On the numerical solution of singular two‐point boundary value problems: A domain decomposition homotopy perturbation approach

This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a num...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 40; číslo 18; s. 7396 - 7409
Hlavní autor: Roul, Pradip
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 01.12.2017
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a number of nonoverlapping subdomains. In each subdomain, a method based on a combination of HPM and integral equation formalism is implemented. The boundary condition at the right endpoint of each inner subdomain is established before deriving an iterative scheme for the components of the solution series. The accuracy and efficiency of the DDHPM are demonstrated by 4 examples (2 nonlinear and 2 linear). In comparison with the traditional HPM, the proposed domain decomposition HPM is highly accurate.
AbstractList This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a number of nonoverlapping subdomains. In each subdomain, a method based on a combination of HPM and integral equation formalism is implemented. The boundary condition at the right endpoint of each inner subdomain is established before deriving an iterative scheme for the components of the solution series. The accuracy and efficiency of the DDHPM are demonstrated by 4 examples (2 nonlinear and 2 linear). In comparison with the traditional HPM, the proposed domain decomposition HPM is highly accurate.
Author Roul, Pradip
Author_xml – sequence: 1
  givenname: Pradip
  orcidid: 0000-0001-7929-3069
  surname: Roul
  fullname: Roul, Pradip
  email: pradipvnit@yahoo.com
  organization: Visvesvaraya National Institute of Technology
BookMark eNp1kM9KAzEYxINUsK2CjxDw4mVrskmzu95K8R9UetHzks0mNmWTrEnW0lsfwWf0Sdy2nkRPH3z8ZoaZERhYZyUAlxhNMELpjTF8QqeEnYAhRkWRYJqxARginKGEppiegVEIa4RQjnE6BLulhXEloe2M9FrwBgbXdFE7C52CQdu3ruEexo372n22TtsIK9fZmvst_OBNJ2HrXdVIE27hDNbOcG1hLYUzrQv64LNyxkXXbmErfex8xQ9f3vZCLlbn4FTxJsiLnzsGr_d3L_PHZLF8eJrPFolIC8ISodKqEEygKucVIyqVVBGcZYgwUvR5NRUVooIynKmaKFWgijBJp6LmdYprTMbg6ujbx753MsRy7Tpv-8gSFyzPc1wg2lPXR0p4F4KXqmy9Nn3ZEqNyv2_Z71vu9-3RyS9U6HjoFj3XzV-C5CjY6EZu_zUun59nB_4bLYSSRA
CitedBy_id crossref_primary_10_1007_s10910_021_01279_7
crossref_primary_10_1007_s11071_023_08662_w
crossref_primary_10_3390_axioms12090827
crossref_primary_10_1007_s10910_024_01685_7
crossref_primary_10_1002_mma_9299
crossref_primary_10_1016_j_cam_2021_113411
crossref_primary_10_3390_math8071045
crossref_primary_10_1002_mma_5351
crossref_primary_10_1016_j_amc_2021_126615
crossref_primary_10_1007_s40314_020_01344_y
crossref_primary_10_1007_s10910_021_01316_5
crossref_primary_10_1016_j_jocs_2022_101690
crossref_primary_10_1155_2021_2893299
crossref_primary_10_1007_s10910_022_01369_0
crossref_primary_10_1007_s10910_021_01293_9
crossref_primary_10_1080_00207160_2021_1874943
crossref_primary_10_1002_mma_6947
crossref_primary_10_1007_s12190_020_01494_6
Cites_doi 10.1016/0022-5193(80)90250-7
10.1007/BF01390712
10.1016/j.cnsns.2009.02.016
10.1016/j.na.2008.11.045
10.1016/j.cam.2015.10.020
10.1016/0022-5193(76)90071-0
10.1007/s10910-016-0617-8
10.1016/j.chaos.2007.06.007
10.1080/00207160211935
10.1016/j.cam.2003.09.053
10.1016/j.camwa.2010.05.029
10.1016/j.compchemeng.2011.08.008
10.1016/0025-5564(86)90119-7
10.1063/1.1700291
10.1016/j.cpc.2014.01.002
10.1016/S0045-7825(99)00018-3
10.1016/j.mcm.2010.04.009
10.1016/j.cnsns.2010.10.004
10.1016/j.compchemeng.2010.02.035
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.4536
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 7409
ExternalDocumentID 10_1002_mma_4536
MMA4536
Genre article
GrantInformation_xml – fundername: Science and Engineering Research Board, DST, India
  funderid: SB/S4/MS/877/2014
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2936-cf2b9c6c0b8ab63f2e4f317703639decd4cb04c4617fd3ff90b36e45cdad21d13
IEDL.DBID DRFUL
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419218900079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:19:58 EDT 2025
Sat Nov 29 01:33:56 EST 2025
Tue Nov 18 22:21:34 EST 2025
Sun Sep 21 06:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-cf2b9c6c0b8ab63f2e4f317703639decd4cb04c4617fd3ff90b36e45cdad21d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7929-3069
PQID 1968881904
PQPubID 1016386
PageCount 14
ParticipantIDs proquest_journals_1968881904
crossref_primary_10_1002_mma_4536
crossref_citationtrail_10_1002_mma_4536
wiley_primary_10_1002_mma_4536_MMA4536
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 34
1952; 20
2004; 166
2007; 189
2009; 14
1986; 81
1987; 50
2009; 71
1976; 60
2002; 79
2016; 54
1980; 82
1992
2012; 36
2011; 16
2014; 185
1998; 178
2010; 52
2016; 296
2009; 39
2010; 60
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
Ravikanth ASV (e_1_2_7_8_1) 2007; 189
Fogler HS (e_1_2_7_4_1) 1992
References_xml – volume: 20
  start-page: 1795
  year: 1952
  end-page: 1797
  article-title: On the solution of the Poisson‐Boltzmann equation with the application to the theory of thermal explosions
  publication-title: J Chem Phys
– volume: 39
  start-page: 1232
  year: 2009
  end-page: 1237
  article-title: B‐spline solution of non‐linear singular boundary value problems arising in physiology
  publication-title: Chaos Solitons and Fract
– volume: 178
  start-page: 257
  year: 1998
  end-page: 262
  article-title: Homotopy perturbation technique
  publication-title: Comput Meth Appl Mech Eng
– volume: 54
  start-page: 1255
  year: 2016
  end-page: 1285
  article-title: New approach for solving a class of singular boundary value problem arising in various physical models
  publication-title: J Math Chem
– volume: 16
  start-page: 2730
  year: 2011
  end-page: 2736
  article-title: Homotopy analysis method applied to electrohydrodynamic flow
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 60
  start-page: 449
  year: 1976
  end-page: 457
  article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics
  publication-title: J Theoretical Biol
– volume: 50
  start-page: 363
  year: 1987
  end-page: 376
  article-title: Spline finite differnce methods for singular two point boundary value problem
  publication-title: Numer Math
– volume: 34
  start-page: 1750
  issue: 11
  year: 2010
  end-page: 1760
  article-title: Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems
  publication-title: Comput Chem Eng
– volume: 166
  start-page: 553
  year: 2004
  end-page: 564
  article-title: On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology
  publication-title: J Comput l Appl Math
– volume: 71
  start-page: 1059
  year: 2009
  end-page: 1072
  article-title: Singular non‐linear two‐point boundary value problems: existence and uniqueness
  publication-title: Non Anal
– volume: 82
  start-page: 473
  year: 1980
  end-page: 476
  article-title: The distribution of heat sources in the human head: a theoretical consideration
  publication-title: J Theoret Biol
– volume: 81
  start-page: 224
  year: 1986
  end-page: 229
  article-title: A simplified mathematical model of tumor growth
  publication-title: Math Biosci
– volume: 189
  start-page: 2017
  year: 2007
  end-page: 2022
  article-title: Cubic spline polynomial for non‐linear singular two‐point boundary value problems
  publication-title: Appl Math Comput
– volume: 185
  start-page: 1282
  year: 2014
  end-page: 1289
  article-title: An efficient numerical technique for the solution of non‐linear singular boundary value problems
  publication-title: Comp Phy Communic
– year: 1992
– volume: 36
  start-page: 57
  year: 2012
  end-page: 67
  article-title: A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of OHAM
  publication-title: Comput Chem Eng
– volume: 14
  start-page: 4057
  year: 2009
  end-page: 4064
  article-title: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation
  publication-title: Commun Nonlinear Sci Numer Simulat
– volume: 79
  start-page: 357
  year: 2002
  end-page: 366
  article-title: On the convergence of a spine method for singular two point boundary value problems arising in physiology
  publication-title: Int J Computer Math
– volume: 296
  start-page: 661
  year: 2016
  end-page: 676
  article-title: A novel numerical approach and its convergence for numerical solution of doubly singular boundary value problems
  publication-title: J Comput Appl Math
– volume: 52
  start-page: 626
  year: 2010
  end-page: 636
  article-title: A novel approach for the solution of a class of singular boundary value prblems arising in physiology
  publication-title: Math Computer Model
– volume: 60
  start-page: 821
  issue: 3
  year: 2010
  end-page: 829
  article-title: He's varitional iteration method for treating nonlinear singular boundary value problem
  publication-title: Comput Math Appl
– ident: e_1_2_7_3_1
  doi: 10.1016/0022-5193(80)90250-7
– volume-title: Elements of Chemical Reaction Engineering
  year: 1992
  ident: e_1_2_7_4_1
– ident: e_1_2_7_11_1
  doi: 10.1007/BF01390712
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cnsns.2009.02.016
– ident: e_1_2_7_7_1
  doi: 10.1016/j.na.2008.11.045
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cam.2015.10.020
– ident: e_1_2_7_2_1
  doi: 10.1016/0022-5193(76)90071-0
– ident: e_1_2_7_15_1
  doi: 10.1007/s10910-016-0617-8
– volume: 189
  start-page: 2017
  year: 2007
  ident: e_1_2_7_8_1
  article-title: Cubic spline polynomial for non‐linear singular two‐point boundary value problems
  publication-title: Appl Math Comput
– ident: e_1_2_7_9_1
  doi: 10.1016/j.chaos.2007.06.007
– ident: e_1_2_7_12_1
  doi: 10.1080/00207160211935
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cam.2003.09.053
– ident: e_1_2_7_16_1
  doi: 10.1016/j.camwa.2010.05.029
– ident: e_1_2_7_17_1
  doi: 10.1016/j.compchemeng.2011.08.008
– ident: e_1_2_7_5_1
  doi: 10.1016/0025-5564(86)90119-7
– ident: e_1_2_7_6_1
  doi: 10.1063/1.1700291
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cpc.2014.01.002
– ident: e_1_2_7_18_1
  doi: 10.1016/S0045-7825(99)00018-3
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mcm.2010.04.009
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cnsns.2010.10.004
– ident: e_1_2_7_14_1
  doi: 10.1016/j.compchemeng.2010.02.035
SSID ssj0008112
Score 2.2389753
Snippet This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7396
SubjectTerms Boundary value problems
Decomposition
Domain decomposition methods
homotopy perturbation method
Integral equations
isothermal gas sphere
Iterative methods
Perturbation methods
singular boundary value problem
thermal explosion problem
Title On the numerical solution of singular two‐point boundary value problems: A domain decomposition homotopy perturbation approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.4536
https://www.proquest.com/docview/1968881904
Volume 40
WOSCitedRecordID wos000419218900079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM99AWo25ZqkBCPQ9rEGSfZ3lbAikO3IERRb1H8iFipm6w221a99Sf0N_aX1HacLUggIXHKZcaKPK9P9vgbgNcy5angRAEv0iQgrXQgKNYBcWYUkkgL9-r9x3F6cpKdnQ2--q5K-xam5YdYHrjZyHD52gZ4IZrDB9LQ6bQ4IB4nj2GFGbflPVj5-G10erzMw1nk7jotQUxALKKOejZkh53u78XoAWH-ilNdoRmt_88vbsCah5c4bP1hEx7pagtWx0tu1mYLNn04N_jOc06_fwY3Xyo0MlhdtDc459j5JNYl2vME266Ki6v67uZ2Vk-qBQo3kGl-jZYvXKOfTNMc4RBVPS0mFSptG9Z9Vxj-tH1_9ewaZ3pu6pxwLoEdp_lzOB19-v7hc-CHMwTSIIQkkCUTA5nIUGSFSOKSaSoNFnF8XgOzviIpQpJkEFKp4rIchCJONHGpCsUiFcUvoFfVld4GjEx9jLhiiquEhEyLjJMiZcAZC81Kog9vOyvl0jOX2wEa53nLucxys9G53eg-vFpKzlq2jj_I7HWGzn28NrnJQ1lmwRH14Y0z6V_18_F4aL87_yq4C0-ZxQKuB2YPeov5hX4JT-TlYtLM973X3gOudfU2
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFgk4FFpABAoMEuJxMLXXs7YDpwiIikgCQm3Vm-V9WERq7ChOQb31J_Q39pd0d71OQQIJiZMvsytr5_VpdvYbgOcy5angRAEv0iQgrXQgKNYBcWYWJJEW7tX74SidTLKjo_7XNXjXvYVp-SFWBTfrGS5eWwe3BendK9bQ2ax4QzxOrsEGGSsy5r3x4dvwYLQKxFnkLjstQ0xALKKOezZku93a37PRFcT8Fai6TDO8_V__eAc2PcDEQWsRW7Cmq224NV6xszbbsOUdusFXnnX69V04-1KhkcHqpL3DOcbOKrEu0VYUbMMqLn_WF2fn83paLVG4kUyLU7SM4Rr9bJrmLQ5Q1bNiWqHStmXd94Xhd9v5V89Pca4XJtMJZxTYsZrfg4Phx_33e4EfzxBIgxGSQJZM9GUiQ5EVIolLpqk0aMQxevXN_oqkCEmSwUilisuyH4o40cSlKhSLVBTfh_WqrvQDwMhkyIgrprhKSMi0yDgpUgaesdDsJHrwslNTLj13uR2hcZy3rMssNwed24PuwbOV5Lzl6_iDzE6n6dx7bJObSJRlFh5RD144nf51fT4eD-z34b8KPoUbe_vjUT76NPn8CG4yiwxcR8wOrC8XJ_oxXJc_ltNm8cSb8CVNafkm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFKFyKLSASCkwSIjHwdRez9oOnCJKBCIJFaJVb5b3YTVSY1txWtRbf0J_I7-EXXudggQSEidfZlbWzuvT7uw3AM9lzGPBiTyexZFHWmlPUKg94swoRIEWzav3o3E8nSbHx4ODNXjXvYVp-SFWB242Mpp8bQNcVyrfu2YNnc-zN8TD6Aask50h04P1_a-jw_EqESdBc9lpGWI8YgF13LM-2-t0f69G1xDzV6DaVJrRnf_6x7uw6QAmDluP2II1XWzD7cmKnbXehi0X0DW-cqzTr-_B5ZcCjQwWZ-0dzil2XolljvZEwTas4vJ7-ePyqipnxRJFM5JpcYGWMVyjm01Tv8UhqnKezQpU2rasu74wPLGdf2V1gZVemEonGqfAjtX8PhyOPnx7_9Fz4xk8aTBC5MmciYGMpC-STERhzjTlBo00jF4Ds74iKXySZDBSrsI8H_gijDRxqTLFAhWED6BXlIV-CBiYChlwxRRXEQkZZwknRcrAM-ablUQfXnZmSqXjLrcjNE7TlnWZpWajU7vRfXi2kqxavo4_yOx2lk5dxNapyURJYuER9eFFY9O_6qeTydB-d_5V8CncOtgfpeNP08-PYINZYNA0xOxCb7k404_hpjxfzurFE-fBPwHkxPih
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+numerical+solution+of+singular+two%E2%80%90point+boundary+value+problems%3A+A+domain+decomposition+homotopy+perturbation+approach&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Roul%2C+Pradip&rft.date=2017-12-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=40&rft.issue=18&rft.spage=7396&rft.epage=7409&rft_id=info:doi/10.1002%2Fmma.4536&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_4536
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon