Optimal control of a two‐wheeled self‐balancing robot by reinforcement learning
Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization i...
Uložené v:
| Vydané v: | International journal of robust and nonlinear control Ročník 31; číslo 6; s. 1885 - 1904 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
| Predmet: | |
| ISSN: | 1049-8923, 1099-1239 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation. |
|---|---|
| AbstractList | This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation. Summary This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation. |
| Author | Guo, Linyuan Rizvi, Syed Ali Asad Lin, Zongli |
| Author_xml | – sequence: 1 givenname: Linyuan surname: Guo fullname: Guo, Linyuan organization: University of Virginia – sequence: 2 givenname: Syed Ali Asad orcidid: 0000-0003-1412-8841 surname: Rizvi fullname: Rizvi, Syed Ali Asad organization: University of Virginia – sequence: 3 givenname: Zongli orcidid: 0000-0003-1589-1443 surname: Lin fullname: Lin, Zongli email: zl5y@virginia.edu organization: University of Virginia |
| BookMark | eNp1kMtKAzEUhoNUsK2CjxBw42ZqJpnMZJZSvEGx4GUdkvSMTkmTmkkp3fkIPqNPYsa6El2dc_i_c_tHaOC8A4ROczLJCaEXwZkJJ1wcoGFO6jrLKasHfV7UmagpO0KjrlsSkjRaDNHjfB3blbLYeBeDt9g3WOG49Z_vH9tXAAsL3IFtUqmVVc607gUHr33EeocDtK7xwcAKXMQWVHBJP0aHjbIdnPzEMXq-vnqa3maz-c3d9HKWGVozkdFClAsOleYFgNIGalpRbUrRMFOlswWHgmld8QWnRJS8FhUtqdZMUC44y9kYne3nroN_20AX5dJvgksrJeUkFxUjtKcme8oE33UBGmnaqGLb_6taK3Mie-NkMk72xqWG818N65AsCru_0GyPblsLu385-XA__ea_AC3Af8w |
| CitedBy_id | crossref_primary_10_1007_s11071_024_09569_w crossref_primary_10_1002_rnc_5814 crossref_primary_10_1016_j_isatra_2024_12_020 crossref_primary_10_1155_2021_8853441 crossref_primary_10_1109_TNNLS_2021_3107550 crossref_primary_10_21595_jme_2025_24881 crossref_primary_10_1109_ACCESS_2022_3208058 crossref_primary_10_3390_robotics14080101 crossref_primary_10_1016_j_jestch_2022_101259 crossref_primary_10_1016_j_ejcon_2025_101393 crossref_primary_10_1016_j_ast_2024_108972 crossref_primary_10_1007_s12555_020_0809_7 crossref_primary_10_1002_acs_3579 crossref_primary_10_1002_acs_3832 crossref_primary_10_32604_cmc_2024_055412 crossref_primary_10_1109_TMECH_2023_3332174 crossref_primary_10_1109_ACCESS_2025_3572461 crossref_primary_10_3389_fnbot_2022_1102259 crossref_primary_10_1016_j_robot_2025_105195 crossref_primary_10_1002_rnc_7117 crossref_primary_10_1016_j_robot_2025_105111 crossref_primary_10_1177_09596518221116951 crossref_primary_10_1016_j_chaos_2025_116459 crossref_primary_10_5937_engtoday2400018S crossref_primary_10_1002_rnc_7630 crossref_primary_10_1177_09544062231209144 |
| Cites_doi | 10.1109/TSMCB.2010.2043839 10.1109/41.982254 10.1007/s10846-010-9460-5 10.1002/acs.2981 10.1109/TRO.2010.2053732 10.1109/CDC.2017.8263836 10.1007/s10846-010-9432-9 10.1109/MCI.2009.932261 10.1109/ICSMC.2009.5346583 10.1109/TNNLS.2018.2870075 10.1016/j.fss.2008.09.013 10.1155/2012/469491 10.1109/ICECENG.2011.6057680 10.1007/s11370-008-0024-5 10.1109/MCS.2012.2214134 10.1109/MCAS.2009.933854 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1002/rnc.5058 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1239 |
| EndPage | 1904 |
| ExternalDocumentID | 10_1002_rnc_5058 RNC5058 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION O8X 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2938-2486d5e7b54eeabce9272bc68f3c712385e43bb75d520865987262bb382585313 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1049-8923 |
| IngestDate | Fri Jul 25 12:21:22 EDT 2025 Sat Nov 29 03:22:08 EST 2025 Tue Nov 18 21:00:18 EST 2025 Wed Jan 22 16:29:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2938-2486d5e7b54eeabce9272bc68f3c712385e43bb75d520865987262bb382585313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1412-8841 0000-0003-1589-1443 |
| PQID | 2501873021 |
| PQPubID | 1026344 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2501873021 crossref_citationtrail_10_1002_rnc_5058 crossref_primary_10_1002_rnc_5058 wiley_primary_10_1002_rnc_5058_RNC5058 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of robust and nonlinear control |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2002; 49 2010; 26 2012; 2012 2012 2011 2019; 33 2009; 160 2011; 62 2009 1998 1997 2011; 41 2009; 9 1996 2017 1995 1994 2018; 30 2009; 4 2008; 1 2012; 32 1989 2010; 60 Bertsekas DP (e_1_2_6_23_1) 1996 e_1_2_6_10_1 e_1_2_6_20_1 Sutton RS (e_1_2_6_22_1) 1998 Li Z (e_1_2_6_2_1) 2012 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 Lewis FL (e_1_2_6_24_1) 1995 e_1_2_6_5_1 Wu J (e_1_2_6_21_1) 2012; 2012 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
| References_xml | – year: 2011 – volume: 1 start-page: 313 issue: 4 year: 2008 end-page: 320 article-title: Wheeled inverted pendulum type assistant robot: design concept and mobile control publication-title: Intell Serv Robot – year: 2009 – volume: 60 start-page: 577 issue: 3‐4 year: 2010 end-page: 605 article-title: Motion control of a two‐wheeled mobile vehicle with an inverted pendulum publication-title: J Intell Robot Syst – volume: 30 start-page: 1523 issue: 5 year: 2018 end-page: 1536 article-title: Output feedback Q‐learning control for the discrete‐time linear quadratic regulator problem publication-title: IEEE Trans Neural Netw Learn Syst – volume: 9 start-page: 32 issue: 3 year: 2009 end-page: 50 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circ Syst Mag – volume: 49 start-page: 107 issue: 1 year: 2002 end-page: 114 article-title: JOE: a mobile, inverted pendulum publication-title: IEEE Trans Ind Electron – volume: 62 start-page: 103 issue: 1 year: 2011 end-page: 123 article-title: Adaptive robust self‐balancing and steering of a two‐wheeled human transportation vehicle publication-title: J Intell Robot Syst – volume: 2012 start-page: 1 year: 2012 end-page: 13 article-title: A two‐wheeled self‐balancing robot with the fuzzy PD control method publication-title: Math Prob Eng – year: 1989 – year: 1997 – volume: 32 start-page: 76 issue: 6 year: 2012 end-page: 105 article-title: Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers publication-title: IEEE Control Syst Mag – year: 1996 – year: 1995 – volume: 160 start-page: 1787 issue: 12 year: 2009 end-page: 1803 article-title: Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums publication-title: Fuzzy Sets Syst – volume: 41 start-page: 14 issue: 1 year: 2011 end-page: 25 article-title: Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) – year: 2017 – volume: 33 start-page: 1825 issue: 12 year: 2019 end-page: 1842 article-title: Experience replay‐based output feedback Q‐learning scheme for optimal output tracking control of discrete‐time linear systems publication-title: Int J Adapt Control Signal Process – year: 1994 – volume: 4 start-page: 39 issue: 2 year: 2009 end-page: 47 article-title: Adaptive dynamic programming: An introduction publication-title: IEEE Comput Intell Mag – year: 1998 – year: 2012 – volume: 26 start-page: 750 issue: 4 year: 2010 end-page: 758 article-title: Sliding‐mode velocity control of mobile‐wheeled inverted‐pendulum systems publication-title: IEEE Trans Robot – ident: e_1_2_6_16_1 doi: 10.1109/TSMCB.2010.2043839 – ident: e_1_2_6_20_1 doi: 10.1109/41.982254 – volume-title: Reinforcement Learning: An Introduction year: 1998 ident: e_1_2_6_22_1 – volume-title: Advanced Control of Wheeled Inverted Pendulum Systems year: 2012 ident: e_1_2_6_2_1 – ident: e_1_2_6_3_1 doi: 10.1007/s10846-010-9460-5 – ident: e_1_2_6_11_1 doi: 10.1002/acs.2981 – ident: e_1_2_6_5_1 doi: 10.1109/TRO.2010.2053732 – ident: e_1_2_6_17_1 doi: 10.1109/CDC.2017.8263836 – ident: e_1_2_6_19_1 doi: 10.1007/s10846-010-9432-9 – ident: e_1_2_6_10_1 doi: 10.1109/MCI.2009.932261 – ident: e_1_2_6_13_1 – ident: e_1_2_6_6_1 doi: 10.1109/ICSMC.2009.5346583 – ident: e_1_2_6_18_1 doi: 10.1109/TNNLS.2018.2870075 – ident: e_1_2_6_4_1 doi: 10.1016/j.fss.2008.09.013 – volume-title: Neuro‐Dynamic Programming year: 1996 ident: e_1_2_6_23_1 – volume-title: Optimal Control year: 1995 ident: e_1_2_6_24_1 – volume: 2012 start-page: 1 year: 2012 ident: e_1_2_6_21_1 article-title: A two‐wheeled self‐balancing robot with the fuzzy PD control method publication-title: Math Prob Eng doi: 10.1155/2012/469491 – ident: e_1_2_6_14_1 – ident: e_1_2_6_8_1 doi: 10.1109/ICECENG.2011.6057680 – ident: e_1_2_6_7_1 doi: 10.1007/s11370-008-0024-5 – ident: e_1_2_6_9_1 doi: 10.1109/MCS.2012.2214134 – ident: e_1_2_6_15_1 doi: 10.1109/MCAS.2009.933854 – ident: e_1_2_6_12_1 |
| SSID | ssj0009924 |
| Score | 2.4488683 |
| Snippet | Summary
This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional... This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1885 |
| SubjectTerms | Algorithms Balancing Control methods Control systems Decoupling Machine learning Mathematical models Optimal control Output feedback Parameter uncertainty Q‐learning reinforcement learning Riccati equation Robot control robustness State feedback two‐wheeled self‐balancing robot Yaw |
| Title | Optimal control of a two‐wheeled self‐balancing robot by reinforcement learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5058 https://www.proquest.com/docview/2501873021 |
| Volume | 31 |
| WOSCitedRecordID | wos000552329100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1239 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009924 issn: 1049-8923 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB609aAH_8VqlRVET6HtZpNsjlItHqRKtdBb2N1sVaiNJNHizUfwGX0SZ_PTVlAQPIXADITZmflmlsk3AMdSmb3tTFp-aCuLcd-1JBfUsoWjfU8KQ3iSLZvwul0-GPg3xVSl-Rcm54eYXriZyMjytQlwIZPGjDQ0xvhB-OaLUKXotqwC1fNep381o9z185W2WANbHOuYknq2SRul7ncwmlWY83VqBjSdtf984jqsFuUlOcv9YQMW9HgTVuZIB7fg9hqzxBMKFVPqJBoSQdJJ9Pn-MXnQCEMhSfRoiK_SzD0q1CJxJKOUyDcS64xqVWW3iqTYOXG_Df3OxV370ipWK1gK8R1jg3E3dLQnHaa1kEr71KNSuXxoKw_BjDua2VJ6TuhQbHocn3vUpVLa2FAiwLfsHaiMo7HeBYLG54Y0TLChw6TW2L9h08WxUqNCiaZXg9PSxoEqeMfN-otRkDMm0wDNFBgz1eBoKvmcc238IFMvjykooi0JqGElxFRFWzU4yQ7kV_2g122b595fBfdhmZoxlmxYpw6VNH7RB7CkXtPHJD4sfO4LkLvbZw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB5qK6gH_8Vq1RVET0G7yXY3eJJqqVijaAVvIbvdqFAbSavFm4_gM_okzuanVVAQPIXADITZmflmlsk3ADtSmb3tjrTcjq0sR7g1S4qAWnbAtMtlYAhPkmUT3PPE7a17WYDD_F-YlB9idOFmIiPJ1ybAzYX0_pg1NMYAQvwWE1By0ItYEUrHV42b1phz10132mIRbAksZHLu2QO6n-t-R6Nxifm1UE2QpjH3r2-ch9mswCRHqUcsQEH3FmHmC-3gElxfYJ54RKFsTp1EIQnIYBh9vL0P7zUCUYf0dTfEV2kmHxVqkTiS0YDIVxLrhGxVJfeKJNs6cbcMN42Tdr1pZcsVLIUIj9HhiFqHaS6Zo3UglXYpp1LVRGgrjnAmmHZsKTnrMIptD3MFpzUqpY0tJUJ81V6BYi_q6VUglJthNyYCJ2SO1Bo7OGy7BNZqNFDBAS_DXm5kX2XM42YBRtdPOZOpj2byjZnKsD2SfErZNn6QqeTn5Gfx1vep4SXEZEWrZdhNTuRXff_Kq5vn2l8Ft2Cq2T5v-a1T72wdpqkZaklGdypQHMTPegMm1cvgoR9vZg74CbYX31c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB20iuiDd7FadQXRp1DdZLMbfJJqUSy1eIG-hexmo0JtSlotvvkJfqNf4mwutoKC4FMIzEDY3TNnZpmcAdiTysxtd6TlhbayHOG5lhQBteyAaY_LwAiepMMmeLMp2m2vNQHHxb8wmT7E14WbQUYarw3AdS-MqiPV0AQBhPwtJmHKYZ6LqJw6va7fNUaau1420xaTYEtgIlNozx7SauH7nY1GKeZ4opoyTX3hX9-4CPN5gklOshOxBBO6uwxzY7KDK3BzhXHiCY3yPnUSRyQgg2H88fY-fNBIRCHp606Er9J0Pir0Ikks4wGRryTRqdiqSu8VST514n4V7upnt7VzKx-uYClkeESHI9yQaS6Zo3UglfYop1K5IrIVRzoTTDu2lJyFjGLZwzzBqUultLGkRIo_steg1I27eh0I5abZjYnAiZgjtcYKDssugbkaDVRwyMtwUCyyr3LlcTMAo-NnmsnUx2XyzTKVYffLspepbfxgUyn2yc_x1vep0SXEYEWPyrCf7siv_v51s2aeG3813IGZ1mndb1w0LzdhlpqelrRzpwKlQfKst2BavQwe-8l2fv4-AXHe3tI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+of+a+two%E2%80%90wheeled+self%E2%80%90balancing+robot+by+reinforcement+learning&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Guo%2C+Linyuan&rft.au=Rizvi%2C+Syed+Ali+Asad&rft.au=Lin%2C+Zongli&rft.date=2021-04-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=6&rft.spage=1885&rft.epage=1904&rft_id=info:doi/10.1002%2Frnc.5058&rft.externalDBID=10.1002%252Frnc.5058&rft.externalDocID=RNC5058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |