoecology of Benthic Foraminifera
  year: 1991
  ident: e_1_2_7_24_1
– ident: e_1_2_7_9_1
  doi: 10.1109/HPCC.2012.79
– start-page: 173
  year: 2001
  ident: e_1_2_7_17_1
  article-title: A multi‐agent cellular automata model of pedestrian movement
  publication-title: Pedestr Evacuat Dyn
– ident: e_1_2_7_8_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1203060
– ident: e_1_2_7_2_1
– ident: e_1_2_7_12_1
  doi: 10.1109/CloudCom.2012.6427498
– ident: e_1_2_7_23_1
  doi: 10.1144/gsjgs.154.2.0295
– ident: e_1_2_7_26_1
  doi: 10.1007/3-540-46043-8_9
– ident: e_1_2_7_19_1
  doi: 10.1360/02tb9327
– volume: 6
  start-page: 1369
  year: 1969
  ident: e_1_2_7_25_1
  article-title: Planktonic foraminifera: basic morphology and ecologic implications
  publication-title: J Paleontol
– volume: 4
  start-page: 201
  year: 2011
  ident: e_1_2_7_10_1
  article-title: Flame: a platform for high performance computing of complex systems, applied for three case studies
  publication-title: Acta Phys Pol B
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jocs.2018.09.004
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cosrev.2017.03.001
– ident: e_1_2_7_30_1
  doi: 10.1038/scientificamerican1070-120
– volume-title: Microfossils
  year: 1980
  ident: e_1_2_7_20_1
– ident: e_1_2_7_5_1
  doi: 10.1007/3-540-48304-7_33
– ident: e_1_2_7_18_1
  doi: 10.3141/1678-17
SSID ssj0011031
Score 2.2871985
Snippet Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant...
Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms agent‐based modeling and simulation
biological habitat simulation
Clusters
desynchronized simulation
high‐performance simulation
Information flow
Modelling
Parallel processing
Propagation
Simulation
Smell
Statistical analysis
Title Validation of signal propagation modeling for highly scalable simulations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5718
https://www.proquest.com/docview/2544304020
Volume 33
WOSCitedRecordID wos000561931400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5088EX50-cTqkg-lS3Zm3TPMp0KIwxxI29leaSgjC3sU7B_95Lm24KCoJPhXKBcMnlvmtz3wdwKTlHqnu0S1A4dH1GBYpQYeqGylMpUv2Q5P0Vox7v96PxWAzsrUrTC1PwQ6w-uJnIyM9rE-CJzJpr0lCc65uATtZNqDLatn4FqndP3WFv9Q_BCBgUbKnMbRFuL6lnW6xZjv2ejNYI8ytOzRNNt_afKe7CjoWXzm2xH_ZgQ0_3oVZKNzg2kg_gcUT4u5BTcmapY25x0DCaGp0vxdtcIofymkOo1jGkxpMPJ6MFNa1WZP9qZb-yQxh27587D65VVXCRUjuFBfIQNfkj4olQiEJ6lLVVxHQUJGlbSh0iFwJTrUOdJFIy5REGDJCRjRK6fQSV6Wyqj02_dxQgZxGy1PcFYzJFAmSE6EToe1xFdbgu3RujpRw3yheTuCBLZjF5KDYeqsPFynJe0Gz8YNMoVyi2gZbFhmGt3TJFcB2u8rX4dXzcGdyb58lfDU9hm5kbLC3DZdGAynLxps9gC9-XL9ni3G63T_3p2T4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJuiL8ydOp1YQfaprs7Zp8EnmxoZzDNnG3kKbpCDMbaxT8L_30h-bgoLgU6FcIFxyue_a3PcBXIWUCqx7lIlQ2DMdggUKk15ketKWkcD6IUj6K0Zd2uv54zHrF-Au74VJ-SFWH9x0ZCTntQ5w_UG6tmYNFXN16-LRugElB3eRW4TSw3Nr2F39RNAKBildKjEtBO4596xFavnY79loDTG_AtUk07TK_5rjLuxkANO4T3fEHhTUdB_KuXiDkcXyAXRGiMBTQSVjFhn6HgcOw7nhCZO-TURyMLMZiGsNTWs8-TBiXFLdbIX2r5nwV3wIw1Zz0Gibma6CKTC5Y2AI6gmFDvFpwKQQLLQxb0ufKN8NonoYKk9QxkSklKeCIAyJtBEFuoKgjWSqfgTF6WyqjnXHt-8KSnxBIsdhhISRQEiGmI55jk2lX4Gb3L9cZKTjWvtiwlO6ZMLRQ1x7qAKXK8t5SrTxg001XyKehVrMNcda3dJlcAWuk8X4dTxv9Jv6efJXwwvYag-eurzb6T2ewjbR91kszWxRheJy8abOYFO8L1_ixXm29z4BAy_dLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK-LF-sRq1Qiip9hkm2yyeJK2wWIpRWzpLST7AKG2pamC_97ZPFoFBcFTIMzCMruz802y830AV7Hncax7pIlQmJoOwQKFCapMKmyhONYPUdpfMep5_b4_HrNBCe6KXpiMH2L1wU1HRnpe6wCXc6Eaa9ZQPpe3Lh6tG1BxXEYxKivtp2DYW_1E0AoGGV0qMS0E7gX3rEUaxdjv2WgNMb8C1TTTBNV_zXEXdnKAadxnO2IPSnK6D9VCvMHIY_kAuiNE4JmgkjFThr7HgcNwbnjCZG9TkRzMbAbiWkPTGk8-jASXVDdbof1rLvyVHMIw6Dy3HsxcV8HkmNwxMLhHuUSH-F7EBOcstjFvC59I341UM44l5R5jXElJZRTFMRE2okCXE7QRTDaPoDydTeWx7vj2Xe4RnxPlOIyQWHGEZIjpGHVsT_g1uCn8G_KcdFxrX0zCjC6ZhOihUHuoBpcry3lGtPGDTb1YojAPtSTUHGtNS5fBNbhOF-PX8WFr0NHPk78aXsDWoB2EvW7_8RS2ib7OYmliizqUl4s3eQab_H35kizO8633CcHm3Kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+signal+propagation+modeling+for+highly+scalable+simulations&rft.jtitle=Concurrency+and+computation&rft.au=Paciorek%2C+Mateusz&rft.au=Bujas%2C+Jakub&rft.au=Dworak%2C+Dawid&rft.au=Turek%2C+Wojciech&rft.date=2021-07-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1002%2Fcpe.5718&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon