Effect of interfacial morphology on electromagnetic shielding performance of poly (l‐lactide)/polydimethylsiloxane/multi‐walled carbon nanotube composites with honeycomb like conductive networks

The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsil...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites Vol. 45; no. 3; pp. 2253 - 2267
Main Authors: Tang, Yi, Wang, Ye, Huang, Ming‐Lu, Wang, Ming
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 20.02.2024
Blackwell Publishing Ltd
Subjects:
ISSN:0272-8397, 1548-0569
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism. Highlights Micro‐particle surface tunes the interfacial structure of the honeycomb‐like samples. Micro‐particles with different sizes endow different EMI SE for the composites. Samples with regular micro‐particles have higher EMI SE than irregular ones. The samples with etched micro‐particles have the highest EMI SE. The honeycomb‐like samples show an absorption‐dominated shielding mechanism. This study provides a new strategy to regulate the interfacial morphology and enhance the microwave shielding performance by adjusting the surface morphology of the segregated particles and maintaining the surface structure of the particles during the sample preparation.
AbstractList The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism.HighlightsMicro‐particle surface tunes the interfacial structure of the honeycomb‐like samples.Micro‐particles with different sizes endow different EMI SE for the composites.Samples with regular micro‐particles have higher EMI SE than irregular ones.The samples with etched micro‐particles have the highest EMI SE.The honeycomb‐like samples show an absorption‐dominated shielding mechanism.
The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites (CPCs). Herein, poly (l‐lactide) (PLLA) micro‐particles were used as a volume‐occupying phase to design and prepare the PLLA/polydimethylsiloxane/multi‐walled carbon nanotubes (PLLA/PDMS/MWCNT) composites with honeycomb‐like conductive networks. The interfacial morphology of the composites was adjusted by changing the surface morphology of the PLLA micro‐particles. The effects of the morphology and particle size of the PLLA phase on the EMI shielding effectiveness (SE) of the composites were investigated in this study. The results indicate that the PLLA micro‐particles with regular shape and rough surface can effectively improve the EMI shielding performance of the PLLA/PDMS/MWCNT composites with the same filler loadings and the particle size of PLLA micro‐particles. Specifically, the EMI SE of the composites with etched 300‐μm spherical micro‐particles with rough surface can achieve 35.1 dB, which is 15% higher than the EMI SE of 30.6 dB for the composites with the 300‐μm irregular micro‐particles. In addition, the R values of the composites with honeycomb‐like conductive networks are below 0.5, indicating absorption dominated shielding mechanism. Highlights Micro‐particle surface tunes the interfacial structure of the honeycomb‐like samples. Micro‐particles with different sizes endow different EMI SE for the composites. Samples with regular micro‐particles have higher EMI SE than irregular ones. The samples with etched micro‐particles have the highest EMI SE. The honeycomb‐like samples show an absorption‐dominated shielding mechanism. This study provides a new strategy to regulate the interfacial morphology and enhance the microwave shielding performance by adjusting the surface morphology of the segregated particles and maintaining the surface structure of the particles during the sample preparation.
Author Wang, Ye
Huang, Ming‐Lu
Tang, Yi
Wang, Ming
Author_xml – sequence: 1
  givenname: Yi
  surname: Tang
  fullname: Tang, Yi
  organization: Southwest University
– sequence: 2
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: Southwest University
– sequence: 3
  givenname: Ming‐Lu
  surname: Huang
  fullname: Huang, Ming‐Lu
  organization: Southwest University
– sequence: 4
  givenname: Ming
  orcidid: 0000-0003-2903-8064
  surname: Wang
  fullname: Wang, Ming
  email: mwang@swu.edu.cn
  organization: Southwest University
BookMark eNp1kUuO1DAQhi00SPQMSBzBEpthke7YwU6yRK3hIY0EC1hHjl3peMZxBduhJzuOwKk4CCfBTbNCsCqp6vv_el2SC48eCHnOyi0rS76b9ZbXLasfkQ0Tr5qiFLK9IJuS17xoqrZ-Qi5jvMskk7LakB83wwA6URyo9QnCoLRVjk4Y5hEdHlaKnoLLSMBJHTwkq2kcLThj_YHOWYFhUl7DyWJGt9Jr9_Pbd6d0sgZe7k4pYydI4-qidfigPOymxSWbqaNyDgzVKvS5jVce09ID1TjNGG2CSI82jXTMK6452VNn709lb5Zs_xVonueI4T4-JY8H5SI8-xOvyOc3N5_274rbD2_f71_fFpq3VV1AM2gBohKGldA3gtVGCiUlN6pquWCVYKpWQg5tz5pBGGHKVnIOPeP5lhKqK_Li7DsH_LJATN0dLsHnlh1vOauYYLLO1PZM6YAxBhg6bZNKFn0KyrqOld3pV92su9-_yoLrvwRzsJMK67_Q4owerYP1v1z3cX_mfwEq_axk
CitedBy_id crossref_primary_10_1016_j_cej_2024_154013
crossref_primary_10_1002_pc_70059
crossref_primary_10_1002_pc_29432
crossref_primary_10_1109_JSEN_2024_3523526
crossref_primary_10_1002_pc_29374
crossref_primary_10_1002_pc_28754
crossref_primary_10_1016_j_matchemphys_2024_129165
crossref_primary_10_3390_polym16172539
crossref_primary_10_1016_j_jmst_2025_07_034
crossref_primary_10_1002_pc_28857
crossref_primary_10_1177_00952443241309581
crossref_primary_10_1016_j_jmst_2024_01_008
Cites_doi 10.1002/pi.6514
10.1002/adma.202106195
10.1016/j.compositesa.2020.106116
10.1016/j.carbon.2023.118216
10.1016/j.carbon.2022.01.051
10.1016/j.carbpol.2022.119306
10.1039/D2TC03821H
10.1016/j.carbon.2023.118104
10.1016/j.pmatsci.2019.02.003
10.1021/acs.iecr.3c01409
10.1002/pc.27284
10.1016/j.jcis.2020.01.057
10.1002/smll.202208101
10.1002/pc.27546
10.1007/s40820-021-00707-2
10.1002/app.51668
10.1002/pc.27660
10.1016/j.apsusc.2019.145178
10.1016/j.apsusc.2023.157168
10.1016/j.compscitech.2023.109913
10.1002/pc.27163
10.1016/j.jmst.2022.06.031
10.1016/j.carbon.2021.02.047
10.1002/adma.202211642
10.1016/j.compositesa.2023.107532
10.1002/adem.202201938
10.1016/j.cej.2020.124644
10.1016/j.compositesa.2022.107304
10.1016/j.compstruct.2022.115668
10.1039/C7TC02948A
10.1080/00222341003652278
10.1016/j.carbon.2023.01.032
10.1016/j.compscitech.2017.12.027
10.1021/acsnano.3c02975
10.3390/polym10090933
10.1016/j.cej.2023.144500
10.1007/s12274-022-4494-0
10.1016/j.jcis.2016.05.012
10.3390/ma12091395
10.1002/pc.27773
10.1021/acsami.3c07444
10.1016/j.cej.2019.05.074
10.1016/j.compositesb.2018.09.030
10.1016/j.compscitech.2019.04.017
10.1002/adfm.202306884
10.1002/pc.24006
10.1002/pc.27758
10.1002/pc.27520
10.1016/j.carbon.2023.01.007
10.1016/j.compscitech.2022.109874
10.1016/j.scib.2023.07.046
10.1016/j.cej.2023.145091
ContentType Journal Article
Copyright 2023 Society of Plastics Engineers.
2024 Society of Plastics Engineers
Copyright_xml – notice: 2023 Society of Plastics Engineers.
– notice: 2024 Society of Plastics Engineers
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/pc.27917
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-0569
EndPage 2267
ExternalDocumentID 10_1002_pc_27917
PC27917
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52173264
GroupedDBID .3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABHFT
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
KZ1
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
Q2X
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ACUHS
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SR
8FD
JG9
ID FETCH-LOGICAL-c2937-e8fc5e535d10eb8517d65a662da39251351a7a56f9b18f5d5d09622eb125486e3
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104988400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0272-8397
IngestDate Tue Aug 12 13:40:56 EDT 2025
Tue Nov 18 21:01:54 EST 2025
Sat Nov 29 07:06:55 EST 2025
Wed Jan 22 16:16:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-e8fc5e535d10eb8517d65a662da39251351a7a56f9b18f5d5d09622eb125486e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2903-8064
PQID 2921315167
PQPubID 37365
PageCount 15
ParticipantIDs proquest_journals_2921315167
crossref_citationtrail_10_1002_pc_27917
crossref_primary_10_1002_pc_27917
wiley_primary_10_1002_pc_27917_PC27917
PublicationCentury 2000
PublicationDate 20 February 2024
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 20 February 2024
  day: 20
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer composites
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2017; 5
2023; 35
2023; 11
2022; 292
2023; 17
2023; 164
2022; 191
2023; 15
2019; 12
2023; 19
2023; 205
2023; 169
2019; 103
2020; 565
2023; 624
2020; 508
2022; 139
2021; 13
2023; 62
2018; 155
2022; 286
2018; 39
2023; 68
2023; 25
2023; 44
2023; 45
2023
2023; 472
2023; 471
2020; 393
2023; 212
2023; 134
2023; 233
2018; 156
2023; 232
2022; 34
2016; 476
2020; 139
2022; 15
2023; 213
2021; 177
2018; 10
2019; 177
2023; 72
2019; 373
2010; 50
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Li J (e_1_2_7_18_1) 2022; 15
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  start-page: 933
  issue: 9
  year: 2018
  article-title: Layer‐structured design and fabrication of cyanate ester nanocomposites for excellent electromagnetic shielding with absorption‐dominated characteristic
  publication-title: Polymers
– volume: 177
  start-page: 377
  year: 2021
  end-page: 402
  article-title: Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review
  publication-title: Carbon
– volume: 156
  start-page: 87
  year: 2018
  end-page: 94
  article-title: Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding
  publication-title: Compos Sci Technol
– volume: 134
  start-page: 106
  year: 2023
  end-page: 131
  article-title: Recent progress on multifunctional electromagnetic interference shielding polymer composites
  publication-title: J Mater Sci Technol
– volume: 232
  year: 2023
  article-title: Highly efficient electromagnetic interference shielding and superior mechanical performance of carbon nanotube/polydimethylsiloxane composite with interface‐reinforced segregated structure
  publication-title: Compos Sci Technol
– volume: 508
  year: 2020
  article-title: Achieve high performance microwave shielding in poly(ε‐caprolactone)/multi‐wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces
  publication-title: Appl Surf Sci
– volume: 44
  start-page: 1188
  issue: 2
  year: 2023
  end-page: 1200
  article-title: A comparative study on nanoparticle network‐dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites
  publication-title: Polym Compos
– volume: 205
  start-page: 112
  year: 2023
  end-page: 137
  article-title: Recent advances in graphene aerogels as absorption‐dominated electromagnetic interference shielding materials
  publication-title: Carbon
– volume: 472
  year: 2023
  article-title: Multifunctional fabrics based on copper sulfide with excellent electromagnetic interference shielding performance for medical electronics and physical therapy
  publication-title: Chem Eng J
– volume: 139
  start-page: 51668
  issue: 8
  year: 2022
  article-title: Segregated polylactide/poly(butylene adipate‐co‐terephthalate)/MWCNTs nanocomposites with excellent electrical conductivity and electromagnetic interference shielding
  publication-title: J Appl Polym Sci
– volume: 139
  year: 2020
  article-title: Interfacial metallization in segregated poly (lactic acid)/poly (ε‐caprolactone)/multi‐walled carbon nanotubes composites for enhancing electromagnetic interference shielding
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 25
  issue: 11
  year: 2023
  article-title: Flexible polyurethane@Ti3C2Tx/silver nanowires composite films with cocontinuous segregated structures for superior electromagnetic interference shielding and Joule heating
  publication-title: Adv Eng Mater
– volume: 212
  year: 2023
  article-title: Highly conductive polystyrene/carbon nanotube/PEDOT:PSS nanocomposite with segregated structure for electromagnetic interference shielding
  publication-title: Carbon
– volume: 471
  year: 2023
  article-title: Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics
  publication-title: Chem Eng J
– volume: 72
  start-page: 619
  issue: 7
  year: 2023
  end-page: 628
  article-title: Constructing high‐efficiency microwave shielding networks in multi‐walled carbon nanotube/poly(ε‐caprolactone) composites by adding carbon black and graphene nano‐plates
  publication-title: Polym Int
– volume: 68
  start-page: 1938
  issue: 17
  year: 2023
  end-page: 1953
  article-title: External field‐assisted techniques for polymer matrix composites with electromagnetic interference shielding
  publication-title: Sci Bull
– volume: 476
  start-page: 79
  year: 2016
  end-page: 86
  article-title: Processing and size range separation of pristine and magnetic poly(l‐lactic acid) based microspheres for biomedical applications
  publication-title: J Colloid Interface Sci
– year: 2023
  article-title: Hyperelastic, robust, fire‐safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency
  publication-title: Adv Funct Mater
– volume: 155
  start-page: 405
  year: 2018
  end-page: 413
  article-title: Large‐scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and Favourable mechanical properties
  publication-title: Compos B: Eng
– volume: 44
  start-page: 5702
  year: 2023
  end-page: 5720
  article-title: Improved rheological, barrier, antibacterial, and electromagnetic interference shielding properties of graphene and graphene derivatives based linear low density polyethylene nanocomposites
  publication-title: Polym Compos
– volume: 12
  start-page: 1395
  issue: 9
  year: 2019
  article-title: Improved electromagnetic interference shielding properties through the use of segregate carbon nanotube networks
  publication-title: Materials
– volume: 233
  year: 2023
  article-title: Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in‐situ mechanical exfoliation and crosslinking with cations
  publication-title: Compos Sci Technol
– volume: 292
  year: 2022
  article-title: Effect interfacial size and multiple Interface on electromagnetic shielding of silicon rubber/carbon nanotube composites with mixing segregated particles
  publication-title: Compos Struct
– volume: 17
  start-page: 12616
  issue: 13
  year: 2023
  end-page: 12628
  article-title: Slippery graphene‐bridging liquid metal layered heterostructure nanocomposite for stable high‐performance electromagnetic interference shielding
  publication-title: ACS Nano
– volume: 15
  start-page: 7723
  issue: 8
  year: 2022
  end-page: 7730
  article-title: Carbon aerogel microspheres with in‐situ mineralized TiO2 for efficient microwave absorption
  publication-title: Nano Research
– volume: 373
  start-page: 556
  year: 2019
  end-page: 564
  article-title: Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks
  publication-title: Chem Eng J
– volume: 45
  start-page: 43
  year: 2023
  end-page: 76
  article-title: Recent advances in structural design of conductive polymer composites for electromagnetic interference shielding
  publication-title: Polym Compos
– volume: 19
  issue: 25
  year: 2023
  article-title: Multifunctional nanocrystalline‐assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage
  publication-title: Small
– volume: 11
  start-page: 859
  issue: 3
  year: 2023
  end-page: 892
  article-title: Recent advances and perspectives on silver‐based polymer composites for electromagnetic interference shielding
  publication-title: J Mater Chem C
– volume: 44
  start-page: 7737
  year: 2023
  end-page: 7751
  article-title: Design of 3D graphene‐Ni microsphere based polymeric composites for highly efficient and absorption‐dominated electromagnetic interference shielding performance
  publication-title: Polym Compos
– volume: 5
  start-page: 9359
  issue: 36
  year: 2017
  end-page: 9369
  article-title: Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L‐lactide)/multi‐walled carbon nanotube nanocomposites with electrically conductive segregated networks
  publication-title: J Mater Chem C
– volume: 213
  year: 2023
  article-title: Effect surface micro‐wrinkles and micro‐cracks on microwave shielding performance of copper‐coated carbon nanotubes/polydimethylsiloxane composites
  publication-title: Carbon
– volume: 393
  year: 2020
  article-title: Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection‐absorption‐integrated shielding compartment with conductive wall and lossy core
  publication-title: Chem Eng J
– volume: 624
  year: 2023
  article-title: Structure design of multi‐layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics
  publication-title: Appl Surf Sci
– volume: 565
  start-page: 536
  year: 2020
  end-page: 545
  article-title: Constructing nanopores in poly(oxymethylene)/multi‐wall carbon nanotube nanocomposites via poly( ‐lactide) assisting for improving electromagnetic interference shielding
  publication-title: J Colloid Interface Sci
– volume: 34
  issue: 4
  year: 2022
  article-title: Heterointerface engineering in electromagnetic absorbers: new insights and opportunities
  publication-title: Adv Mater
– volume: 205
  start-page: 10
  year: 2023
  end-page: 26
  article-title: Carbon‐based aerogels and foams for electromagnetic interference shielding: a review
  publication-title: Carbon
– volume: 103
  start-page: 319
  year: 2019
  end-page: 373
  article-title: Recent advances in carbon‐based polymer nanocomposites for electromagnetic interference shielding
  publication-title: Prog Mater Sci
– volume: 15
  start-page: 33180
  issue: 27
  year: 2023
  end-page: 33189
  article-title: Conductivity‐controlled polyvinylidene fluoride nanofiber stack for absorption‐dominant electromagnetic interference shielding materials
  publication-title: ACS Appl Mater Interfaces
– volume: 45
  start-page: 9087
  year: 2023
  end-page: 9100
  article-title: Polymer blend templated hierarchical porous composites with segregated structure and enhanced electromagnetic interference shielding performance
  publication-title: Polym Compos
– volume: 286
  year: 2022
  article-title: Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding
  publication-title: Carbohydr Polym
– volume: 62
  start-page: 10498
  issue: 27
  year: 2023
  end-page: 10506
  article-title: 3D‐printed co‐continuous segregated CNT/TPU composites with superb electromagnetic interference shielding and excellent mechanical properties
  publication-title: Ind Eng Chem Res
– volume: 39
  start-page: 841
  issue: 3
  year: 2018
  end-page: 847
  article-title: A facile melt coating approach to fabricate macroscopic segregated polymer/carbon nanotube conductive composites with balanced properties
  publication-title: Polym Compos
– volume: 164
  year: 2023
  article-title: Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε‐caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 169
  year: 2023
  article-title: Achieving absorption‐type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect
  publication-title: Compos Part A: Appl Sci Manuf
– volume: 191
  start-page: 183
  year: 2022
  end-page: 194
  article-title: Lightweight leaf‐structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding
  publication-title: Carbon
– volume: 44
  start-page: 2836
  year: 2023
  end-page: 2845
  article-title: Three‐dimensional graphene/carbon nanotube electromagnetic shielding composite material based on melamine resin foam template
  publication-title: Polym Compos
– volume: 177
  start-page: 41
  year: 2019
  end-page: 48
  article-title: Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi‐walled carbon nanotube composites via the incorporation of silicon dioxide micro‐particles
  publication-title: Compos Sci Technol
– volume: 15
  start-page: 15
  issue: 1
  year: 2022
  article-title: Flexible polydimethylsiloxane composite with multi‐scale conductive network for ultra‐strong electromagnetic interference protection
  publication-title: Nanomicro Lett
– volume: 13
  start-page: 181
  issue: 1
  year: 2021
  article-title: Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review
  publication-title: Nano Micro Lett
– volume: 44
  start-page: 6049
  year: 2023
  end-page: 6070
  article-title: Development of biodegradable and low‐cost electromagnetic shielding composite by waste porous biochar and poly (butylene succinate)
  publication-title: Polym Compos
– volume: 50
  start-page: 300
  issue: 2
  year: 2010
  end-page: 305
  article-title: Preparation of poly ( ‐lactic acid) microsphere
  publication-title: J Macromol Sci Phys
– volume: 35
  issue: 16
  year: 2023
  article-title: Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding
  publication-title: Adv Mater
– ident: e_1_2_7_42_1
  doi: 10.1002/pi.6514
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.202106195
– ident: e_1_2_7_53_1
  doi: 10.1016/j.compositesa.2020.106116
– ident: e_1_2_7_19_1
  doi: 10.1016/j.carbon.2023.118216
– ident: e_1_2_7_38_1
  doi: 10.1016/j.carbon.2022.01.051
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbpol.2022.119306
– ident: e_1_2_7_3_1
  doi: 10.1039/D2TC03821H
– ident: e_1_2_7_45_1
  doi: 10.1016/j.carbon.2023.118104
– ident: e_1_2_7_25_1
  doi: 10.1016/j.pmatsci.2019.02.003
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.iecr.3c01409
– ident: e_1_2_7_29_1
  doi: 10.1002/pc.27284
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jcis.2020.01.057
– volume: 15
  start-page: 15
  issue: 1
  year: 2022
  ident: e_1_2_7_18_1
  article-title: Flexible polydimethylsiloxane composite with multi‐scale conductive network for ultra‐strong electromagnetic interference protection
  publication-title: Nanomicro Lett
– ident: e_1_2_7_39_1
  doi: 10.1002/smll.202208101
– ident: e_1_2_7_23_1
  doi: 10.1002/pc.27546
– ident: e_1_2_7_28_1
  doi: 10.1007/s40820-021-00707-2
– ident: e_1_2_7_50_1
  doi: 10.1002/app.51668
– ident: e_1_2_7_30_1
  doi: 10.1002/pc.27660
– ident: e_1_2_7_13_1
  doi: 10.1016/j.apsusc.2019.145178
– ident: e_1_2_7_33_1
  doi: 10.1016/j.apsusc.2023.157168
– ident: e_1_2_7_24_1
  doi: 10.1016/j.compscitech.2023.109913
– ident: e_1_2_7_41_1
  doi: 10.1002/pc.27163
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jmst.2022.06.031
– ident: e_1_2_7_8_1
  doi: 10.1016/j.carbon.2021.02.047
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202211642
– ident: e_1_2_7_20_1
  doi: 10.1016/j.compositesa.2023.107532
– ident: e_1_2_7_43_1
  doi: 10.1002/adem.202201938
– ident: e_1_2_7_49_1
  doi: 10.1016/j.cej.2020.124644
– ident: e_1_2_7_14_1
  doi: 10.1016/j.compositesa.2022.107304
– ident: e_1_2_7_37_1
  doi: 10.1016/j.compstruct.2022.115668
– ident: e_1_2_7_34_1
  doi: 10.1039/C7TC02948A
– ident: e_1_2_7_52_1
  doi: 10.1080/00222341003652278
– ident: e_1_2_7_4_1
  doi: 10.1016/j.carbon.2023.01.032
– ident: e_1_2_7_47_1
  doi: 10.1016/j.compscitech.2017.12.027
– ident: e_1_2_7_11_1
  doi: 10.1021/acsnano.3c02975
– ident: e_1_2_7_32_1
  doi: 10.3390/polym10090933
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cej.2023.144500
– ident: e_1_2_7_17_1
  doi: 10.1007/s12274-022-4494-0
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jcis.2016.05.012
– ident: e_1_2_7_36_1
  doi: 10.3390/ma12091395
– ident: e_1_2_7_26_1
  doi: 10.1002/pc.27773
– ident: e_1_2_7_16_1
  doi: 10.1021/acsami.3c07444
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cej.2019.05.074
– ident: e_1_2_7_48_1
  doi: 10.1016/j.compositesb.2018.09.030
– ident: e_1_2_7_54_1
  doi: 10.1016/j.compscitech.2019.04.017
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.202306884
– ident: e_1_2_7_46_1
  doi: 10.1002/pc.24006
– ident: e_1_2_7_27_1
  doi: 10.1002/pc.27758
– ident: e_1_2_7_22_1
  doi: 10.1002/pc.27520
– ident: e_1_2_7_6_1
  doi: 10.1016/j.carbon.2023.01.007
– ident: e_1_2_7_21_1
  doi: 10.1016/j.compscitech.2022.109874
– ident: e_1_2_7_2_1
  doi: 10.1016/j.scib.2023.07.046
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cej.2023.145091
SSID ssj0021663
Score 2.4596534
Snippet The construction of effective conductive networks can enhance the electromagnetic interference (EMI) shielding performance of the conductive polymer composites...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2253
SubjectTerms Absorption
Conducting polymers
Electromagnetic interference
electromagnetic interference shielding
Electromagnetic shielding
honeycomb like conductive networks
interfacial morphology
Morphology
Multi wall carbon nanotubes
Networks
Particle size
Particulate composites
poly (l‐lactide)
Polydimethylsiloxane
Polymer matrix composites
Surface chemistry
Title Effect of interfacial morphology on electromagnetic shielding performance of poly (l‐lactide)/polydimethylsiloxane/multi‐walled carbon nanotube composites with honeycomb like conductive networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpc.27917
https://www.proquest.com/docview/2921315167
Volume 45
WOSCitedRecordID wos001104988400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1548-0569
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021663
  issn: 0272-8397
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbKlgMcKFAQhYJcqQJ6CLtxcJI9VqWrHqqqQq3UWzT-oytSJ9psgb3xCDwVD9In6YyT3W0lKiH1FMk_cRTPeL6xZr5hbFsaYxToLAJECxH6XyoCayjWNYlRfKRLYx2KTWRHR_nZ2fC4i6qkXJiWH2Jx4UaaEc5rUnBQTX9JGlrrTyJDZ-MBWxUotrLHVr98HZ0eLtytOG3rqIkMdR7N7px6diD687m3jdESYd7EqcHQjNbu84lP2ZMOXvLdVh6esRXrn7PHN0gH19nflrCYV44TV8TEAd2a84sK_3i4Y-eV5111nAv45inLkTfnFOmG83m9zDSgV9RVOeMfy6vff0pKkTB2p09NZkylqWdlMy6rX-BtPwQu4qifVLvFcA0Thct48NX0UllOke0UPmYbTjfD_LzydoaNipfj79TtiZcWT2bu27j15gU7He2f7B1EXTWHSCOkyCKbOy2tTKSJB1Yh0MtMKiFNhQHEaJIqBUKGEuOGKs6dNNKgdyUE2hL0YfPUJi9Zz-PirxgfmGzocpXjAQKfQQLY1JpE5sYprRzEG-zDfFsL3VGdU8WNsmhJmkVR6yLszAbbWoysW3qPf4zZnEtG0Sl4U4ihiBNESyl2vw8ycOf84ngvPF__78A37JFA6BQS5webrDedXNq37KH-MR03k3edmF8DCy0JJQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZpUmhy6G9C_tqqUNrm4OxajmwvOZW0S0q3SygJ5Gb0myxxZLPepN1bHqFP1Qfpk2RGtndTaKHQk0EaWcYaSd8MM98Q8pprraVQSSAALQRgf8lAGI2xrlEI6sNtHCpfbCIZDtPT097RAtlvc2FqfoiZww13hj-vcYOjQ7ozZw0t1S5LwNq4R5b2QItAvZc-fO2fDGb2VhjXhdRYApse7t2We7bLOu3Y32-jOcS8C1T9TdN_9F_f-Jg8bAAmfV9rxBOyYNxTsnKHdvAZ-VlTFtPCUmSLGFuBfnN6WcA_9152Wjja1Me5FGcO8xxpdY6xbjCelvNcA3xFWeRT-i7_dfMjxyQJbXY62KRHWJx6mlejvPgunOn40EWQ-obVWzRVYixhGidcMbmShmJsOwaQmYqib5ieF85MoVHSfHSB3Q6ZaeFspq6OXK9WyUn_4_HBYdDUcwgUgIokMKlV3PCI67BrJEC9RMdcxDHTAlAax1qBIgGdsT0ZppZrrsG-YgxuE7Bi09hEa2TRweTrhHZ10rOpTOEIEXuCC2FioyOeaiuVtCLcIG_bdc1UQ3aONTfyrKZpZlmpMr8yG-TVTLKsCT7-ILPdqkbWbPEqYz0WRoCXYuh-45Xgr-OzowP_3PxXwZfkweHxl0E2-DT8vEWWGQApn0bf3SaLk_GVeU7uq-vJqBq_aHT-Fsp4DRU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7UrUh98C5Wq44gah_ibiadJItP0roolmURC30Lc7VL00nYbFv3rT-hv8of4i_xnFx2KygIPgXmkgmZMzPfGc75PoCXwhijpE4CiWghQP9LBdIainWNQjQf4eJQ12ITyXicHh4OJ2vwrsuFafghlhdutDLq_ZoWuC2N669YQ0v9lifobVyD9R3SkOnB-t6X0cH-0t8K40ZIjSe46PHc7bhnB7zf9f39NFpBzKtAtT5pRrf_6xvvwK0WYLL3jUXchTXr78HNK7SD9-FHQ1nMCseILWLmJN2bs5MC_3l9y84Kz1p9nBP5zVOeI6uOKNYN-7NylWtAryiLfMHe5D8vLnNKkjB2u09FZkri1Iu8mubFd-ltvw5dxFbnpN5imJYzhcN46Yv5qbKMYtspgMxWjO6G2VHh7QILFcunx1TtiZkW92bmm8j16gEcjD583f0YtHoOgUZQkQQ2dVpYEQkTDqxCqJeYWMg45kYiShOkFSgTtBk3VGHqhBEG_SvO8TRBLzaNbfQQeh4HfwRsYJKhS1WKW4jckUJKG1sTidQ4pZWT4Sa87uY10y3ZOWlu5FlD08yzUmf1zGzCi2XLsiH4-EObrc40snaJVxkf8jBCvBRj9avaCP7aP5vs1s_H_9rwOdyY7I2y_U_jz09ggyOOqrPoB1vQm89O7VO4rs_m02r2rDX5X0YnDJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+interfacial+morphology+on+electromagnetic+shielding+performance+of+poly+%28l%E2%80%90lactide%29%2Fpolydimethylsiloxane%2Fmulti%E2%80%90walled+carbon+nanotube+composites+with+honeycomb+like+conductive+networks&rft.jtitle=Polymer+composites&rft.au=Tang%2C+Yi&rft.au=Wang%2C+Ye&rft.au=Ming%E2%80%90Lu+Huang&rft.au=Wang%2C+Ming&rft.date=2024-02-20&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0272-8397&rft.eissn=1548-0569&rft.volume=45&rft.issue=3&rft.spage=2253&rft.epage=2267&rft_id=info:doi/10.1002%2Fpc.27917&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8397&client=summon