A modified Ishikawa iteration scheme for b‐enriched nonexpansive mapping to solve split variational inclusion problem and fixed point problem in Hilbert spaces

In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion problem in real Hilbert spaces. Under some suitable conditions, we obtain convergence theorem. Moreover, to demonstrate the effectiven...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 46; číslo 12; s. 13243 - 13261
Hlavní autoři: Phairatchatniyom, Pawicha, Kumam, Poom, Berinde, Vasile
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 01.08.2023
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion problem in real Hilbert spaces. Under some suitable conditions, we obtain convergence theorem. Moreover, to demonstrate the effectiveness and performance of proposed scheme, we apply the scheme to solve a split feasibility problem and compare it with some existing iterative schemes.
AbstractList In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion problem in real Hilbert spaces. Under some suitable conditions, we obtain convergence theorem. Moreover, to demonstrate the effectiveness and performance of proposed scheme, we apply the scheme to solve a split feasibility problem and compare it with some existing iterative schemes.
In this article, an Ishikawa iteration scheme is modified for ‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion problem in real Hilbert spaces. Under some suitable conditions, we obtain convergence theorem. Moreover, to demonstrate the effectiveness and performance of proposed scheme, we apply the scheme to solve a split feasibility problem and compare it with some existing iterative schemes.
In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion problem in real Hilbert spaces. Under some suitable conditions, we obtain convergence theorem. Moreover, to demonstrate the effectiveness and performance of proposed scheme, we apply the scheme to solve a split feasibility problem and compare it with some existing iterative schemes.
Author Phairatchatniyom, Pawicha
Berinde, Vasile
Kumam, Poom
Author_xml – sequence: 1
  givenname: Pawicha
  orcidid: 0000-0002-3795-0099
  surname: Phairatchatniyom
  fullname: Phairatchatniyom, Pawicha
  organization: King Mongkut's University of Technology Thonburi (KMUTT)
– sequence: 2
  givenname: Poom
  orcidid: 0000-0002-5463-4581
  surname: Kumam
  fullname: Kumam, Poom
  email: poom.kum@kmutt.ac.th
  organization: China Medical University
– sequence: 3
  givenname: Vasile
  orcidid: 0000-0002-3677-795X
  surname: Berinde
  fullname: Berinde, Vasile
  organization: Academy of Romanian Scientists
BookMark eNp1kU1uFDEQhS2USEwSJI5giQ2bHuxupz1ejiIgkRKxIetWtbuaVHDbje3Jz44jcAWulpPEM4NYILIoWXr66lWV3xE78MEjY2-lWEoh6g_TBEtTK_2KLaQwppJKtwdsIaQWlaqles2OUroVQqykrBfs95pPYaCRcOAX6Ya-wz1wyhghU_A82RuckI8h8v7p5y_0kYoy8O3Qhxl8ojvkE8wz-W88B56CK0KaHWV-B5F2LuA4ees2aes4x9A7nDj4gY_0ULzmQD7_1cnzc3I9xlxswGI6YYcjuIRv_rzH7PrTx69n59Xll88XZ-vLytam0RUobYSyUioD0grTggZljZX9oE0v-1KNXUGLbQOn0rQrLZXoB0QrLOpBNMfs3d63bPJjgyl3t2ETy_Kpq1fNqdbl9-pCLfeUjSGliGNnKe-uzBHIdVJ02xi6EkO3jaE0vP-nYY40QXz8H1rt0Xty-Pgi111drXf8MyexnTM
CitedBy_id crossref_primary_10_1007_s00208_024_02977_8
crossref_primary_10_1002_mma_10879
crossref_primary_10_1002_mma_10174
crossref_primary_10_1007_s40314_023_02589_z
Cites_doi 10.1007/BF02142692
10.1007/s12190-008-0139-z
10.3390/sym14010123
10.1016/0022-247X(67)90085-6
10.1016/S1076-5670(08)70157-5
10.1090/S0002-9939-1974-0336469-5
10.24193/fpt-ro.2019.2.30
10.1016/j.cnsns.2011.01.016
10.1007/s11784-018-0557-y
10.1112/S0024610702003332
10.1088/0266-5611/20/1/006
10.1155/2020/3863819
10.1088/0266-5611/28/8/085004
10.1007/s11228-008-0102-z
10.1002/mma.7572
10.1080/02331934.2017.1306744
10.1017/CBO9780511526152
10.24193/fpt-ro.2021.1.07
10.1080/02331934.2020.1857754
10.1088/0031-9155/51/10/001
10.1016/j.camwa.2011.12.074
10.1088/0266-5611/18/2/310
10.1090/S0002-9939-1953-0054846-3
10.1007/s10957-011-9814-6
10.1186/1687-1812-2013-350
10.1007/s13398-015-0245-3
10.1186/s13663-015-0441-z
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.9247
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 13261
ExternalDocumentID 10_1002_mma_9247
MMA9247
Genre article
GrantInformation_xml – fundername: Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program
  funderid: PHD/0167/2560
– fundername: King Mongkut's University of Technology Thonburi, Thailand
  funderid: TaCS‐CoE2023
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2937-a47904c1149a1c096a7a4c9c1bd79b1b9b13c8a6e63a519687140bdeec0ce7d03
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970403000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:12:35 EDT 2025
Tue Nov 18 22:16:23 EST 2025
Sat Nov 29 04:26:52 EST 2025
Wed Jan 22 16:21:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-a47904c1149a1c096a7a4c9c1bd79b1b9b13c8a6e63a519687140bdeec0ce7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3795-0099
0000-0002-3677-795X
0000-0002-5463-4581
PQID 2835774212
PQPubID 1016386
PageCount 19
ParticipantIDs proquest_journals_2835774212
crossref_citationtrail_10_1002_mma_9247
crossref_primary_10_1002_mma_9247
wiley_primary_10_1002_mma_9247_MMA9247
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 16
2002; 18
2006; 51
2021; 22
2021; 44
1967; 20
2017; 2017
2017; 66
2008; 16
1953; 4
1996; 95
2014; 2014
2012; 17
2011; 150
2018; 20
2009; 29
2021; 70
1994; 8
13
2018; 2018
1974; 44
2013; 14
2020; 2020
2019; 20
1990
2013; 2013
2002; 66
2015; 2015
2019
2022; 14
2016; 110
2012; 28
2018; 10
2003; 20
2009; 16
2012; 64
2021; 2021
1955; 10
e_1_2_9_30_1
Agarwal P. (e_1_2_9_39_1) 2018; 10
e_1_2_9_31_1
Krasnosel'skiǐ M. A. (e_1_2_9_7_1) 1955; 10
e_1_2_9_11_1
Guan J.‐L. (e_1_2_9_18_1) 2018; 2018
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Ceng L.‐C. (e_1_2_9_16_1) 2014; 2014
Tan B. (e_1_2_9_26_1) 2021; 2021
Byrne C. (e_1_2_9_23_1); 13
Ceng L.‐C. (e_1_2_9_34_1) 2013; 14
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_36_1
Chuang C.‐S. (e_1_2_9_37_1) 2017; 2017
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Ceng L.‐C. (e_1_2_9_17_1) 2013; 2013
Ceng L.‐C. (e_1_2_9_35_1) 2015; 16
e_1_2_9_9_1
Censor Y. (e_1_2_9_21_1) 2009; 16
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 51
  start-page: 2353
  issue: 10
  year: 2006
  article-title: A unified approach for inversion problems in intensity‐modulated radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 66
  start-page: 240
  issue: 1
  year: 2002
  end-page: 256
  article-title: Iterative algorithms for nonlinear operators
  publication-title: J. London Math. Soc.
– volume: 20
  start-page: 1
  issue: 2
  year: 2018
  end-page: 12
  article-title: Iterative solutions of the split common fixed point problem for strictly pseudo‐contractive mappings
  publication-title: J. Fixed Point Theory Appl.
– volume: 10
  start-page: 978
  year: 2018
  end-page: 981
  article-title: Fixed point theory in metric spaces
  publication-title: Recent Adv. Appl.
– volume: 29
  start-page: 383
  issue: 1
  year: 2009
  end-page: 389
  article-title: Strong convergence of a modified Krasnoselski‐Mann iterative algorithm for non‐expansive mappings
  publication-title: J. Appl. Math. Comput.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 35
  article-title: Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems
  publication-title: J. Global Optim.
– volume: 18
  start-page: 441
  issue: 2
  year: 2002
  article-title: Iterative oblique projection onto convex sets and the split feasibility problem
  publication-title: Inverse Problems
– volume: 17
  start-page: 708
  issue: 2
  year: 2012
  end-page: 712
  article-title: Fixed point theory for generalized contractions in cone metric spaces
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 20
  start-page: 469
  year: 2019
  end-page: 482
  article-title: A general viscosity implicit iterative algorithm for split variational inclusions with hierarchical variational inequality constraints
  publication-title: Fixed Point Theory
– volume: 10
  start-page: 123
  year: 1955
  end-page: 127
  article-title: Two remarks on the method of successive approximations
  publication-title: Usp. Mat. Nauk
– volume: 16
  start-page: 899
  issue: 7
  year: 2008
  end-page: 912
  article-title: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization
  publication-title: Set‐valued Anal.
– volume: 14
  start-page: 327
  issue: 2
  year: 2013
  end-page: 344
  article-title: Relaxed implicit extragradient‐like methods for finding minimum‐norm solutions of the split feasibility problem
  publication-title: Fixed Point Theory
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  end-page: 29
  article-title: Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems
  publication-title: J. Inequalities Appl.
– year: 1990
– volume: 8
  start-page: 221
  issue: 2
  year: 1994
  end-page: 239
  article-title: A multiprojection algorithm using Bregman projections in a product space
  publication-title: Numer. Algorithms
– volume: 64
  start-page: 633
  issue: 4
  year: 2012
  end-page: 642
  article-title: An extragradient method for solving split feasibility and fixed point problems
  publication-title: Comput. Math. Appl.
– volume: 66
  start-page: 777
  issue: 5
  year: 2017
  end-page: 792
  article-title: Hybrid inertial proximal algorithm for the split variational inclusion problem in hilbert spaces with applications
  publication-title: Optimization
– volume: 22
  start-page: 93
  issue: 1
  year: 2021
  end-page: 103
  article-title: An inertial Censor‐Segal algorithm for split common fixed‐point problems
  publication-title: Fixed Point Theory
– volume: 70
  start-page: 741
  issue: 4
  year: 2021
  end-page: 761
  article-title: A method with inertial extrapolation step for split monotone inclusion problems
  publication-title: Optimization
– volume: 16
  start-page: 1965
  year: 2015
  end-page: 1983
  article-title: Hybrid extragradient methods for finding minimum‐norm solutions of split feasibility problems
  publication-title: J. Nonlinear Convex Anal.
– volume: 14
  start-page: 123
  issue: 1
  year: 2022
  article-title: A modified Krasnosel'skiǐ–Mann iterative algorithm for approximating fixed points of enriched nonexpansive mappings
  publication-title: Symmetry
– volume: 4
  start-page: 506
  issue: 3
  year: 1953
  end-page: 510
  article-title: Mean value methods in iteration
  publication-title: Proc. Am. Math. Soc.
– volume: 28
  issue: 8
  year: 2012
  article-title: Solving the split feasibility problem without prior knowledge of matrix norms
  publication-title: Inverse Probl.
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  end-page: 20
  article-title: Strong convergence theorems for the split variational inclusion problem in hilbert spaces
  publication-title: Fixed Point Theory Appl.
– volume: 95
  start-page: 155
  year: 1996
  end-page: 270
– volume: 110
  start-page: 503
  issue: 2
  year: 2016
  end-page: 518
  article-title: An iterative method for solving split monotone variational inclusion and fixed point problems
  publication-title: Rev. Real Acad. Cienc. Exactas Fis. Nat. ‐ A: Mat.
– volume: 44
  start-page: 12707
  issue: 17
  year: 2021
  end-page: 12726
  article-title: Simple inertial methods for solving split variational inclusions in Banach spaces
  publication-title: Math. Methods Appl. Sci.
– volume: 150
  start-page: 275
  issue: 2
  year: 2011
  end-page: 283
  article-title: Split monotone variational inclusions
  publication-title: J. Optim. Theory Appl.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 9
  article-title: A new faster iterative scheme for numerical fixed points estimation of Suzuki's generalized nonexpansive mappings
  publication-title: Math. Probl. Eng.
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  end-page: 50
  article-title: Relaxed and hybrid viscosity methods for general system of variational inequalities with split feasibility problem constraint
  publication-title: Fixed Point Theory Appl.
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  article-title: An algorithm for the split‐feasibility problems with application to the split‐equality problem
  publication-title: J. Inequalities Appl.
– volume: 2014
  start-page: 1
  issue: 1
  year: 2014
  end-page: 40
  article-title: Multi‐step extragradient method with regularization for triple hierarchical variational inequalities with variational inclusion and split feasibility constraints
  publication-title: J. Inequalities Appl.
– year: 2019
– volume: 16
  start-page: 587
  issue: 2
  year: 2009
  end-page: 600
  article-title: The split common fixed point problem for directed operators
  publication-title: J. Convex Anal
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  end-page: 21
  article-title: Extra‐gradient methods for solving split feasibility and fixed point problems
  publication-title: Fixed Point Theory Appl.
– volume: 44
  start-page: 147
  issue: 1
  year: 1974
  end-page: 150
  article-title: Fixed points by a new iteration method
  publication-title: Proc. Am. Math. Soc.
– volume: 20
  start-page: 197
  issue: 2
  year: 1967
  end-page: 228
  article-title: Construction of fixed points of nonlinear mappings in hilbert space
  publication-title: J. Math. Anal. Appl.
– volume: 13
  article-title: Weak and strong convergence of algorithms for the split common null point problem
  publication-title: J. Nonlinear Convex Anal.
– volume: 20
  start-page: 103
  issue: 1
  year: 2003
  article-title: A unified treatment of some iterative algorithms in signal processing and image reconstruction
  publication-title: Inverse Probl.
– ident: e_1_2_9_20_1
  doi: 10.1007/BF02142692
– ident: e_1_2_9_12_1
  doi: 10.1007/s12190-008-0139-z
– ident: e_1_2_9_13_1
  doi: 10.3390/sym14010123
– ident: e_1_2_9_2_1
  doi: 10.1016/0022-247X(67)90085-6
– ident: e_1_2_9_22_1
  doi: 10.1016/S1076-5670(08)70157-5
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_9_18_1
  article-title: Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems
  publication-title: J. Inequalities Appl.
– ident: e_1_2_9_8_1
  doi: 10.1090/S0002-9939-1974-0336469-5
– ident: e_1_2_9_15_1
  doi: 10.24193/fpt-ro.2019.2.30
– ident: e_1_2_9_40_1
  doi: 10.1016/j.cnsns.2011.01.016
– ident: e_1_2_9_9_1
  doi: 10.1007/s11784-018-0557-y
– ident: e_1_2_9_11_1
  doi: 10.1112/S0024610702003332
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_9_37_1
  article-title: An algorithm for the split‐feasibility problems with application to the split‐equality problem
  publication-title: J. Inequalities Appl.
– ident: e_1_2_9_3_1
  doi: 10.1088/0266-5611/20/1/006
– volume: 2014
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_9_16_1
  article-title: Multi‐step extragradient method with regularization for triple hierarchical variational inequalities with variational inclusion and split feasibility constraints
  publication-title: J. Inequalities Appl.
– ident: e_1_2_9_10_1
  doi: 10.1155/2020/3863819
– ident: e_1_2_9_25_1
  doi: 10.1088/0266-5611/28/8/085004
– ident: e_1_2_9_31_1
  doi: 10.1007/s11228-008-0102-z
– ident: e_1_2_9_38_1
  doi: 10.1002/mma.7572
– volume: 16
  start-page: 587
  issue: 2
  year: 2009
  ident: e_1_2_9_21_1
  article-title: The split common fixed point problem for directed operators
  publication-title: J. Convex Anal
– volume: 10
  start-page: 978
  year: 2018
  ident: e_1_2_9_39_1
  article-title: Fixed point theory in metric spaces
  publication-title: Recent Adv. Appl.
– ident: e_1_2_9_5_1
– ident: e_1_2_9_29_1
  doi: 10.1080/02331934.2017.1306744
– ident: e_1_2_9_30_1
  doi: 10.1017/CBO9780511526152
– ident: e_1_2_9_19_1
  doi: 10.24193/fpt-ro.2021.1.07
– ident: e_1_2_9_27_1
  doi: 10.1080/02331934.2020.1857754
– volume: 14
  start-page: 327
  issue: 2
  year: 2013
  ident: e_1_2_9_34_1
  article-title: Relaxed implicit extragradient‐like methods for finding minimum‐norm solutions of the split feasibility problem
  publication-title: Fixed Point Theory
– ident: e_1_2_9_4_1
  doi: 10.1088/0031-9155/51/10/001
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_9_26_1
  article-title: Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems
  publication-title: J. Global Optim.
– ident: e_1_2_9_33_1
  doi: 10.1016/j.camwa.2011.12.074
– volume: 13
  ident: e_1_2_9_23_1
  article-title: Weak and strong convergence of algorithms for the split common null point problem
  publication-title: J. Nonlinear Convex Anal.
– ident: e_1_2_9_32_1
  doi: 10.1088/0266-5611/18/2/310
– volume: 16
  start-page: 1965
  year: 2015
  ident: e_1_2_9_35_1
  article-title: Hybrid extragradient methods for finding minimum‐norm solutions of split feasibility problems
  publication-title: J. Nonlinear Convex Anal.
– ident: e_1_2_9_6_1
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 10
  start-page: 123
  year: 1955
  ident: e_1_2_9_7_1
  article-title: Two remarks on the method of successive approximations
  publication-title: Usp. Mat. Nauk
– ident: e_1_2_9_14_1
  doi: 10.1007/s10957-011-9814-6
– ident: e_1_2_9_28_1
  doi: 10.1186/1687-1812-2013-350
– volume: 2013
  start-page: 1
  issue: 1
  year: 2013
  ident: e_1_2_9_17_1
  article-title: Relaxed and hybrid viscosity methods for general system of variational inequalities with split feasibility problem constraint
  publication-title: Fixed Point Theory Appl.
– ident: e_1_2_9_24_1
  doi: 10.1007/s13398-015-0245-3
– ident: e_1_2_9_36_1
  doi: 10.1186/s13663-015-0441-z
SSID ssj0008112
Score 2.3706594
Snippet In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational...
In this article, an Ishikawa iteration scheme is modified for ‐enriched nonexpansive mapping to solve a fixed point problem and a split variational inclusion...
In this article, an Ishikawa iteration scheme is modified for b$$ b $$‐enriched nonexpansive mapping to solve a fixed point problem and a split variational...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13243
SubjectTerms b$$ b $$‐enriched nonexpansive mapping
fixed point problem
Hilbert space
Ishikawa iteration scheme
Mapping
nonexpansive mapping
split feasibility problem
split variational inclusion problem
Title A modified Ishikawa iteration scheme for b‐enriched nonexpansive mapping to solve split variational inclusion problem and fixed point problem in Hilbert spaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9247
https://www.proquest.com/docview/2835774212
Volume 46
WOSCitedRecordID wos000970403000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o1gf7YG1V3FrlCOLlITaX2Z3kcakuFdwiYqFv4cwlGmyypUlrH_0J_gX_Wn9JzySzqYKC4EMIDDNDwrl9Z3LyHYBnE20iYiDg2rcngbChDrIiSgLSRlNaSCOF6ppNyIOD9Ogo--CrKt2_MD0_xHDg5iyj89fOwEk1u9ekoVVFrzl5kDdhLWa1FSNYe_Nxfvh-8MNp1H3rdAQxgYgjsaKeDePd1drfg9E1wvwVp3aBZr7xP494F-54eImzXh824Yatt2B9MXCzNluw6c25wZeec_rVPfg5w2ppyoIBKb5rvpRf6Rthz7jMgkNOgW1lkQEuqsvvP1jnXAWpwXpZ2wv2J64GHityXA-fsV0iKzQPNAxwWzznbNyfOGJZ6-Mzdz6HvpENUm2wKC94r5NlWbfDeFnjfun4t1rexpWN3YfD-dtPe_uB794QaIYQMiAhs1BozrcyijRnSiRJ6ExHyshMRYqvRKc0tdOEGEZOU0cdqIy1OtRWmjB5ACP3Fg8BjbSa05qJmkwzQSEppZO4sJlQBRUZhWN4sRJjrj21ueuwcZz3pMxxzpLInSTG8HSYedLTefxhzs5KE3Jv0E3uaOkYKXOgH8PzTuZ_XZ8vFjN33_7XiY_gtmti35cV7sCoPT2zj-GWPm_L5vSJV-srQYwBOQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_qVVAf1FbF06ojiH8eYpPL3m0Wnw71uOLdIdJC38L-iwabXGnS2kc_gl_Br-YncTbZpAoKgg8hsOxuNszM7m8mk98APBlrE0kCAq58exwwG-pAZFEcSG20TDJuOFNNsQm-WiWHh-L9Brzq_oVp-SH6gJuzjGa_dgbuAtK7F6yhRSFfkvfAL8EmPScZD2DzzYfZwaLfiJOo-djpGGICNopYxz0bjna7sb-fRhcQ81eg2pw0sxv_tcabcN0DTJy2GrEFG7bchmvLnp212oYtb9AVPves0y9uwfcpFmuTZwRJca_6lH-WXyS2nMskOiQn2BYWCeKi-vH1G2mdyyE1WK5Le047isuCx0I6toePWK-RVJoaKoK4NZ6RP-5jjpiX-ujURejQl7JBWRrM8nOa63idl3Xfnpc4zx0DV03TuMSx23Awe7v_eh74-g2BJhDBA8m4CJkmj0vISJOvJLlkWuhIGS5UpOiKdSIndhJLApKTxJEHKmOtDrXlJozvwMC9xV1Aw60mx2asxhPBZCiV0vEos4KpTGZChkN41skx1Z7c3NXYOEpbWuZRSpJInSSG8LjvedwSevyhz06nCqk36Sp1xHSElemoH8LTRuh_HZ8ul1N3v_evHR_Blfn-cpEu9lbv7sNVV9K-TTLcgUF9cmofwGV9VufVyUOv4z8BkfEFKQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFD7UVqReVFstrlY9gqi9iE02s5kMXi3WpcXuUsRC78L8RYNNdmnS2ksfwVfoq_VJeiZ_VVAQvAiBYWZIOH_fmZx8B-DlSJtAEhBw7dtDj1lfeyINQk9qo2WccsOZqptN8NksPj4Wh0vwrvsXpuGH6A_cnGXU_toZuF2YdOeGNTTP5VvKHvgtWGEjEZFVrux-mhwd9I44DuqPnY4hxmPDgHXcs_5wp1v7ezS6gZi_AtU60kzu_dcz3oe1FmDiuNGIdViyxQbcnfbsrOUGrLcGXeKblnV6-wFcjjGfmywlSIr75dfsm_wuseFcJtEhJcE2t0gQF9XVj5-kda6G1GAxL-wFeRRXBY-5dGwPX7CaI6k0DZQEcSs8p3y8PXPErNAnZ-6EDttWNigLg2l2QXst5llR9eNZgXuZY-CqaBtXOPYQjiYfPr_f89r-DZ4mEME9ybjwmaaMS8hAU64kuWRa6EAZLlSg6Ap1LCMbhZKAZBQ78kBlrNW-ttz44SYsu7d4BGi41ZTYjNQoEkz6UikdDlMrmEplKqQ_gNedHBPdkpu7HhsnSUPLPExIEomTxABe9DMXDaHHH-ZsdaqQtCZdJo6YjrAyhfoBvKqF_tf1yXQ6dvfH_zrxOdw53J0kB_uzj09g1XW0b2oMt2C5Oj2zT-G2Pq-y8vRZq-LXGCAEpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+Ishikawa+iteration+scheme+for+b%E2%80%90enriched+nonexpansive+mapping+to+solve+split+variational+inclusion+problem+and+fixed+point+problem+in+Hilbert+spaces&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Phairatchatniyom%2C+Pawicha&rft.au=Kumam%2C+Poom&rft.au=Berinde%2C+Vasile&rft.date=2023-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=12&rft.spage=13243&rft.epage=13261&rft_id=info:doi/10.1002%2Fmma.9247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon