Optimal control of a two‐wheeled self‐balancing robot by reinforcement learning

Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control Vol. 31; no. 6; pp. 1885 - 1904
Main Authors: Guo, Linyuan, Rizvi, Syed Ali Asad, Lin, Zongli
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01.04.2021
Subjects:
ISSN:1049-8923, 1099-1239
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation.
AbstractList This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation.
Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation.
Author Guo, Linyuan
Rizvi, Syed Ali Asad
Lin, Zongli
Author_xml – sequence: 1
  givenname: Linyuan
  surname: Guo
  fullname: Guo, Linyuan
  organization: University of Virginia
– sequence: 2
  givenname: Syed Ali Asad
  orcidid: 0000-0003-1412-8841
  surname: Rizvi
  fullname: Rizvi, Syed Ali Asad
  organization: University of Virginia
– sequence: 3
  givenname: Zongli
  orcidid: 0000-0003-1589-1443
  surname: Lin
  fullname: Lin, Zongli
  email: zl5y@virginia.edu
  organization: University of Virginia
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42ZqJpnMZJZSvEGx4GUdkvSMTkmTmkkp3fkIPqNPYsa6El2dc_i_c_tHaOC8A4ROczLJCaEXwZkJJ1wcoGFO6jrLKasHfV7UmagpO0KjrlsSkjRaDNHjfB3blbLYeBeDt9g3WOG49Z_vH9tXAAsL3IFtUqmVVc607gUHr33EeocDtK7xwcAKXMQWVHBJP0aHjbIdnPzEMXq-vnqa3maz-c3d9HKWGVozkdFClAsOleYFgNIGalpRbUrRMFOlswWHgmld8QWnRJS8FhUtqdZMUC44y9kYne3nroN_20AX5dJvgksrJeUkFxUjtKcme8oE33UBGmnaqGLb_6taK3Mie-NkMk72xqWG818N65AsCru_0GyPblsLu385-XA__ea_AC3Af8w
CitedBy_id crossref_primary_10_1007_s11071_024_09569_w
crossref_primary_10_1002_rnc_5814
crossref_primary_10_1016_j_isatra_2024_12_020
crossref_primary_10_1155_2021_8853441
crossref_primary_10_1109_TNNLS_2021_3107550
crossref_primary_10_21595_jme_2025_24881
crossref_primary_10_1109_ACCESS_2022_3208058
crossref_primary_10_3390_robotics14080101
crossref_primary_10_1016_j_jestch_2022_101259
crossref_primary_10_1016_j_ejcon_2025_101393
crossref_primary_10_1016_j_ast_2024_108972
crossref_primary_10_1007_s12555_020_0809_7
crossref_primary_10_1002_acs_3579
crossref_primary_10_1002_acs_3832
crossref_primary_10_32604_cmc_2024_055412
crossref_primary_10_1109_TMECH_2023_3332174
crossref_primary_10_1109_ACCESS_2025_3572461
crossref_primary_10_3389_fnbot_2022_1102259
crossref_primary_10_1016_j_robot_2025_105195
crossref_primary_10_1002_rnc_7117
crossref_primary_10_1016_j_robot_2025_105111
crossref_primary_10_1177_09596518221116951
crossref_primary_10_1016_j_chaos_2025_116459
crossref_primary_10_5937_engtoday2400018S
crossref_primary_10_1002_rnc_7630
crossref_primary_10_1177_09544062231209144
Cites_doi 10.1109/TSMCB.2010.2043839
10.1109/41.982254
10.1007/s10846-010-9460-5
10.1002/acs.2981
10.1109/TRO.2010.2053732
10.1109/CDC.2017.8263836
10.1007/s10846-010-9432-9
10.1109/MCI.2009.932261
10.1109/ICSMC.2009.5346583
10.1109/TNNLS.2018.2870075
10.1016/j.fss.2008.09.013
10.1155/2012/469491
10.1109/ICECENG.2011.6057680
10.1007/s11370-008-0024-5
10.1109/MCS.2012.2214134
10.1109/MCAS.2009.933854
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.5058
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 1904
ExternalDocumentID 10_1002_rnc_5058
RNC5058
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-2486d5e7b54eeabce9272bc68f3c712385e43bb75d520865987262bb382585313
IEDL.DBID DRFUL
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1049-8923
IngestDate Fri Jul 25 12:21:22 EDT 2025
Sat Nov 29 03:22:08 EST 2025
Tue Nov 18 21:00:18 EST 2025
Wed Jan 22 16:29:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-2486d5e7b54eeabce9272bc68f3c712385e43bb75d520865987262bb382585313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1412-8841
0000-0003-1589-1443
PQID 2501873021
PQPubID 1026344
PageCount 20
ParticipantIDs proquest_journals_2501873021
crossref_citationtrail_10_1002_rnc_5058
crossref_primary_10_1002_rnc_5058
wiley_primary_10_1002_rnc_5058_RNC5058
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 49
2010; 26
2012; 2012
2012
2011
2019; 33
2009; 160
2011; 62
2009
1998
1997
2011; 41
2009; 9
1996
2017
1995
1994
2018; 30
2009; 4
2008; 1
2012; 32
1989
2010; 60
Bertsekas DP (e_1_2_6_23_1) 1996
e_1_2_6_10_1
e_1_2_6_20_1
Sutton RS (e_1_2_6_22_1) 1998
Li Z (e_1_2_6_2_1) 2012
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
Lewis FL (e_1_2_6_24_1) 1995
e_1_2_6_5_1
Wu J (e_1_2_6_21_1) 2012; 2012
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – year: 2011
– volume: 1
  start-page: 313
  issue: 4
  year: 2008
  end-page: 320
  article-title: Wheeled inverted pendulum type assistant robot: design concept and mobile control
  publication-title: Intell Serv Robot
– year: 2009
– volume: 60
  start-page: 577
  issue: 3‐4
  year: 2010
  end-page: 605
  article-title: Motion control of a two‐wheeled mobile vehicle with an inverted pendulum
  publication-title: J Intell Robot Syst
– volume: 30
  start-page: 1523
  issue: 5
  year: 2018
  end-page: 1536
  article-title: Output feedback Q‐learning control for the discrete‐time linear quadratic regulator problem
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 9
  start-page: 32
  issue: 3
  year: 2009
  end-page: 50
  article-title: Reinforcement learning and adaptive dynamic programming for feedback control
  publication-title: IEEE Circ Syst Mag
– volume: 49
  start-page: 107
  issue: 1
  year: 2002
  end-page: 114
  article-title: JOE: a mobile, inverted pendulum
  publication-title: IEEE Trans Ind Electron
– volume: 62
  start-page: 103
  issue: 1
  year: 2011
  end-page: 123
  article-title: Adaptive robust self‐balancing and steering of a two‐wheeled human transportation vehicle
  publication-title: J Intell Robot Syst
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 13
  article-title: A two‐wheeled self‐balancing robot with the fuzzy PD control method
  publication-title: Math Prob Eng
– year: 1989
– year: 1997
– volume: 32
  start-page: 76
  issue: 6
  year: 2012
  end-page: 105
  article-title: Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers
  publication-title: IEEE Control Syst Mag
– year: 1996
– year: 1995
– volume: 160
  start-page: 1787
  issue: 12
  year: 2009
  end-page: 1803
  article-title: Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums
  publication-title: Fuzzy Sets Syst
– volume: 41
  start-page: 14
  issue: 1
  year: 2011
  end-page: 25
  article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
– year: 2017
– volume: 33
  start-page: 1825
  issue: 12
  year: 2019
  end-page: 1842
  article-title: Experience replay‐based output feedback Q‐learning scheme for optimal output tracking control of discrete‐time linear systems
  publication-title: Int J Adapt Control Signal Process
– year: 1994
– volume: 4
  start-page: 39
  issue: 2
  year: 2009
  end-page: 47
  article-title: Adaptive dynamic programming: An introduction
  publication-title: IEEE Comput Intell Mag
– year: 1998
– year: 2012
– volume: 26
  start-page: 750
  issue: 4
  year: 2010
  end-page: 758
  article-title: Sliding‐mode velocity control of mobile‐wheeled inverted‐pendulum systems
  publication-title: IEEE Trans Robot
– ident: e_1_2_6_16_1
  doi: 10.1109/TSMCB.2010.2043839
– ident: e_1_2_6_20_1
  doi: 10.1109/41.982254
– volume-title: Reinforcement Learning: An Introduction
  year: 1998
  ident: e_1_2_6_22_1
– volume-title: Advanced Control of Wheeled Inverted Pendulum Systems
  year: 2012
  ident: e_1_2_6_2_1
– ident: e_1_2_6_3_1
  doi: 10.1007/s10846-010-9460-5
– ident: e_1_2_6_11_1
  doi: 10.1002/acs.2981
– ident: e_1_2_6_5_1
  doi: 10.1109/TRO.2010.2053732
– ident: e_1_2_6_17_1
  doi: 10.1109/CDC.2017.8263836
– ident: e_1_2_6_19_1
  doi: 10.1007/s10846-010-9432-9
– ident: e_1_2_6_10_1
  doi: 10.1109/MCI.2009.932261
– ident: e_1_2_6_13_1
– ident: e_1_2_6_6_1
  doi: 10.1109/ICSMC.2009.5346583
– ident: e_1_2_6_18_1
  doi: 10.1109/TNNLS.2018.2870075
– ident: e_1_2_6_4_1
  doi: 10.1016/j.fss.2008.09.013
– volume-title: Neuro‐Dynamic Programming
  year: 1996
  ident: e_1_2_6_23_1
– volume-title: Optimal Control
  year: 1995
  ident: e_1_2_6_24_1
– volume: 2012
  start-page: 1
  year: 2012
  ident: e_1_2_6_21_1
  article-title: A two‐wheeled self‐balancing robot with the fuzzy PD control method
  publication-title: Math Prob Eng
  doi: 10.1155/2012/469491
– ident: e_1_2_6_14_1
– ident: e_1_2_6_8_1
  doi: 10.1109/ICECENG.2011.6057680
– ident: e_1_2_6_7_1
  doi: 10.1007/s11370-008-0024-5
– ident: e_1_2_6_9_1
  doi: 10.1109/MCS.2012.2214134
– ident: e_1_2_6_15_1
  doi: 10.1109/MCAS.2009.933854
– ident: e_1_2_6_12_1
SSID ssj0009924
Score 2.448948
Snippet Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional...
This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1885
SubjectTerms Algorithms
Balancing
Control methods
Control systems
Decoupling
Machine learning
Mathematical models
Optimal control
Output feedback
Parameter uncertainty
Q‐learning
reinforcement learning
Riccati equation
Robot control
robustness
State feedback
two‐wheeled self‐balancing robot
Yaw
Title Optimal control of a two‐wheeled self‐balancing robot by reinforcement learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5058
https://www.proquest.com/docview/2501873021
Volume 31
WOSCitedRecordID wos000552329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009924
  issn: 1049-8923
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB209aAHv8VqlRVET6HNZtPdHKVaPEiVaqG3sLvZqFAbSavFmz_B3-gvcTZJPwQFwVMIzEKY2Zn3dpm8ATg2jSDyOFVObETdQX7rOlJJ5kTCZTyQOhJUZcMmeLster3gpuiqtP_C5PoQ0ws3mxlZvbYJLtWwNhMNTTF_EL7FIpQpbltWgvJ5p9W9mknuBvlIW-TAjkAeM5GerdPaZO13MJoxzHmemgFNa-0_n7gOqwW9JGf5ftiABTPYhJU50cEtuL3GKvGERkWXOkliIslonHy-f4wfDMJQRIamH-Orsn2PGleRNFHJiKg3kppMalVnt4qkmDlxvw3d1sVd89IpRis4GvEdc4OJRuQbrnxmjFTaBBQDphsi9jRHMBO-YZ5S3I98iocePxCcNqhSHh4oEeBdbwdKg2RgdoFgBdDIOTSP44BJj0kZGa0CL1YujZnHK3A68XGoC91xO_6iH-aKyTREN4XWTRU4mlo-51obP9hUJ2EKi2wbhtSqEmKpom4FTrKA_Lo-7LSb9rn3V8N9WKa2jSVr1qlCaZS-mANY0q-jx2F6WOy5L2cv3MU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20CurBb7FadQXRU2iz2XQ3eBK1VKxVtIK3kN1sVKiNpNXizZ_gb_SXOJsPq6AgeAqBWQizO_PeDpM3ADu67oUOp9KKtKhZyG9tK5ABs0JhM-4FKhRUpsMmeLstbm68izHYL_6FyfQhPgtuJjLSfG0C3BSkqyPV0AQDCPFbjMMEw1PklmDi6LJx3Rpp7nrZTFskwZZAIlNoz9ZotVj7HY1GFPMrUU2RpjH3r2-ch9mcYJKD7EQswJjuLcLMF9nBJbg6xzzxgEZ5nzqJIxKQwTB-f30b3mkEopD0dTfCV2k6HxWuIkks4wGRLyTRqdiqSuuKJJ86cbsM143jzmHTyocrWAoRHqODiXroai5dpnUglfYobpmqi8hRHOFMuJo5UnI3dClee1xPcFqnUjp4pUSIt50VKPXinl4FgjlAIetQPIo8FjgsCEKtpOdE0qYRc3gZ9gon-ypXHjcDMLp-pplMfXSTb9xUhu1Py8dMbeMHm0qxT34eb32fGl1CTFbULsNuuiO_rvcv24fmufZXwy2YanbOWn7rpH26DtPUNLWkrTsVKA2SJ70Bk-p5cN9PNvMD-AGdg-C1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsQwEB3WC6IP3sX1GkH0qWjTtEnwSdRFUVZZXfCtNGmigm6luyq--Ql-o1_i9LaroCD4VAozUCaZOSdhegZg0wQy9jhVjjVi10F-6zqRipgTC5dxGelYUJUPm-DNpri-lhc12Kv-hSn0IfoXbllm5PU6S3DzGNudgWpoigmE-C2GYIT5MsCsHDlsNdpnA81dWcy0RRLsCCQylfbsLt2pfL-j0YBifiWqOdI0pv71jdMwWRJMsl_siBmomc4sTHyRHZyDy3OsEw9oVPapk8SSiPReko-395dbg0AUk665t_iqss5HjV4kTVTSI-qVpCYXW9X5vSIpp07czEO7cXR1cOyUwxUcjQiP2cFEEPuGK58ZEyltJMUl04GwnuYIZ8I3zFOK-7FP8djjS8FpQJXy8EiJEO96CzDcSTpmEQjWAI2sQ3NrJYs8FkWx0Up6VrnUMo_XYbsKcqhL5fFsAMZ9WGgm0xDDFGZhqsNG3_KxUNv4wWalWqewzLduSDNdQixW1K3DVr4iv_qHreZB9lz6q-E6jF0cNsKzk-bpMozTrKcl79xZgeFe-mRWYVQ_9-666Vq5_z4BV-zgMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+of+a+two%E2%80%90wheeled+self%E2%80%90balancing+robot+by+reinforcement+learning&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Guo%2C+Linyuan&rft.au=Syed+Ali+Asad+Rizvi&rft.au=Lin%2C+Zongli&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=6&rft.spage=1885&rft.epage=1904&rft_id=info:doi/10.1002%2Frnc.5058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon