Effect of interfacial morphology on electromagnetic shielding performance of poly (l‐lactide)/polydimethylsiloxane/multi‐walled carbon nanotube composites with honeycomb like conductive networks
The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsil...
Saved in:
| Published in: | Polymer composites Vol. 45; no. 3; pp. 2253 - 2267 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken, USA
John Wiley & Sons, Inc
20.02.2024
Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0272-8397, 1548-0569 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism.
Highlights
Micro‐particle surface tunes the interfacial structure of the honeycomb‐like samples.
Micro‐particles with different sizes endow different EMI SE for the composites.
Samples with regular micro‐particles have higher EMI SE than irregular ones.
The samples with etched micro‐particles have the highest EMI SE.
The honeycomb‐like samples show an absorption‐dominated shielding mechanism.
This study provides a new strategy to regulate the interfacial morphology and enhance the microwave shielding performance by adjusting the surface morphology of the segregated particles and maintaining the surface structure of the particles during the sample preparation. |
|---|---|
| AbstractList | The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism.HighlightsMicro‐particle surface tunes the interfacial structure of the honeycomb‐like samples.Micro‐particles with different sizes endow different EMI SE for the composites.Samples with regular micro‐particles have higher EMI SE than irregular ones.The samples with etched micro‐particles have the highest EMI SE.The honeycomb‐like samples show an absorption‐dominated shielding mechanism. The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism. Highlights Micro‐particle surface tunes the interfacial structure of the honeycomb‐like samples. Micro‐particles with different sizes endow different EMI SE for the composites. Samples with regular micro‐particles have higher EMI SE than irregular ones. The samples with etched micro‐particles have the highest EMI SE. The honeycomb‐like samples show an absorption‐dominated shielding mechanism. This study provides a new strategy to regulate the interfacial morphology and enhance the microwave shielding performance by adjusting the surface morphology of the segregated particles and maintaining the surface structure of the particles during the sample preparation. |
| Author | Wang, Ye Huang, Ming‐Lu Tang, Yi Wang, Ming |
| Author_xml | – sequence: 1 givenname: Yi surname: Tang fullname: Tang, Yi organization: Southwest University – sequence: 2 givenname: Ye surname: Wang fullname: Wang, Ye organization: Southwest University – sequence: 3 givenname: Ming‐Lu surname: Huang fullname: Huang, Ming‐Lu organization: Southwest University – sequence: 4 givenname: Ming orcidid: 0000-0003-2903-8064 surname: Wang fullname: Wang, Ming email: mwang@swu.edu.cn organization: Southwest University |
| BookMark | eNp1kUuO1DAQhi00SPQMSBzBEpthke7YwU6yRK3hIY0EC1hHjl3peMZxBduhJzuOwKk4CCfBTbNCsCqp6vv_el2SC48eCHnOyi0rS76b9ZbXLasfkQ0Tr5qiFLK9IJuS17xoqrZ-Qi5jvMskk7LakB83wwA6URyo9QnCoLRVjk4Y5hEdHlaKnoLLSMBJHTwkq2kcLThj_YHOWYFhUl7DyWJGt9Jr9_Pbd6d0sgZe7k4pYydI4-qidfigPOymxSWbqaNyDgzVKvS5jVce09ID1TjNGG2CSI82jXTMK6452VNn709lb5Zs_xVonueI4T4-JY8H5SI8-xOvyOc3N5_274rbD2_f71_fFpq3VV1AM2gBohKGldA3gtVGCiUlN6pquWCVYKpWQg5tz5pBGGHKVnIOPeP5lhKqK_Li7DsH_LJATN0dLsHnlh1vOauYYLLO1PZM6YAxBhg6bZNKFn0KyrqOld3pV92su9-_yoLrvwRzsJMK67_Q4owerYP1v1z3cX_mfwEq_axk |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_154013 crossref_primary_10_1002_pc_70059 crossref_primary_10_1002_pc_29432 crossref_primary_10_1109_JSEN_2024_3523526 crossref_primary_10_1002_pc_29374 crossref_primary_10_1002_pc_28754 crossref_primary_10_1016_j_matchemphys_2024_129165 crossref_primary_10_3390_polym16172539 crossref_primary_10_1016_j_jmst_2025_07_034 crossref_primary_10_1002_pc_28857 crossref_primary_10_1177_00952443241309581 crossref_primary_10_1016_j_jmst_2024_01_008 |
| Cites_doi | 10.1002/pi.6514 10.1002/adma.202106195 10.1016/j.compositesa.2020.106116 10.1016/j.carbon.2023.118216 10.1016/j.carbon.2022.01.051 10.1016/j.carbpol.2022.119306 10.1039/D2TC03821H 10.1016/j.carbon.2023.118104 10.1016/j.pmatsci.2019.02.003 10.1021/acs.iecr.3c01409 10.1002/pc.27284 10.1016/j.jcis.2020.01.057 10.1002/smll.202208101 10.1002/pc.27546 10.1007/s40820-021-00707-2 10.1002/app.51668 10.1002/pc.27660 10.1016/j.apsusc.2019.145178 10.1016/j.apsusc.2023.157168 10.1016/j.compscitech.2023.109913 10.1002/pc.27163 10.1016/j.jmst.2022.06.031 10.1016/j.carbon.2021.02.047 10.1002/adma.202211642 10.1016/j.compositesa.2023.107532 10.1002/adem.202201938 10.1016/j.cej.2020.124644 10.1016/j.compositesa.2022.107304 10.1016/j.compstruct.2022.115668 10.1039/C7TC02948A 10.1080/00222341003652278 10.1016/j.carbon.2023.01.032 10.1016/j.compscitech.2017.12.027 10.1021/acsnano.3c02975 10.3390/polym10090933 10.1016/j.cej.2023.144500 10.1007/s12274-022-4494-0 10.1016/j.jcis.2016.05.012 10.3390/ma12091395 10.1002/pc.27773 10.1021/acsami.3c07444 10.1016/j.cej.2019.05.074 10.1016/j.compositesb.2018.09.030 10.1016/j.compscitech.2019.04.017 10.1002/adfm.202306884 10.1002/pc.24006 10.1002/pc.27758 10.1002/pc.27520 10.1016/j.carbon.2023.01.007 10.1016/j.compscitech.2022.109874 10.1016/j.scib.2023.07.046 10.1016/j.cej.2023.145091 |
| ContentType | Journal Article |
| Copyright | 2023 Society of Plastics Engineers. 2024 Society of Plastics Engineers |
| Copyright_xml | – notice: 2023 Society of Plastics Engineers. – notice: 2024 Society of Plastics Engineers |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1002/pc.27917 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1548-0569 |
| EndPage | 2267 |
| ExternalDocumentID | 10_1002_pc_27917 PC27917 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52173264 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABHFT ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ KZ1 LATKE LAW LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 Q2X QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX ACUHS ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c2937-e8fc5e535d10eb8517d65a662da39251351a7a56f9b18f5d5d09622eb125486e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104988400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0272-8397 |
| IngestDate | Tue Aug 12 13:40:56 EDT 2025 Tue Nov 18 21:01:54 EST 2025 Sat Nov 29 07:06:55 EST 2025 Wed Jan 22 16:16:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2937-e8fc5e535d10eb8517d65a662da39251351a7a56f9b18f5d5d09622eb125486e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2903-8064 |
| PQID | 2921315167 |
| PQPubID | 37365 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2921315167 crossref_citationtrail_10_1002_pc_27917 crossref_primary_10_1002_pc_27917 wiley_primary_10_1002_pc_27917_PC27917 |
| PublicationCentury | 2000 |
| PublicationDate | 20 February 2024 |
| PublicationDateYYYYMMDD | 2024-02-20 |
| PublicationDate_xml | – month: 02 year: 2024 text: 20 February 2024 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Newtown |
| PublicationTitle | Polymer composites |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd |
| References | 2017; 5 2023; 35 2023; 11 2022; 292 2023; 17 2023; 164 2022; 191 2023; 15 2019; 12 2023; 19 2023; 205 2023; 169 2019; 103 2020; 565 2023; 624 2020; 508 2022; 139 2021; 13 2023; 62 2018; 155 2022; 286 2018; 39 2023; 68 2023; 25 2023; 44 2023; 45 2023 2023; 472 2023; 471 2020; 393 2023; 212 2023; 134 2023; 233 2018; 156 2023; 232 2022; 34 2016; 476 2020; 139 2022; 15 2023; 213 2021; 177 2018; 10 2019; 177 2023; 72 2019; 373 2010; 50 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Li J (e_1_2_7_18_1) 2022; 15 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 10 start-page: 933 issue: 9 year: 2018 article-title: Layer‐structured design and fabrication of cyanate ester nanocomposites for excellent electromagnetic shielding with absorption‐dominated characteristic publication-title: Polymers – volume: 177 start-page: 377 year: 2021 end-page: 402 article-title: Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review publication-title: Carbon – volume: 156 start-page: 87 year: 2018 end-page: 94 article-title: Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding publication-title: Compos Sci Technol – volume: 134 start-page: 106 year: 2023 end-page: 131 article-title: Recent progress on multifunctional electromagnetic interference shielding polymer composites publication-title: J Mater Sci Technol – volume: 232 year: 2023 article-title: Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface‐reinforced segregated structure publication-title: Compos Sci Technol – volume: 508 year: 2020 article-title: Achieve high performance microwave shielding in poly(ε‐caprolactone)/multi‐wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces publication-title: Appl Surf Sci – volume: 44 start-page: 1188 issue: 2 year: 2023 end-page: 1200 article-title: A comparative study on nanoparticle network‐dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites publication-title: Polym Compos – volume: 205 start-page: 112 year: 2023 end-page: 137 article-title: Recent advances in graphene aerogels as absorption‐dominated electromagnetic interference shielding materials publication-title: Carbon – volume: 472 year: 2023 article-title: Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy publication-title: Chem Eng J – volume: 139 start-page: 51668 issue: 8 year: 2022 article-title: Segregated polylactide/poly(butylene adipate‐co‐terephthalate)/MWCNTs nanocomposites with excellent electrical conductivity and electromagnetic interference shielding publication-title: J Appl Polym Sci – volume: 139 year: 2020 article-title: Interfacial metallization in segregated poly (lactic acid)/poly (ε‐caprolactone)/multi‐walled carbon nanotubes composites for enhancing electromagnetic interference shielding publication-title: Compos Part A: Appl Sci Manuf – volume: 25 issue: 11 year: 2023 article-title: Flexible polyurethane@Ti3C2Tx/silver nanowires composite films with cocontinuous segregated structures for superior electromagnetic interference shielding and Joule heating publication-title: Adv Eng Mater – volume: 212 year: 2023 article-title: Highly conductive polystyrene/carbon nanotube/PEDOT:PSS nanocomposite with segregated structure for electromagnetic interference shielding publication-title: Carbon – volume: 471 year: 2023 article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics publication-title: Chem Eng J – volume: 72 start-page: 619 issue: 7 year: 2023 end-page: 628 article-title: Constructing high‐efficiency microwave shielding networks in multi‐walled carbon nanotube/poly(ε‐caprolactone) composites by adding carbon black and graphene nano‐plates publication-title: Polym Int – volume: 68 start-page: 1938 issue: 17 year: 2023 end-page: 1953 article-title: External field‐assisted techniques for polymer matrix composites with electromagnetic interference shielding publication-title: Sci Bull – volume: 476 start-page: 79 year: 2016 end-page: 86 article-title: Processing and size range separation of pristine and magnetic poly(l‐lactic acid) based microspheres for biomedical applications publication-title: J Colloid Interface Sci – year: 2023 article-title: Hyperelastic, robust, fire‐safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency publication-title: Adv Funct Mater – volume: 155 start-page: 405 year: 2018 end-page: 413 article-title: Large‐scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and Favourable mechanical properties publication-title: Compos B: Eng – volume: 44 start-page: 5702 year: 2023 end-page: 5720 article-title: Improved rheological, barrier, antibacterial, and electromagnetic interference shielding properties of graphene and graphene derivatives based linear low density polyethylene nanocomposites publication-title: Polym Compos – volume: 12 start-page: 1395 issue: 9 year: 2019 article-title: Improved electromagnetic interference shielding properties through the use of segregate carbon nanotube networks publication-title: Materials – volume: 233 year: 2023 article-title: Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in‐situ mechanical exfoliation and crosslinking with cations publication-title: Compos Sci Technol – volume: 292 year: 2022 article-title: Effect interfacial size and multiple Interface on electromagnetic shielding of silicon rubber/carbon nanotube composites with mixing segregated particles publication-title: Compos Struct – volume: 17 start-page: 12616 issue: 13 year: 2023 end-page: 12628 article-title: Slippery graphene‐bridging liquid metal layered heterostructure nanocomposite for stable high‐performance electromagnetic interference shielding publication-title: ACS Nano – volume: 15 start-page: 7723 issue: 8 year: 2022 end-page: 7730 article-title: Carbon aerogel microspheres with in‐situ mineralized TiO2 for efficient microwave absorption publication-title: Nano Research – volume: 373 start-page: 556 year: 2019 end-page: 564 article-title: Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks publication-title: Chem Eng J – volume: 45 start-page: 43 year: 2023 end-page: 76 article-title: Recent advances in structural design of conductive polymer composites for electromagnetic interference shielding publication-title: Polym Compos – volume: 19 issue: 25 year: 2023 article-title: Multifunctional nanocrystalline‐assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage publication-title: Small – volume: 11 start-page: 859 issue: 3 year: 2023 end-page: 892 article-title: Recent advances and perspectives on silver‐based polymer composites for electromagnetic interference shielding publication-title: J Mater Chem C – volume: 44 start-page: 7737 year: 2023 end-page: 7751 article-title: Design of 3D graphene‐Ni microsphere based polymeric composites for highly efficient and absorption‐dominated electromagnetic interference shielding performance publication-title: Polym Compos – volume: 5 start-page: 9359 issue: 36 year: 2017 end-page: 9369 article-title: Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L‐lactide)/multi‐walled carbon nanotube nanocomposites with electrically conductive segregated networks publication-title: J Mater Chem C – volume: 213 year: 2023 article-title: Effect surface micro‐wrinkles and micro‐cracks on microwave shielding performance of copper‐coated carbon nanotubes/polydimethylsiloxane composites publication-title: Carbon – volume: 393 year: 2020 article-title: Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection‐absorption‐integrated shielding compartment with conductive wall and lossy core publication-title: Chem Eng J – volume: 624 year: 2023 article-title: Structure design of multi‐layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics publication-title: Appl Surf Sci – volume: 565 start-page: 536 year: 2020 end-page: 545 article-title: Constructing nanopores in poly(oxymethylene)/multi‐wall carbon nanotube nanocomposites via poly( ‐lactide) assisting for improving electromagnetic interference shielding publication-title: J Colloid Interface Sci – volume: 34 issue: 4 year: 2022 article-title: Heterointerface engineering in electromagnetic absorbers: new insights and opportunities publication-title: Adv Mater – volume: 205 start-page: 10 year: 2023 end-page: 26 article-title: Carbon‐based aerogels and foams for electromagnetic interference shielding: a review publication-title: Carbon – volume: 103 start-page: 319 year: 2019 end-page: 373 article-title: Recent advances in carbon‐based polymer nanocomposites for electromagnetic interference shielding publication-title: Prog Mater Sci – volume: 15 start-page: 33180 issue: 27 year: 2023 end-page: 33189 article-title: Conductivity‐controlled polyvinylidene fluoride nanofiber stack for absorption‐dominant electromagnetic interference shielding materials publication-title: ACS Appl Mater Interfaces – volume: 45 start-page: 9087 year: 2023 end-page: 9100 article-title: Polymer blend templated hierarchical porous composites with segregated structure and enhanced electromagnetic interference shielding performance publication-title: Polym Compos – volume: 286 year: 2022 article-title: Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding publication-title: Carbohydr Polym – volume: 62 start-page: 10498 issue: 27 year: 2023 end-page: 10506 article-title: 3D‐printed co‐continuous segregated CNT/TPU composites with superb electromagnetic interference shielding and excellent mechanical properties publication-title: Ind Eng Chem Res – volume: 39 start-page: 841 issue: 3 year: 2018 end-page: 847 article-title: A facile melt coating approach to fabricate macroscopic segregated polymer/carbon nanotube conductive composites with balanced properties publication-title: Polym Compos – volume: 164 year: 2023 article-title: Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε‐caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement publication-title: Compos Part A: Appl Sci Manuf – volume: 169 year: 2023 article-title: Achieving absorption‐type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect publication-title: Compos Part A: Appl Sci Manuf – volume: 191 start-page: 183 year: 2022 end-page: 194 article-title: Lightweight leaf‐structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding publication-title: Carbon – volume: 44 start-page: 2836 year: 2023 end-page: 2845 article-title: Three‐dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template publication-title: Polym Compos – volume: 177 start-page: 41 year: 2019 end-page: 48 article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi‐walled carbon nanotube composites via the incorporation of silicon dioxide micro‐particles publication-title: Compos Sci Technol – volume: 15 start-page: 15 issue: 1 year: 2022 article-title: Flexible polydimethylsiloxane composite with multi‐scale conductive network for ultra‐strong electromagnetic interference protection publication-title: Nanomicro Lett – volume: 13 start-page: 181 issue: 1 year: 2021 article-title: Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review publication-title: Nano Micro Lett – volume: 44 start-page: 6049 year: 2023 end-page: 6070 article-title: Development of biodegradable and low‐cost electromagnetic shielding composite by waste porous biochar and poly (butylene succinate) publication-title: Polym Compos – volume: 50 start-page: 300 issue: 2 year: 2010 end-page: 305 article-title: Preparation of poly ( ‐lactic acid) microsphere publication-title: J Macromol Sci Phys – volume: 35 issue: 16 year: 2023 article-title: Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding publication-title: Adv Mater – ident: e_1_2_7_42_1 doi: 10.1002/pi.6514 – ident: e_1_2_7_5_1 doi: 10.1002/adma.202106195 – ident: e_1_2_7_53_1 doi: 10.1016/j.compositesa.2020.106116 – ident: e_1_2_7_19_1 doi: 10.1016/j.carbon.2023.118216 – ident: e_1_2_7_38_1 doi: 10.1016/j.carbon.2022.01.051 – ident: e_1_2_7_31_1 doi: 10.1016/j.carbpol.2022.119306 – ident: e_1_2_7_3_1 doi: 10.1039/D2TC03821H – ident: e_1_2_7_45_1 doi: 10.1016/j.carbon.2023.118104 – ident: e_1_2_7_25_1 doi: 10.1016/j.pmatsci.2019.02.003 – ident: e_1_2_7_44_1 doi: 10.1021/acs.iecr.3c01409 – ident: e_1_2_7_29_1 doi: 10.1002/pc.27284 – ident: e_1_2_7_40_1 doi: 10.1016/j.jcis.2020.01.057 – volume: 15 start-page: 15 issue: 1 year: 2022 ident: e_1_2_7_18_1 article-title: Flexible polydimethylsiloxane composite with multi‐scale conductive network for ultra‐strong electromagnetic interference protection publication-title: Nanomicro Lett – ident: e_1_2_7_39_1 doi: 10.1002/smll.202208101 – ident: e_1_2_7_23_1 doi: 10.1002/pc.27546 – ident: e_1_2_7_28_1 doi: 10.1007/s40820-021-00707-2 – ident: e_1_2_7_50_1 doi: 10.1002/app.51668 – ident: e_1_2_7_30_1 doi: 10.1002/pc.27660 – ident: e_1_2_7_13_1 doi: 10.1016/j.apsusc.2019.145178 – ident: e_1_2_7_33_1 doi: 10.1016/j.apsusc.2023.157168 – ident: e_1_2_7_24_1 doi: 10.1016/j.compscitech.2023.109913 – ident: e_1_2_7_41_1 doi: 10.1002/pc.27163 – ident: e_1_2_7_15_1 doi: 10.1016/j.jmst.2022.06.031 – ident: e_1_2_7_8_1 doi: 10.1016/j.carbon.2021.02.047 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202211642 – ident: e_1_2_7_20_1 doi: 10.1016/j.compositesa.2023.107532 – ident: e_1_2_7_43_1 doi: 10.1002/adem.202201938 – ident: e_1_2_7_49_1 doi: 10.1016/j.cej.2020.124644 – ident: e_1_2_7_14_1 doi: 10.1016/j.compositesa.2022.107304 – ident: e_1_2_7_37_1 doi: 10.1016/j.compstruct.2022.115668 – ident: e_1_2_7_34_1 doi: 10.1039/C7TC02948A – ident: e_1_2_7_52_1 doi: 10.1080/00222341003652278 – ident: e_1_2_7_4_1 doi: 10.1016/j.carbon.2023.01.032 – ident: e_1_2_7_47_1 doi: 10.1016/j.compscitech.2017.12.027 – ident: e_1_2_7_11_1 doi: 10.1021/acsnano.3c02975 – ident: e_1_2_7_32_1 doi: 10.3390/polym10090933 – ident: e_1_2_7_9_1 doi: 10.1016/j.cej.2023.144500 – ident: e_1_2_7_17_1 doi: 10.1007/s12274-022-4494-0 – ident: e_1_2_7_51_1 doi: 10.1016/j.jcis.2016.05.012 – ident: e_1_2_7_36_1 doi: 10.3390/ma12091395 – ident: e_1_2_7_26_1 doi: 10.1002/pc.27773 – ident: e_1_2_7_16_1 doi: 10.1021/acsami.3c07444 – ident: e_1_2_7_35_1 doi: 10.1016/j.cej.2019.05.074 – ident: e_1_2_7_48_1 doi: 10.1016/j.compositesb.2018.09.030 – ident: e_1_2_7_54_1 doi: 10.1016/j.compscitech.2019.04.017 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.202306884 – ident: e_1_2_7_46_1 doi: 10.1002/pc.24006 – ident: e_1_2_7_27_1 doi: 10.1002/pc.27758 – ident: e_1_2_7_22_1 doi: 10.1002/pc.27520 – ident: e_1_2_7_6_1 doi: 10.1016/j.carbon.2023.01.007 – ident: e_1_2_7_21_1 doi: 10.1016/j.compscitech.2022.109874 – ident: e_1_2_7_2_1 doi: 10.1016/j.scib.2023.07.046 – ident: e_1_2_7_12_1 doi: 10.1016/j.cej.2023.145091 |
| SSID | ssj0021663 |
| Score | 2.4596534 |
| Snippet | The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2253 |
| SubjectTerms | Absorption Conducting polymers Electromagnetic interference electromagnetic interference shielding Electromagnetic shielding honeycomb like conductive networks interfacial morphology Morphology Multi wall carbon nanotubes Networks Particle size Particulate composites poly (l‐lactide) Polydimethylsiloxane Polymer matrix composites Surface chemistry |
| Title | Effect of interfacial morphology on electromagnetic shielding performance of poly (l‐lactide)/polydimethylsiloxane/multi‐walled carbon nanotube composites with honeycomb like conductive networks |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.27917 https://www.proquest.com/docview/2921315167 |
| Volume | 45 |
| WOSCitedRecordID | wos001104988400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1548-0569 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021663 issn: 0272-8397 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbKlgMcKFAQhYJcqQJ6CLtxcJI9VqWrHqqqQq3UWzT-oytSJ9psgb3xCDwVD9In6YyT3W0lKiH1FMk_cRTPeL6xZr5hbFsaYxToLAJECxH6XyoCayjWNYlRfKRLYx2KTWRHR_nZ2fC4i6qkXJiWH2Jx4UaaEc5rUnBQTX9JGlrrTyJDZ-MBWxUotrLHVr98HZ0eLtytOG3rqIkMdR7N7px6diD687m3jdESYd7EqcHQjNbu84lP2ZMOXvLdVh6esRXrn7PHN0gH19nflrCYV44TV8TEAd2a84sK_3i4Y-eV5111nAv45inLkTfnFOmG83m9zDSgV9RVOeMfy6vff0pKkTB2p09NZkylqWdlMy6rX-BtPwQu4qifVLvFcA0Thct48NX0UllOke0UPmYbTjfD_LzydoaNipfj79TtiZcWT2bu27j15gU7He2f7B1EXTWHSCOkyCKbOy2tTKSJB1Yh0MtMKiFNhQHEaJIqBUKGEuOGKs6dNNKgdyUE2hL0YfPUJi9Zz-PirxgfmGzocpXjAQKfQQLY1JpE5sYprRzEG-zDfFsL3VGdU8WNsmhJmkVR6yLszAbbWoysW3qPf4zZnEtG0Sl4U4ihiBNESyl2vw8ycOf84ngvPF__78A37JFA6BQS5webrDedXNq37KH-MR03k3edmF8DCy0JJQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZpUmhy6G9C_tqqUNrm4OxajmwvOZW0S0q3SygJ5Gb0myxxZLPepN1bHqFP1Qfpk2RGtndTaKHQk0EaWcYaSd8MM98Q8pprraVQSSAALQRgf8lAGI2xrlEI6sNtHCpfbCIZDtPT097RAtlvc2FqfoiZww13hj-vcYOjQ7ozZw0t1S5LwNq4R5b2QItAvZc-fO2fDGb2VhjXhdRYApse7t2We7bLOu3Y32-jOcS8C1T9TdN_9F_f-Jg8bAAmfV9rxBOyYNxTsnKHdvAZ-VlTFtPCUmSLGFuBfnN6WcA_9152Wjja1Me5FGcO8xxpdY6xbjCelvNcA3xFWeRT-i7_dfMjxyQJbXY62KRHWJx6mlejvPgunOn40EWQ-obVWzRVYixhGidcMbmShmJsOwaQmYqib5ieF85MoVHSfHSB3Q6ZaeFspq6OXK9WyUn_4_HBYdDUcwgUgIokMKlV3PCI67BrJEC9RMdcxDHTAlAax1qBIgGdsT0ZppZrrsG-YgxuE7Bi09hEa2TRweTrhHZ10rOpTOEIEXuCC2FioyOeaiuVtCLcIG_bdc1UQ3aONTfyrKZpZlmpMr8yG-TVTLKsCT7-ILPdqkbWbPEqYz0WRoCXYuh-45Xgr-OzowP_3PxXwZfkweHxl0E2-DT8vEWWGQApn0bf3SaLk_GVeU7uq-vJqBq_aHT-Fsp4DRU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UrUh98C5Wq44gah_ibiadJItP0roolmURC30Lc7VL00nYbFv3rT-hv8of4i_xnFx2KygIPgXmkgmZMzPfGc75PoCXwhijpE4CiWghQP9LBdIainWNQjQf4eJQ12ITyXicHh4OJ2vwrsuFafghlhdutDLq_ZoWuC2N669YQ0v9lifobVyD9R3SkOnB-t6X0cH-0t8K40ZIjSe46PHc7bhnB7zf9f39NFpBzKtAtT5pRrf_6xvvwK0WYLL3jUXchTXr78HNK7SD9-FHQ1nMCseILWLmJN2bs5MC_3l9y84Kz1p9nBP5zVOeI6uOKNYN-7NylWtAryiLfMHe5D8vLnNKkjB2u09FZkri1Iu8mubFd-ltvw5dxFbnpN5imJYzhcN46Yv5qbKMYtspgMxWjO6G2VHh7QILFcunx1TtiZkW92bmm8j16gEcjD583f0YtHoOgUZQkQQ2dVpYEQkTDqxCqJeYWMg45kYiShOkFSgTtBk3VGHqhBEG_SvO8TRBLzaNbfQQeh4HfwRsYJKhS1WKW4jckUJKG1sTidQ4pZWT4Sa87uY10y3ZOWlu5FlD08yzUmf1zGzCi2XLsiH4-EObrc40snaJVxkf8jBCvBRj9avaCP7aP5vs1s_H_9rwOdyY7I2y_U_jz09ggyOOqrPoB1vQm89O7VO4rs_m02r2rDX5X0YnDJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+interfacial+morphology+on+electromagnetic+shielding+performance+of+poly+%28l%E2%80%90lactide%29%2Fpolydimethylsiloxane%2Fmulti%E2%80%90walled+carbon+nanotube+composites+with+honeycomb+like+conductive+networks&rft.jtitle=Polymer+composites&rft.au=Tang%2C+Yi&rft.au=Wang%2C+Ye&rft.au=Ming%E2%80%90Lu+Huang&rft.au=Wang%2C+Ming&rft.date=2024-02-20&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=45&rft.issue=3&rft.spage=2253&rft.epage=2267&rft_id=info:doi/10.1002%2Fpc.27917&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon |