Validation of signal propagation modeling for highly scalable simulations
Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, esp...
Saved in:
| Published in: | Concurrency and computation Vol. 33; no. 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
25.07.2021
|
| Subjects: | |
| ISSN: | 1532-0626, 1532-0634 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation. |
|---|---|
| AbstractList | Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation. Summary Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant challenge. It is difficult to implement a highly scalable system due to algorithmic problems, which significantly hamper the efficiency, especially in the case of maintaining a synchronized state in a parallelized, distributed environment. Our previous work presented a desynchronized method of information distribution in a simulation environment, inspired by the propagation of smell, and proved this method to be highly scalable. In this paper, we enhance and validate this method to ensure it does not invalidate the conclusions drawn from the simulation, enabling the development of efficient, scalable simulation systems. The prototype of the method presented here leverages the actor model for parallelization and cluster sharding mechanisms for cluster management, providing a comprehensive solution for large‐scale simulations, following realistic rules known from the nature. In order to validate the method of signal propagation modeling, three simulation models are created and tested. The validation is based on statistical analysis of metrics collected during the simulation execution. Statistical similarity of the results obtained from the distributed and nondistributed executions indicates that the distribution process does not impact the correctness of the simulation. |
| Author | Turek, Wojciech Bujas, Jakub Dworak, Dawid Byrski, Aleksander Paciorek, Mateusz |
| Author_xml | – sequence: 1 givenname: Mateusz orcidid: 0000-0003-4635-2573 surname: Paciorek fullname: Paciorek, Mateusz email: mpaciorek@agh.edu.pl organization: AGH University of Science and Technology – sequence: 2 givenname: Jakub surname: Bujas fullname: Bujas, Jakub organization: AGH University of Science and Technology – sequence: 3 givenname: Dawid surname: Dworak fullname: Dworak, Dawid organization: AGH University of Science and Technology – sequence: 4 givenname: Wojciech surname: Turek fullname: Turek, Wojciech organization: AGH University of Science and Technology – sequence: 5 givenname: Aleksander orcidid: 0000-0001-6317-7012 surname: Byrski fullname: Byrski, Aleksander organization: AGH University of Science and Technology |
| BookMark | eNp10F1LwzAUBuAgE9ym4E8oeONNZz76eSlj6mCgF-ptSNPTLiNtatIi_fdmq3ghepVDeM7h5V2gWWtaQOia4BXBmN7JDlZxSrIzNCcxoyFOWDT7mWlygRbOHTAmBDMyR9t3oVUpemXawFSBU3UrdNBZ04l6-m1MCVq1dVAZG-xVvddj4KTQotDgfTPok3OX6LwS2sHV97tEbw-b1_VTuHt-3K7vd6GkOctCKtNEgg-SpSIvpcwLwjJSZhSyWFSsKCCRaZ7LCiABIYqCloQRHEvqTZkDW6Kb6a4P-TGA6_nBDNandpzGUcRwhCn2ajUpaY1zFiouVX8K2luhNCeYH-vivi5-rMsv3P5a6KxqhB3_ouFEP5WG8V_H1y-bk_8Cl6h8Lg |
| CitedBy_id | crossref_primary_10_1016_j_future_2025_108054 |
| Cites_doi | 10.1016/j.procs.2013.05.231 10.2307/1940005 10.1007/978-1-84882-285-6_5 10.1177/0037549712462620 10.1109/MMAR.2013.6669968 10.1017/S0094837300013063 10.1109/HPCC.2012.79 10.1126/science.1203060 10.1109/CloudCom.2012.6427498 10.1144/gsjgs.154.2.0295 10.1007/3-540-46043-8_9 10.1360/02tb9327 10.1016/j.jocs.2018.09.004 10.1016/j.cosrev.2017.03.001 10.1038/scientificamerican1070-120 10.1007/3-540-48304-7_33 10.3141/1678-17 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.5718 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_5718 CPE5718 |
| Genre | article |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-2c76ce62687a9dcc9b1381d82e85af3bbe6c799cfee6eaabb2d13105c2d82d9e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561931400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 30 05:00:04 EST 2025 Sat Nov 29 01:41:23 EST 2025 Tue Nov 18 22:25:55 EST 2025 Wed Jan 22 16:30:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-2c76ce62687a9dcc9b1381d82e85af3bbe6c799cfee6eaabb2d13105c2d82d9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6317-7012 0000-0003-4635-2573 |
| PQID | 2544304020 |
| PQPubID | 2045170 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2544304020 crossref_citationtrail_10_1002_cpe_5718 crossref_primary_10_1002_cpe_5718 wiley_primary_10_1002_cpe_5718_CPE5718 |
| PublicationCentury | 2000 |
| PublicationDate | 25 July 2021 |
| PublicationDateYYYYMMDD | 2021-07-25 |
| PublicationDate_xml | – month: 07 year: 2021 text: 25 July 2021 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 18 2002; 47 1970; 223 2012 2001 1999; 1678 2013; 89 1997; 154 2017; 24 1995; 21 1969; 6 2009 2005; 31 2015 2004 1980 1991 2011; 4 2018; 32 2011; 332 1925 1992; 73 1999 e_1_2_7_5_1 e_1_2_7_3_1 Dijkstra J (e_1_2_7_17_1) 2001 e_1_2_7_9_1 Murray J (e_1_2_7_24_1) 1991 e_1_2_7_8_1 Collier N (e_1_2_7_4_1) 2015 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Berger W (e_1_2_7_25_1) 1969; 6 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Kitowski J (e_1_2_7_6_1) 2012 e_1_2_7_26_1 e_1_2_7_28_1 Kiran M (e_1_2_7_10_1) 2011; 4 Tyszka J (e_1_2_7_27_1) 2005; 31 Brasier M. (e_1_2_7_20_1) 1980 e_1_2_7_30_1 e_1_2_7_23_1 e_1_2_7_22_1 Lotka A (e_1_2_7_29_1) 1925 e_1_2_7_21_1 |
| References_xml | – volume: 18 start-page: 671 year: 2013 end-page: 681 article-title: Pdes‐mas: distributed simulation of multi‐agent systems publication-title: Proc Comput Sci – volume: 47 start-page: 1484 issue: 17 year: 2002 article-title: Occupant evacuation model based on cellular automata in fire publication-title: Chin Sci Bull – start-page: 454 year: 2015 end-page: 465 – volume: 154 start-page: 295 year: 1997 end-page: 302 article-title: Stable isotopic evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera) publication-title: J Geol Soc – volume: 6 start-page: 1369 year: 1969 end-page: 1383 article-title: Planktonic foraminifera: basic morphology and ecologic implications publication-title: J Paleontol – year: 1980 – start-page: 107 year: 2009 end-page: 148 – volume: 1678 start-page: 135 issue: 1 year: 1999 end-page: 141 article-title: Cellular automata microsimulation of bidirectional pedestrian flows publication-title: Trans Res Rec J Trans Res Board – volume: 332 start-page: 349 issue: 6027 year: 2011 end-page: 351 article-title: Interplay between changing climate and species' ecology drives macroevolutionary dynamics publication-title: Science – volume: 89 start-page: 1215 issue: 10 year: 2013 end-page: 1235 article-title: Parallel agent‐based simulation with repast for high performance computing publication-title: Simulation – volume: 31 start-page: 526 issue: 30 year: 2005 end-page: 541 article-title: A new approach to modeling of foraminiferal shells publication-title: Paleobiology – volume: 21 start-page: 28 issue: 1 year: 1995 end-page: 51 article-title: Sympatric speciation and phyletic change in globorotalia truncatuloides publication-title: Paleobiology – start-page: 1 year: 2012 end-page: 14 – year: 2004 – start-page: 173 year: 2001 end-page: 181 article-title: A multi‐agent cellular automata model of pedestrian movement publication-title: Pedestr Evacuat Dyn – volume: 24 start-page: 13 year: 2017 end-page: 33 article-title: Agent based modelling and simulation tools: a review of the state‐of‐art software publication-title: Comput Sci Rev – start-page: 261 year: 1999 end-page: 265 – year: 1925 – year: 1991 – volume: 223 start-page: 120 issue: 4 year: 1970 end-page: 123 article-title: Mathematical games: the fantastic combinations of John Conway's new solitaire game "life" publication-title: Sci Am – volume: 4 start-page: 201 year: 2011 end-page: 216 article-title: Flame: a platform for high performance computing of complex systems, applied for three case studies publication-title: Acta Phys Pol B – volume: 32 start-page: 70 year: 2018 end-page: 86 article-title: High‐performance computing framework with desynchronized information propagation for large‐scale simulations publication-title: J Comput Sci – volume: 73 start-page: 1530 issue: 5 year: 1992 end-page: 1535 article-title: The origins and evolution of predator‐prey theory publication-title: Ecology – ident: e_1_2_7_11_1 doi: 10.1016/j.procs.2013.05.231 – ident: e_1_2_7_28_1 doi: 10.2307/1940005 – start-page: 1 volume-title: PL‐Grid: Foundations and Perspectives of National Computing Infrastructure year: 2012 ident: e_1_2_7_6_1 – ident: e_1_2_7_13_1 doi: 10.1007/978-1-84882-285-6_5 – ident: e_1_2_7_3_1 doi: 10.1177/0037549712462620 – volume: 31 start-page: 526 issue: 30 year: 2005 ident: e_1_2_7_27_1 article-title: A new approach to modeling of foraminiferal shells publication-title: Paleobiology – start-page: 454 volume-title: Large‐Scale Agent‐Based Modeling with Repast HPC: A Case Study in Parallelizing an Agent‐Based Model year: 2015 ident: e_1_2_7_4_1 – volume-title: Elements of Physical Biology year: 1925 ident: e_1_2_7_29_1 – ident: e_1_2_7_15_1 doi: 10.1109/MMAR.2013.6669968 – ident: e_1_2_7_22_1 doi: 10.1017/S0094837300013063 – volume-title: Ecology and Palaeoecology of Benthic Foraminifera year: 1991 ident: e_1_2_7_24_1 – ident: e_1_2_7_9_1 doi: 10.1109/HPCC.2012.79 – start-page: 173 year: 2001 ident: e_1_2_7_17_1 article-title: A multi‐agent cellular automata model of pedestrian movement publication-title: Pedestr Evacuat Dyn – ident: e_1_2_7_8_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_21_1 doi: 10.1126/science.1203060 – ident: e_1_2_7_2_1 – ident: e_1_2_7_12_1 doi: 10.1109/CloudCom.2012.6427498 – ident: e_1_2_7_23_1 doi: 10.1144/gsjgs.154.2.0295 – ident: e_1_2_7_26_1 doi: 10.1007/3-540-46043-8_9 – ident: e_1_2_7_19_1 doi: 10.1360/02tb9327 – volume: 6 start-page: 1369 year: 1969 ident: e_1_2_7_25_1 article-title: Planktonic foraminifera: basic morphology and ecologic implications publication-title: J Paleontol – volume: 4 start-page: 201 year: 2011 ident: e_1_2_7_10_1 article-title: Flame: a platform for high performance computing of complex systems, applied for three case studies publication-title: Acta Phys Pol B – ident: e_1_2_7_14_1 doi: 10.1016/j.jocs.2018.09.004 – ident: e_1_2_7_7_1 doi: 10.1016/j.cosrev.2017.03.001 – ident: e_1_2_7_30_1 doi: 10.1038/scientificamerican1070-120 – volume-title: Microfossils year: 1980 ident: e_1_2_7_20_1 – ident: e_1_2_7_5_1 doi: 10.1007/3-540-48304-7_33 – ident: e_1_2_7_18_1 doi: 10.3141/1678-17 |
| SSID | ssj0011031 |
| Score | 2.2871985 |
| Snippet | Summary
Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant... Efficient information flow in the complex, often microscale simulation systems such as the social, artificial life, or traffic ones poses a significant... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | agent‐based modeling and simulation biological habitat simulation Clusters desynchronized simulation high‐performance simulation Information flow Modelling Parallel processing Propagation Simulation Smell Statistical analysis |
| Title | Validation of signal propagation modeling for highly scalable simulations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.5718 https://www.proquest.com/docview/2544304020 |
| Volume | 33 |
| WOSCitedRecordID | wos000561931400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5088EX50-cTqkg-lS3Zm3TPMp0KIwxxI29leaSgjC3sU7B_95Lm24KCoJPhXKBcMnlvmtz3wdwKTlHqnu0S1A4dH1GBYpQYeqGylMpUv2Q5P0Vox7v96PxWAzsrUrTC1PwQ6w-uJnIyM9rE-CJzJpr0lCc65uATtZNqDLatn4FqndP3WFv9Q_BCBgUbKnMbRFuL6lnW6xZjv2ejNYI8ytOzRNNt_afKe7CjoWXzm2xH_ZgQ0_3oVZKNzg2kg_gcUT4u5BTcmapY25x0DCaGp0vxdtcIofymkOo1jGkxpMPJ6MFNa1WZP9qZb-yQxh27587D65VVXCRUjuFBfIQNfkj4olQiEJ6lLVVxHQUJGlbSh0iFwJTrUOdJFIy5REGDJCRjRK6fQSV6Wyqj02_dxQgZxGy1PcFYzJFAmSE6EToe1xFdbgu3RujpRw3yheTuCBLZjF5KDYeqsPFynJe0Gz8YNMoVyi2gZbFhmGt3TJFcB2u8rX4dXzcGdyb58lfDU9hm5kbLC3DZdGAynLxps9gC9-XL9ni3G63T_3p2T4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJuiL8ydOp1YQfaprs7Zp8EnmxoZzDNnG3kKbpCDMbaxT8L_30h-bgoLgU6FcIFxyue_a3PcBXIWUCqx7lIlQ2DMdggUKk15ketKWkcD6IUj6K0Zd2uv54zHrF-Au74VJ-SFWH9x0ZCTntQ5w_UG6tmYNFXN16-LRugElB3eRW4TSw3Nr2F39RNAKBildKjEtBO4596xFavnY79loDTG_AtUk07TK_5rjLuxkANO4T3fEHhTUdB_KuXiDkcXyAXRGiMBTQSVjFhn6HgcOw7nhCZO-TURyMLMZiGsNTWs8-TBiXFLdbIX2r5nwV3wIw1Zz0Gibma6CKTC5Y2AI6gmFDvFpwKQQLLQxb0ufKN8NonoYKk9QxkSklKeCIAyJtBEFuoKgjWSqfgTF6WyqjnXHt-8KSnxBIsdhhISRQEiGmI55jk2lX4Gb3L9cZKTjWvtiwlO6ZMLRQ1x7qAKXK8t5SrTxg001XyKehVrMNcda3dJlcAWuk8X4dTxv9Jv6efJXwwvYag-eurzb6T2ewjbR91kszWxRheJy8abOYFO8L1_ixXm29z4BAy_dLg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK-LF-sRq1Qiip9hkm2yyeJK2wWIpRWzpLST7AKG2pamC_97ZPFoFBcFTIMzCMruz802y830AV7Hncax7pIlQmJoOwQKFCapMKmyhONYPUdpfMep5_b4_HrNBCe6KXpiMH2L1wU1HRnpe6wCXc6Eaa9ZQPpe3Lh6tG1BxXEYxKivtp2DYW_1E0AoGGV0qMS0E7gX3rEUaxdjv2WgNMb8C1TTTBNV_zXEXdnKAadxnO2IPSnK6D9VCvMHIY_kAuiNE4JmgkjFThr7HgcNwbnjCZG9TkRzMbAbiWkPTGk8-jASXVDdbof1rLvyVHMIw6Dy3HsxcV8HkmNwxMLhHuUSH-F7EBOcstjFvC59I341UM44l5R5jXElJZRTFMRE2okCXE7QRTDaPoDydTeWx7vj2Xe4RnxPlOIyQWHGEZIjpGHVsT_g1uCn8G_KcdFxrX0zCjC6ZhOihUHuoBpcry3lGtPGDTb1YojAPtSTUHGtNS5fBNbhOF-PX8WFr0NHPk78aXsDWoB2EvW7_8RS2ib7OYmliizqUl4s3eQab_H35kizO8633CcHm3Kk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+signal+propagation+modeling+for+highly+scalable+simulations&rft.jtitle=Concurrency+and+computation&rft.au=Paciorek%2C+Mateusz&rft.au=Bujas%2C+Jakub&rft.au=Dworak%2C+Dawid&rft.au=Turek%2C+Wojciech&rft.date=2021-07-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=33&rft.issue=14&rft_id=info:doi/10.1002%2Fcpe.5718&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |