A higher‐order unconditionally stable scheme for the solution of fractional diffusion equation

In this paper, a higher‐order compact finite difference scheme with multigrid algorithm is applied for solving one‐dimensional time fractional diffusion equation. The second‐order derivative with respect to space is approximated by higher‐order compact difference scheme. Then, Grünwald–Letnikov appr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods in the applied sciences Ročník 44; číslo 4; s. 3004 - 3022
Hlavní autori: Ghaffar, Fazal, Ullah, Saif, Badshah, Noor, Khan, Najeeb Alam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Freiburg Wiley Subscription Services, Inc 15.03.2021
Predmet:
ISSN:0170-4214, 1099-1476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a higher‐order compact finite difference scheme with multigrid algorithm is applied for solving one‐dimensional time fractional diffusion equation. The second‐order derivative with respect to space is approximated by higher‐order compact difference scheme. Then, Grünwald–Letnikov approximation is used for the Riemann–Liouville time derivative to get an implicit scheme. The scheme is based on a heptadiagonal matrix with eighth‐order accurate local truncation error. Fourier analysis is used to analyze the stability of higher‐order compact finite difference scheme. Matrix analysis is used to show that the scheme is convergent with the accuracy of eighth‐order in space. Numerical experiments confirm our theoretical analysis and demonstrate the performance and accuracy of our proposed scheme.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6406